中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 577-590.DOI: 10.16819/j.1001-7216.2024.230912
• 研究报告 • 上一篇
周子榆1, 王孟佳1,2, 冯向前1,3, 覃金华1,3, 王爱冬1, 马横宇1, 褚光1, 刘元辉1, 徐春梅1, 章秀福1, 王丹英1, 郑希4,*(), 陈松1,*()
收稿日期:
2023-09-25
修回日期:
2024-01-16
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: xzheng@zju.edu.cn; chensong02@caas.cn
基金资助:
ZHOU Ziyu1, WANG Mengjia1,2, FENG Xiangqian1,3, QIN Jinhua1,3, WANG Aidong1, MA Hengyu1, CHU Guang1, LIU Yuanhui1, XU Chunmei1, ZHANG Xiufu1, WANG Danying1, ZHENG Xi4,*(), CHEN Song1,*()
Received:
2023-09-25
Revised:
2024-01-16
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: xzheng@zju.edu.cn; chensong02@caas.cn
摘要:
【目的】探讨不同水旱轮作模式与水稻季施氮水平在稻田土壤固碳(有机碳储量及其官能团特征)中的作用。【方法】依托中国水稻研究所水-旱轮作长期定位试验(2003年至今),研究4种轮作模式[水稻-冬闲(RF)、水稻-紫云英(RC)、水稻-小麦(RW)和水稻-稻草覆盖种植马铃薯(RP)]与2个水稻季氮肥处理[不施氮(N0,0 kg/hm2) 和正常施氮(N1,135 kg/hm2)]对稻田土壤有机碳储量(0−50 cm)和有机碳官能团特征(0−20 cm)的影响。【结果】1) 在土壤浅耕层(0−20 cm)内,轮作能够在一定程度上提高有机碳含量,表现为RP>RC>RW或RF;但对于全耕层(0−50、0−40和0−30 cm)土壤有机碳储量而言,冬作(RP,RC和RW)与冬闲(RF)无显著差异,而施氮更有利于土壤固碳。2)水稻季不施氮处理下:相较于RF,冬作模式显著增加包括烷基碳和芳香碳在内的难降解组分,而抑制以烷氧碳为主的易降解组分,明显提高了土壤腐殖化指数、芳香性和疏水性,助力浅层土壤(0-20 cm)总有机碳储备的增加。其中,腐殖化指数和疏水性与还田秸秆C/N比值关系密切,这在浅层土壤固碳上具有重要意义。【结论】相较于轮作,适度施氮对全层土壤有机碳储备更有意义;而周年水旱轮作中全量秸秆还田对土壤有机质积累的效应仅停留在浅耕层,对全土层土壤有机碳储备的作用则被高估。秸秆碳在稻田的去向还有待进一步探索。
周子榆, 王孟佳, 冯向前, 覃金华, 王爱冬, 马横宇, 褚光, 刘元辉, 徐春梅, 章秀福, 王丹英, 郑希, 陈松. 轮作模式和氮肥处理对稻田土壤有机碳储量及其结构的影响[J]. 中国水稻科学, 2024, 38(5): 577-590.
ZHOU Ziyu, WANG Mengjia, FENG Xiangqian, QIN Jinhua, WANG Aidong, MA Hengyu, CHU Guang, LIU Yuanhui, XU Chunmei, ZHANG Xiufu, WANG Danying, ZHENG Xi, CHEN Song. Effects of Crop Rotation Patterns and Nitrogen Fertilizer Levels on Storage and Structure of Soil Organic Carbon in Paddy Fields[J]. Chinese Journal OF Rice Science, 2024, 38(5): 577-590.
轮作 Rotation | 施氮量 Nitrogen | TN (g/kg) | TP (g/kg) | AN (mg/kg) | SOM (g/kg) | pH |
---|---|---|---|---|---|---|
RF | N0 | 1.99±0.16 d | 0.78±0.04 c | 164.98±9.67 de | 34.71±1.51 d | 6.29±0.04 a |
N1 | 2.11±0.02 bcd | 0.77±0.03 c | 181.77±6.20 abcd | 39.52±0.74 abc | 5.95±0.01 cd | |
RC | N0 | 2.19±0.07 abcd | 0.83±0.05 c | 170.51±7.06 bcde | 38.56±0.36 abcd | 6.14±0.04 ab |
N1 | 2.23±0.06 abc | 0.84±0.05 c | 183.18±3.84 abc | 37.88±0.95 bcd | 5.94±0.05 cd | |
RP | N0 | 2.30±0.09 ab | 1.03±0.05 ab | 185.91±3.41 ab | 40.66±2.54 ab | 6.13±0.07 b |
N1 | 2.41±0.03 a | 1.16±0.10 a | 192.25±5.19 a | 42.29±0.83 a | 5.83±0.08 d | |
RW | N0 | 2.30±0.07 cd | 1.03±0.07 bc | 163.42±7.09 e | 36.27±1.43 cd | 6.05±0.07 bc |
N1 | 2.12±0.05 bcd | 0.80±0.04 c | 166.37±4.30 cde | 37.41±1.67 bcd | 5.86±0.03 d |
表1 不同轮作模式及氮肥处理的土壤基本理化性状(平均值±标准误)
Table 1. Basic properties of soil under different rotation systems and nitrogen fertilizer levels(Mean±SE)
轮作 Rotation | 施氮量 Nitrogen | TN (g/kg) | TP (g/kg) | AN (mg/kg) | SOM (g/kg) | pH |
---|---|---|---|---|---|---|
RF | N0 | 1.99±0.16 d | 0.78±0.04 c | 164.98±9.67 de | 34.71±1.51 d | 6.29±0.04 a |
N1 | 2.11±0.02 bcd | 0.77±0.03 c | 181.77±6.20 abcd | 39.52±0.74 abc | 5.95±0.01 cd | |
RC | N0 | 2.19±0.07 abcd | 0.83±0.05 c | 170.51±7.06 bcde | 38.56±0.36 abcd | 6.14±0.04 ab |
N1 | 2.23±0.06 abc | 0.84±0.05 c | 183.18±3.84 abc | 37.88±0.95 bcd | 5.94±0.05 cd | |
RP | N0 | 2.30±0.09 ab | 1.03±0.05 ab | 185.91±3.41 ab | 40.66±2.54 ab | 6.13±0.07 b |
N1 | 2.41±0.03 a | 1.16±0.10 a | 192.25±5.19 a | 42.29±0.83 a | 5.83±0.08 d | |
RW | N0 | 2.30±0.07 cd | 1.03±0.07 bc | 163.42±7.09 e | 36.27±1.43 cd | 6.05±0.07 bc |
N1 | 2.12±0.05 bcd | 0.80±0.04 c | 166.37±4.30 cde | 37.41±1.67 bcd | 5.86±0.03 d |
轮作 Rotation | 施氮量 Nitrogen | DW(g/m2) | N(g/m2) | C(g/m2) | C/N |
---|---|---|---|---|---|
RC | N0 | 316.08±37.94 | 11.14±0.86 | 105.02±11.46 | 9.38±0.32 |
N1 | 276.86±26.33 | 9.53±0.87 | 92.40±6.13 | 9.76±0.46 | |
RP | N0 | 1789.56±152.52 | 16.02±2.35 | 531.38±89.49 | 33.02±2.62 |
N1 | 1273.92±260.37 | 12.29±1.34 | 332.85±110.93 | 25.93±6.10 | |
RW | N0 | 610.41±60.67 | 4.24±0.66 | 198.19±19.32 | 49.44±10.55 |
N1 | 722.56±81.98 | 4.78±1.05 | 244.03±30.22 | 53.53±5.98 |
表2 不同轮作模式及氮肥水平下还田秸秆参数(平均值±标准误)
Table 2. Parameters of returned straw under different rotation systems and nitrogen fertilizer levels(Mean±SE)
轮作 Rotation | 施氮量 Nitrogen | DW(g/m2) | N(g/m2) | C(g/m2) | C/N |
---|---|---|---|---|---|
RC | N0 | 316.08±37.94 | 11.14±0.86 | 105.02±11.46 | 9.38±0.32 |
N1 | 276.86±26.33 | 9.53±0.87 | 92.40±6.13 | 9.76±0.46 | |
RP | N0 | 1789.56±152.52 | 16.02±2.35 | 531.38±89.49 | 33.02±2.62 |
N1 | 1273.92±260.37 | 12.29±1.34 | 332.85±110.93 | 25.93±6.10 | |
RW | N0 | 610.41±60.67 | 4.24±0.66 | 198.19±19.32 | 49.44±10.55 |
N1 | 722.56±81.98 | 4.78±1.05 | 244.03±30.22 | 53.53±5.98 |
化学位移 Chemical shift(ppm) | 有机物官能团 Functional groups of organic matter | |
---|---|---|
0~45 | 烷基碳Alkyl C | |
45~60 | 烷氧碳O-Alkly C | 含氮烷基+甲氧基碳N-Alkyl+Methoxyl C |
60~94 | 炔基碳Alkyne C | |
94~110 | 双氧烷基碳di-O-Alkyl C | |
110~142 | 芳香碳Aromatic C | 芳香基+苯烷基碳Aromatic+Aryl C |
142~160 | 酚芳基碳Phenolic C | |
160~212 | 羰基碳Carboxyl C |
表3 13C固态核磁共振波谱分析的有机碳官能团种类
Table 3. Organic carbon components identified by 13C-NMR
化学位移 Chemical shift(ppm) | 有机物官能团 Functional groups of organic matter | |
---|---|---|
0~45 | 烷基碳Alkyl C | |
45~60 | 烷氧碳O-Alkly C | 含氮烷基+甲氧基碳N-Alkyl+Methoxyl C |
60~94 | 炔基碳Alkyne C | |
94~110 | 双氧烷基碳di-O-Alkyl C | |
110~142 | 芳香碳Aromatic C | 芳香基+苯烷基碳Aromatic+Aryl C |
142~160 | 酚芳基碳Phenolic C | |
160~212 | 羰基碳Carboxyl C |
图1 不同的轮作模式及氮肥水平下稻田土壤有机碳储量 A、B、C、D分别代表0—50、0—40、0—30、0—20 cm土层土壤有机碳储量。N0:0 kg/hm2;N1:135 kg/hm2。RF:水稻-冬闲;RC:水稻-紫云英;RP:水稻-稻草覆盖种植马铃薯;RW:水稻-小麦。图中误差棒表示标准误,不同小写字母表示各处理间差异显著(P<0.05,LSD)。
Fig. 1. Soil organic carbon storage under different crop rotation patterns and nitrogen fertilizer levels in paddy fields A, B, C and D represent soil organic carbon stocks in the 0-50, 0-40, 0-30 and 0-20 cm soil layers, respectively. N0, 0 kg/hm2; N1, 135 kg/hm2. RF, Rice-fallow; RC, Rice-green manure; RP, Rice-potato with rice straw mulch; RW, Rice-wheat. Error bars in the graph represent standard errors, and different lowercase letters represent significant differences among treatments (P< 0.05, LSD).
图2 不同轮作模式及氮肥水平下稻田0−50 cm土壤有机碳含量 N0:0 kg/hm2;N1:135 kg/hm2。RF:水稻-冬闲;RC:水稻-紫云英;RP:水稻-稻草覆盖种植马铃薯;RW:水稻-小麦。图中误差棒表示标准误,不同小写字母表示同一深度下各处理间差异显著(P<0.05,LSD)。
Fig. 2. Soil organic carbon content in each soil layer of 0-50 cm under different crop rotation patterns and nitrogen fertilizer levels in paddy fields N0, 0 kg/hm2; N1, 135 kg/hm2. RF, Rice-fallow; RC, Rice-green manure; RP, Rice-potato with rice straw mulch; RW, Rice-wheat. Error bars in the graph represent standard errors, and different lowercase letters represent significant differences among treatments (P< 0.05, LSD).
ANOVA | SOCC (g/kg) | BD (g/cm3) | SOCD (kg/m2) |
---|---|---|---|
土层深度Depth(D) | 1142.85*** | 271.28*** | 394.19*** |
氮肥Nitrogen(N) | 44.48*** | 3.26 | 21.90*** |
轮作Rotation(R) | 5.61** | 5.02** | 0.64 |
D×N | 5.07** | 2.22 | 4.30** |
D×R | 9.78*** | 2.32* | 6.46*** |
N×R | 0.06 | 1.27 | 0.73 |
D×N×R | 9.11*** | 0.78 | 7.94*** |
表4 耕层(0−50 cm)中不同土层深度、轮作模式及氮肥水平下土壤有机碳含量、土壤容重及土壤有机碳密度方差分析
Table 4. ANOVA for soil organic carbon content, soil bulk weight and soil organic carbon density in the ploughed layer (0−50 cm) at different soil depths, under various rotation systems and nitrogen fertilizer levels
ANOVA | SOCC (g/kg) | BD (g/cm3) | SOCD (kg/m2) |
---|---|---|---|
土层深度Depth(D) | 1142.85*** | 271.28*** | 394.19*** |
氮肥Nitrogen(N) | 44.48*** | 3.26 | 21.90*** |
轮作Rotation(R) | 5.61** | 5.02** | 0.64 |
D×N | 5.07** | 2.22 | 4.30** |
D×R | 9.78*** | 2.32* | 6.46*** |
N×R | 0.06 | 1.27 | 0.73 |
D×N×R | 9.11*** | 0.78 | 7.94*** |
图3 不同轮作模式及氮肥水平下稻田0−50 cm土层土壤容重 N0:0 kg/hm2;N1:135 kg/hm2。RF:水稻-冬闲;RC:水稻-紫云英;RP:水稻-稻草覆盖种植马铃薯;RW:水稻-小麦。图中误差棒表示标准误,不同小写字母表示同一深度下各处理间差异显著(P<0.05,LSD)。
Fig. 3. Soil bulk density in each soil layer of 0−50 cm under different crop rotation patterns and nitrogen fertilizer levels in paddy fields N0, 0 kg/hm2; N1, 135 kg/hm2. RF, Rice-fallow; RC, Rice-green manure; RP, Rice-potato with rice straw mulch; RW, Rice-wheat. Error bars in the graph represent standard errors, and different lowercase letters represent significant differences among treatments (P < 0.05, LSD).
图4 不同的轮作模式及氮肥水平下稻田0−50 cm剖面有机碳密度 N0:0 kg/hm2;N1:135 kg/hm2。RF:水稻-冬闲;RC:水稻-紫云英;RP:水稻-稻草覆盖种植马铃薯;RW:水稻-小麦。图中误差棒表示标准误,不同小写字母表示同一深度下各处理间差异显著(P<0.05,LSD)。
Fig. 4. Soil organic carbon density in each soil layer of 0−50 cm under different crop rotation patterns and nitrogen fertilizer levels in paddy fields N0, 0 kg/hm2; N1, 135 kg/hm2. RF, Rice-fallow; RC, Rice-green manure; RP, Rice-potato with rice straw mulch; RW, Rice-wheat. Error bars in the graph represent standard errors, and different lowercase letters represent significant differences among treatments (P < 0.05, LSD).
土壤有机碳储量 SOCS | 土壤有机碳含量SOCC | 土壤容重BD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0−10 cm | 10−20 cm | 20−30 cm | 30−40 cm | 40−50 cm | 0−10 cm | 10−20 cm | 20−30 cm | 30−40 cm | 40−50 cm | ||
0~50 cm | 0.04 | 0.10 | 0.30 | 0.53** | 0.51* | 0.25 | 0.14 | 0.10 | 0.08 | 0.50* | |
0~40 cm | 0.10 | 0.10 | 0.43* | 0.38 | 0.23 | 0.12 | 0.12 | 0.10 | |||
0~30 cm | 0.35 | 0.47* | 0.63** | 0.02 | 0.11 | 0.32 | |||||
0~20 cm | 0.59** | 0.64** | 0.13 | −0.07 |
表5 土壤有机碳储量与土壤有机碳含量和土壤容重的相关性
Table 5. Correlation between soil organic carbon storage and soil organic carbon content and soil bulk density
土壤有机碳储量 SOCS | 土壤有机碳含量SOCC | 土壤容重BD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0−10 cm | 10−20 cm | 20−30 cm | 30−40 cm | 40−50 cm | 0−10 cm | 10−20 cm | 20−30 cm | 30−40 cm | 40−50 cm | ||
0~50 cm | 0.04 | 0.10 | 0.30 | 0.53** | 0.51* | 0.25 | 0.14 | 0.10 | 0.08 | 0.50* | |
0~40 cm | 0.10 | 0.10 | 0.43* | 0.38 | 0.23 | 0.12 | 0.12 | 0.10 | |||
0~30 cm | 0.35 | 0.47* | 0.63** | 0.02 | 0.11 | 0.32 | |||||
0~20 cm | 0.59** | 0.64** | 0.13 | −0.07 |
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 烷基碳 Alkyl C(%) | 烷氧碳 O-Alkly C(%) | |||
---|---|---|---|---|---|---|---|
含氮烷基+甲氧基碳N-Alkyl+Methoxyl C | 炔基碳 Alkyne C | 双氧烷基碳di-O-Alkyl C | 合计 Total | ||||
水稻移栽前 Before transplanting | N0 | RF | 18.60±0.41 cd | 12.22±0.57 a | 36.51±1.05 a | 5.15±0.34 bc | 53.87±1.51 a |
RC | 20.39±0.39 bc | 12.57±0.78 a | 34.32±0.83 a | 6.86±0.60 a | 53.75±0.52 a | ||
RP | 26.95±0.10 a | 8.71±0.01 b | 30.11±1.09 b | 5.60±0.22 bc | 44.42±1.12 b | ||
RW | 26.28±0.82 a | 11.98±0.50 a | 25.70±0.32 c | 5.57±0.60 bc | 43.25±0.88 b | ||
N1 | RF | 21.98±0.45 b | 5.56±0.83 c | 24.69±0.72 cd | 4.67±0.44 c | 34.92±1.04 de | |
RC | 17.52±0.71 d | 5.81±0.50 c | 25.98±1.14 c | 4.71±0.37 c | 36.50±1.80 cd | ||
RP | 18.63±1.22 cd | 13.13±0.39 a | 19.23±0.70 e | 6.35±0.11 ab | 38.71±0.41 c | ||
RW | 18.88±0.30 cd | 4.56±0.28 c | 22.81±0.80 d | 4.43±0.44 c | 31.80±0.69 e | ||
水稻收获后 After harvest | N0 | RF | 17.25±0.58 bc | 16.61±0.58 ab | 19.92±0.33 cd | 5.80±0.28 cd | 42.33±0.24 bc |
RC | 19.43±0.60 ab | 15.79±1.39 bc | 20.59±0.76 bcd | 4.68±0.25 de | 41.07±0.95 bc | ||
RP | 14.60±0.61 d | 18.60±0.61 a | 20.59±0.50 bcd | 7.35±0.72 b | 46.54±0.53 a | ||
RW | 11.67±0.57 e | 14.01±0.68 cd | 21.77±0.52 bc | 6.64±0.57 bc | 42.42±0.78 bc | ||
N1 | RF | 19.78±0.54 a | 12.75±0.50 d | 19.62±0.35 d | 5.73±0.28 cde | 38.10±1.01 d | |
RC | 21.51±0.69 a | 15.72±0.48 bc | 20.08±0.26 cd | 4.41±0.50 e | 40.21±0.31 cd | ||
RP | 14.27±1.44 d | 9.13±0.22 e | 24.66±1.01 a | 8.71±0.53 a | 42.50±0.67 b | ||
RW | 15.75±0.16 cd | 11.70±1.51 de | 22.35±0.91 b | 4.55±0.11 de | 38.60±1.03 d | ||
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 芳香碳 Aromatic C(%) | 羰基碳 Carboxyl C(%) | |||
芳香基+苯烷基碳Aromatic+Aryl C | 酚芳基碳 Phenolic C | 合计 Total | |||||
水稻移栽前 Before transplanting | N0 | RF | 10.40±0.53 ab | 2.51±0.22 d | 12.91±0.70 cd | 14.62±1.23 d | |
RC | 9.61±0.46 b | 2.28±0.20 d | 11.90±0.64 d | 13.97±0.45 d | |||
RP | 11.50±1.25 ab | 3.74±0.10 ab | 15.24±1.33 abc | 13.40±0.15 d | |||
RW | 12.64±1.81 a | 3.74±0.21 ab | 16.38±1.85 ab | 14.09±0.59 d | |||
N1 | RF | 8.85±0.42 b | 3.45±0.29 bc | 12.29±0.42 d | 30.81±1.04 b | ||
RC | 9.47±0.48 b | 4.40±0.31 a | 13.87±0.24 bcd | 32.11±1.26 b | |||
RP | 12.87±0.74 a | 4.28±0.35 a | 17.15±0.81 a | 25.52±0.47 c | |||
RW | 11.48±0.57 ab | 2.97±0.03 cd | 14.45±0.60 abcd | 34.87±1.06 a | |||
水稻收获后 After harvest | N0 | RF | 13.68±0.23 ab | 3.52±1.01 ab | 17.19±1.14 ab | 23.22±1.13 d | |
RC | 13.90±0.79 ab | 2.77±0.31 b | 16.68±0.53 abc | 22.83±0.96 d | |||
RP | 10.73±0.12 d | 4.28±0.16 a | 15.00±0.27 c | 23.86±0.30 cd | |||
RW | 12.99±0.46 bc | 4.12±0.11 ab | 17.12±0.38 ab | 28.80±0.60 a | |||
N1 | RF | 12.18±0.10 c | 3.74±0.18 ab | 15.92±0.16 bc | 26.20±0.64 b | ||
RC | 9.90±0.37 d | 2.97±0.39 ab | 12.87±0.70 d | 25.41±0.36 bc | |||
RP | 15.09±0.52 a | 3.26±0.59 ab | 18.36±0.26 a | 24.87±0.87 bcd | |||
RW | 12.66±0.70 bc | 3.64±0.41 ab | 16.30±1.00 bc | 29.37±0.35 a |
表6 不同的轮作模式及氮肥水平下稻田土壤有机碳各官能团组分相对含量(平均值±标准误)
Table 6. Proportions of functional groups of soil organic carbon in paddy fields under different crop rotation patterns and nitrogen fertilizer levels(Mean±SE)
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 烷基碳 Alkyl C(%) | 烷氧碳 O-Alkly C(%) | |||
---|---|---|---|---|---|---|---|
含氮烷基+甲氧基碳N-Alkyl+Methoxyl C | 炔基碳 Alkyne C | 双氧烷基碳di-O-Alkyl C | 合计 Total | ||||
水稻移栽前 Before transplanting | N0 | RF | 18.60±0.41 cd | 12.22±0.57 a | 36.51±1.05 a | 5.15±0.34 bc | 53.87±1.51 a |
RC | 20.39±0.39 bc | 12.57±0.78 a | 34.32±0.83 a | 6.86±0.60 a | 53.75±0.52 a | ||
RP | 26.95±0.10 a | 8.71±0.01 b | 30.11±1.09 b | 5.60±0.22 bc | 44.42±1.12 b | ||
RW | 26.28±0.82 a | 11.98±0.50 a | 25.70±0.32 c | 5.57±0.60 bc | 43.25±0.88 b | ||
N1 | RF | 21.98±0.45 b | 5.56±0.83 c | 24.69±0.72 cd | 4.67±0.44 c | 34.92±1.04 de | |
RC | 17.52±0.71 d | 5.81±0.50 c | 25.98±1.14 c | 4.71±0.37 c | 36.50±1.80 cd | ||
RP | 18.63±1.22 cd | 13.13±0.39 a | 19.23±0.70 e | 6.35±0.11 ab | 38.71±0.41 c | ||
RW | 18.88±0.30 cd | 4.56±0.28 c | 22.81±0.80 d | 4.43±0.44 c | 31.80±0.69 e | ||
水稻收获后 After harvest | N0 | RF | 17.25±0.58 bc | 16.61±0.58 ab | 19.92±0.33 cd | 5.80±0.28 cd | 42.33±0.24 bc |
RC | 19.43±0.60 ab | 15.79±1.39 bc | 20.59±0.76 bcd | 4.68±0.25 de | 41.07±0.95 bc | ||
RP | 14.60±0.61 d | 18.60±0.61 a | 20.59±0.50 bcd | 7.35±0.72 b | 46.54±0.53 a | ||
RW | 11.67±0.57 e | 14.01±0.68 cd | 21.77±0.52 bc | 6.64±0.57 bc | 42.42±0.78 bc | ||
N1 | RF | 19.78±0.54 a | 12.75±0.50 d | 19.62±0.35 d | 5.73±0.28 cde | 38.10±1.01 d | |
RC | 21.51±0.69 a | 15.72±0.48 bc | 20.08±0.26 cd | 4.41±0.50 e | 40.21±0.31 cd | ||
RP | 14.27±1.44 d | 9.13±0.22 e | 24.66±1.01 a | 8.71±0.53 a | 42.50±0.67 b | ||
RW | 15.75±0.16 cd | 11.70±1.51 de | 22.35±0.91 b | 4.55±0.11 de | 38.60±1.03 d | ||
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 芳香碳 Aromatic C(%) | 羰基碳 Carboxyl C(%) | |||
芳香基+苯烷基碳Aromatic+Aryl C | 酚芳基碳 Phenolic C | 合计 Total | |||||
水稻移栽前 Before transplanting | N0 | RF | 10.40±0.53 ab | 2.51±0.22 d | 12.91±0.70 cd | 14.62±1.23 d | |
RC | 9.61±0.46 b | 2.28±0.20 d | 11.90±0.64 d | 13.97±0.45 d | |||
RP | 11.50±1.25 ab | 3.74±0.10 ab | 15.24±1.33 abc | 13.40±0.15 d | |||
RW | 12.64±1.81 a | 3.74±0.21 ab | 16.38±1.85 ab | 14.09±0.59 d | |||
N1 | RF | 8.85±0.42 b | 3.45±0.29 bc | 12.29±0.42 d | 30.81±1.04 b | ||
RC | 9.47±0.48 b | 4.40±0.31 a | 13.87±0.24 bcd | 32.11±1.26 b | |||
RP | 12.87±0.74 a | 4.28±0.35 a | 17.15±0.81 a | 25.52±0.47 c | |||
RW | 11.48±0.57 ab | 2.97±0.03 cd | 14.45±0.60 abcd | 34.87±1.06 a | |||
水稻收获后 After harvest | N0 | RF | 13.68±0.23 ab | 3.52±1.01 ab | 17.19±1.14 ab | 23.22±1.13 d | |
RC | 13.90±0.79 ab | 2.77±0.31 b | 16.68±0.53 abc | 22.83±0.96 d | |||
RP | 10.73±0.12 d | 4.28±0.16 a | 15.00±0.27 c | 23.86±0.30 cd | |||
RW | 12.99±0.46 bc | 4.12±0.11 ab | 17.12±0.38 ab | 28.80±0.60 a | |||
N1 | RF | 12.18±0.10 c | 3.74±0.18 ab | 15.92±0.16 bc | 26.20±0.64 b | ||
RC | 9.90±0.37 d | 2.97±0.39 ab | 12.87±0.70 d | 25.41±0.36 bc | |||
RP | 15.09±0.52 a | 3.26±0.59 ab | 18.36±0.26 a | 24.87±0.87 bcd | |||
RW | 12.66±0.70 bc | 3.64±0.41 ab | 16.30±1.00 bc | 29.37±0.35 a |
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 腐殖化指数 HI | 芳香性 fa | 疏水性 Hydrophobicity |
---|---|---|---|---|---|
水稻移栽前 Before transplanting | N0 | RF | 0.35±0.00 ef | 0.15±0.01 gh | 0.46±0.01 efgh |
RC | 0.38±0.01 ef | 0.14±0.01 h | 0.48±0.02 defg | ||
RP | 0.61±0.01 a | 0.18±0.02 fg | 0.73±0.04 a | ||
RW | 0.61±0.02 a | 0.19±0.02 ef | 0.74±0.04 a | ||
N1 | RF | 0.63±0.03 a | 0.18±0.00 fg | 0.52±0.02 bcde | |
RC | 0.48±0.04 c | 0.20±0.00 cde | 0.46±0.02 fgh | ||
RP | 0.48±0.03 c | 0.23±0.01 abc | 0.56±0.01 bc | ||
RW | 0.59±0.01 ab | 0.22±0.01 abcd | 0.50±0.01 cdef | ||
水稻收获后 After harvest | N0 | RF | 0.41±0.01 de | 0.23±0.01 abc | 0.53±0.03 bcd |
RC | 0.47±0.02 cd | 0.22±0.00 bcde | 0.56±0.01 b | ||
RP | 0.31±0.02 fg | 0.20±0.00 def | 0.42±0.01 gh | ||
RW | 0.28±0.01 g | 0.24±0.01 ab | 0.40±0.01 h | ||
N1 | RF | 0.52±0.03 c | 0.22±0.00 abcd | 0.56±0.01 bc | |
RC | 0.53±0.02 bc | 0.17±0.01 fg | 0.52±0.01 bcde | ||
RP | 0.34±0.04 fg | 0.25±0.00 a | 0.48±0.03 def | ||
RW | 0.41±0.01 de | 0.23±0.01 abc | 0.47±0.02 defg |
表7 不同的轮作模式及氮肥水平下稻田土壤有机碳质量特征指数(平均值±标准误)
Table 7. Soil organic carbon quality characteristic index in paddy fields under different crop rotation patterns and nitrogen fertilizer levels(Mean±SE)
水稻生育时期 Rice growth stage | 施氮量 Nitrogen level | 轮作 Rotation | 腐殖化指数 HI | 芳香性 fa | 疏水性 Hydrophobicity |
---|---|---|---|---|---|
水稻移栽前 Before transplanting | N0 | RF | 0.35±0.00 ef | 0.15±0.01 gh | 0.46±0.01 efgh |
RC | 0.38±0.01 ef | 0.14±0.01 h | 0.48±0.02 defg | ||
RP | 0.61±0.01 a | 0.18±0.02 fg | 0.73±0.04 a | ||
RW | 0.61±0.02 a | 0.19±0.02 ef | 0.74±0.04 a | ||
N1 | RF | 0.63±0.03 a | 0.18±0.00 fg | 0.52±0.02 bcde | |
RC | 0.48±0.04 c | 0.20±0.00 cde | 0.46±0.02 fgh | ||
RP | 0.48±0.03 c | 0.23±0.01 abc | 0.56±0.01 bc | ||
RW | 0.59±0.01 ab | 0.22±0.01 abcd | 0.50±0.01 cdef | ||
水稻收获后 After harvest | N0 | RF | 0.41±0.01 de | 0.23±0.01 abc | 0.53±0.03 bcd |
RC | 0.47±0.02 cd | 0.22±0.00 bcde | 0.56±0.01 b | ||
RP | 0.31±0.02 fg | 0.20±0.00 def | 0.42±0.01 gh | ||
RW | 0.28±0.01 g | 0.24±0.01 ab | 0.40±0.01 h | ||
N1 | RF | 0.52±0.03 c | 0.22±0.00 abcd | 0.56±0.01 bc | |
RC | 0.53±0.02 bc | 0.17±0.01 fg | 0.52±0.01 bcde | ||
RP | 0.34±0.04 fg | 0.25±0.00 a | 0.48±0.03 def | ||
RW | 0.41±0.01 de | 0.23±0.01 abc | 0.47±0.02 defg |
土壤有机碳质量特征指数 Soil organic carbon quality characteristics index | DW | N | C | C/N |
---|---|---|---|---|
腐殖化指数HI | 0.41 | −0.24 | 0.41 | 0.72** |
芳香性fa | 0.19 | −0.25 | 0.13 | 0.43 |
疏水性Hydrophobicity | 0.54* | 0.050 | 0.50* | 0.50* |
表8 土壤有机碳质量特征指数与还田秸秆参数的相关性(0—20 cm)
Table 8. Correlation between soil organic carbon quality characteristics index and parameters of returned straw(0—20 cm)
土壤有机碳质量特征指数 Soil organic carbon quality characteristics index | DW | N | C | C/N |
---|---|---|---|---|
腐殖化指数HI | 0.41 | −0.24 | 0.41 | 0.72** |
芳香性fa | 0.19 | −0.25 | 0.13 | 0.43 |
疏水性Hydrophobicity | 0.54* | 0.050 | 0.50* | 0.50* |
[1] | 戴尔阜, 黄宇, 赵东升. 草地土壤固碳潜力研究进展[J]. 生态学报, 2015, 35(12): 3908-3918. |
Dai E F, Huang Y, Zhao D S. Review on soil carbon sequestration potential in grassland ecosystems[J]. Acta Ecologica Sinica, 2015, 35(12): 3908-3918. (in Chinese with English abstract) | |
[2] | 邱璇, 赵建宁, 李文亚, 张乃芹, 朱岩, 杨殿林. 不同利用方式对小针茅荒漠草原土壤有机碳储量及其结构的影响[J]. 农业环境科学学报, 2016, 35(11): 2137-2145. |
Qiu X, Zhao J N, Li W Y, Zhang N Q, Zhu Y, Yang D L. Effects of different land use types on storage and structure of soil organic carbon in Stipa klemenaii steppe in Inner Mongolia[J]. Journal of Agro-Environment Science, 2016, 35(11): 2137-2145. (in Chinese with English abstract) | |
[3] | 赵林林, 吴志祥, 孙瑞, 杨川, 符庆茂, 谭正洪. 土壤有机碳分类与测定方法的研究概述[J]. 热带农业工程, 2021, 45(3): 154-161. |
Zhao L L, Wu Z X, Sun R, Yang C, Fu Q M, Tan Z H. An overview of research on classification and determination of soil organic carbon[J] Tropical Agricultural Engineering, 2021, 45(3): 154-161. (in Chinese with English abstract) | |
[4] | 解宪丽, 孙波, 周慧珍, 李忠佩. 不同植被下中国土壤有机碳的储量与影响因子[J]. 土壤学报, 2004, 41(5): 687-699. |
Xie X L, Sun B, Zhou H Z, Li Z P. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedologica Sinica, 2004, 41(5): 687-699. (in Chinese with English abstract) | |
[5] | 金峰, 杨浩, 赵其国. 土壤有机碳储量及影响因素研究进展[J]. 土壤, 2000, 32(1): 11-17. |
Jin F, Yang H, Zhao Q G. Progress of research on soil organic carbon stocks and influencing factors[J]. Soils, 2000, 32(1): 11-17. (in Chinese) | |
[6] | 陈庆强, 王雪悦, 姚振兴, 杨钦川. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924. |
Chen Q Q, Wang X R, Yao Z X, Yang R C. Characteristics of soil organic matter structure in typical reclamation areas of the Yangtze River estuary[J]. Advances in Earth Science, 2022, 37(9): 915-924. (in Chinese with English abstract) | |
[7] | 李娜, 盛明, 尤孟阳, 韩晓增. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796-812. |
Li N, Sheng M, You M Y, Han X Z. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil organic matter[J]. Acta Pedologica Sinica, 2019, 56(4): 796-812. (in Chinese with English abstract) | |
[8] | 李昌明, 王晓玥, 孙波. 基于固态13C核磁共振波谱研究植物残体分解和转化机制的进展[J]. 土壤, 2017, 49(4): 658-664. |
Li C M, Wang X M, Sun B. Advances in studying mechanisms of plant residue decomposition and turnover based on solid-state 13C nuclear magnetic resonance spectroscopy[J]. Soils, 2017, 49(4): 658-664. (in Chinese with English abstract) | |
[9] | 黄晓磊. 稻麦轮作系统中弱晶质氧化铁与土壤有机碳的相互作用机制研究[D]. 南京: 南京农业大学, 2017. |
Huang X L. Mechanisms of the interaction between poorly crystalline iron oxides and soil organic carbon in a rice-wheat cropping system[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract) | |
[10] | 唐岚岚. 不同水旱轮作模式秸秆还田对土壤碳氮组分及作物产量的影响[D]. 武汉: 华中农业大学, 2021. |
Tang L L. Effects of straw returning on soil carbon and nitrogen components and crop yields under different rotation system[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[11] | Liu T Q, Guo L J, Cao C G, Tan W F, Li C F. Long-term rice-oilseed rape rotation increases soil organic carbon by improving functional groups of soil organic matter[J]. Agriculture, Ecosystems and Environment, 2021, 319: 48. |
[12] | Chen X, Jin M C, Zhang Y J, Hu J W, Gao H J, Chu W Y, Mao J D, Thompson M L. Nitrogen application increases abundance of recalcitrant compounds of soil organic matter[J]. Soil Science, 2018, 183(5): 169-178. |
[13] | 李志鹏, 潘根兴, 李恋卿, 张旭辉, 林凡. 水稻土和湿地土壤有机碳测定的CNS元素分析仪法与湿消化容量法之比较[J]. 土壤, 2008, 40(4): 580-585. |
Li Z P, Pan G X, Li L Q, Zhang X H, Lin F. Comparison between CNS element analyzer method and wet digestion volumetric method to determination of organic carbon in wetland soils and paddy soils[J]. Soils, 2008, 40(4): 580-585. (in Chinese with English abstract) | |
[14] | 刘少文, 殷敏, 褚光, 王丹英, 章秀福, 陈松. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响[J]. 中国农业科学, 2019, 52(14): 2484-2499. |
Liu S W, Yin M, Chu G, Wang D Y, Zhang X F, Chen S. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the middle and lower reaches of the Yangtze River[J]. Scientia Agricultura Sinica, 2019, 52(14): 2484-2499. (in Chinese with English abstract) | |
[15] | Hamido A S, Kpomblekou-A K. Cover crop and tillage effects on soil enzyme activities following tomato[J]. Soil & Tillage Research, 2009, 105(2): 269-274. |
[16] | Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131. |
[17] | 张帆, 黄凤球, 肖小平, 吴家梅. 冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响[J]. 生态学报, 2009, 29(2): 734-739. |
Zhang F, Huang F Q, Xiao X P, Wu J M. Short-term influences of winter crops on microbial biomass carbon, microbial biomass nitrogen and Cmic-to-Corg in a paddy soil[J]. Acta Ecologica Sinica, 2009, 29(2): 734-739. (in Chinese with English abstract) | |
[18] | 黄巧义, 林碧珊, 饶国良, 戴文举, 李苹, 吴永沛, 黄建凤, 曾招兵, 宋慧敏, 唐拴虎, 张木, 徐培智. 秸杆还田配施石灰对酸性水稻土有机碳及碳库管理指数的影响[J/OL]. 环境科学, 2023, 44(10):5813-5822. |
Huang Q Y, Lin B S, Rao G L, Dai W J, Li P, Wu Y P, Huang J F, Zeng Z B, Song H M, Tang S H, Zhang M, Xu P Z. Effects of straw returning with lime on SOC and carbon pool management in acidic paddy soil[J/OL]. Environmental Science, 2023, 44(10): 5813-5822. (in Chinese with English abstract) | |
[19] | Suphathida A, Chakrit C, Tantai G. Study of the interaction of dissolved organic carbon, available nutrients, and clay content driving soil carbon storage in the rice rotation cropping system in northern Thailand[J]. Agronomy, 2023, 13(1): 142. |
[20] | 郭戎博, 李国栋, 潘梦雨, 郑险峰, 王朝辉, 何刚. 秸秆还田与施氮对耕层土壤有机碳储量、组分和团聚体的影响[J]. 中国农业科学, 2023, 56(20): 4035-4048. |
Guo R B, Li G D, Pan M Y, Zheng X F, Wang Z H, He G. Effects of straw return and nitrogen application on soil organic carbon storage, composition and aggregates in cultivated layer[J]. Scientia Agricultura Sinica, 2023, 56(20): 4035-4048. | |
[21] | 王孟佳, 冯向前, 马横宇, 刘元辉, 褚光, 徐春梅, 章秀福, 王丹英, 陈松. 水稻-冬季秸秆覆盖种植马铃薯模式对水稻齐穗期根际土壤代谢组表达特征的影响[J]. 土壤, 2023, 55(2): 295-304. |
Wang M J, Feng X Q, Ma H Y, Liu Y H, Chu G, Xu C M, Zhang X F, Wang D Y, Chen S. Effects of rice-potato with straw mulch in winter on soil metabolite expression in rice rhizosphere at full-heading stage[J]. Soils, 2023, 55(2): 295-304. (in Chinese with English abstract) | |
[22] | Liang J Y, Zhou Z H, Huo C F, Shi Z, Cole J R, Huang L, Konstantinidis K T, Li X M, Liu B, Luo Z K, Penton C R, Schuur E A G, Tiedje J M, Wang Y P, Wu L Y, Xia J Y, Zhou J Z, Luo Y Q. More replenishment than priming loss of soil organic carbon with additional carbon input[J]. Nature Communications, 2018, 9(1): 3175. |
[23] | 姜振辉. 秸秆还田下土壤有机碳固持能力提升机制研究[D]. 杨凌: 西北农林科技大学, 2016. |
Jiang Z H. Study on The mechanism in improving the sequestration ability of soil[D]. Yangling: Northwest Agricultural and Forestry University, 2016. (in Chinese with English abstract) | |
[24] | 戴相林, 刘雅辉, 孙建平, 赵子婧, 左永梅, 耿雷跃, 张俊娥. 秸秆还田和氮肥减施对滨海盐渍土稻田温室气体排放及氮肥利用率的影响[J]. 应用与环境生物学报, 2023, 29(4): 994-1005. |
Dai X L, Liu Y H, Sun J P, Zhao Z J, Zuo Y M, Gen L Y, Zhang J E. Combined effects of straw return and reduced nitrogen fertilizer application on greenhouse gas emissions and nitrogen use efficiency in a coastal saline paddy field[J]. Chinese Journal of Applied and Environmental, 2023, 29(4): 994-1005. (in Chinese with English abstract) | |
[25] | 徐学池, 苏以荣, 王桂红, 刘坤平, 胡亚军, 陈香碧, 郑小东, 何寻阳. 秸秆还田配施氮肥对喀斯特农田微生物群落及有机碳矿化的影响[J]. 环境科学, 2019, 40(6): 2912-2919. |
Xu X C, Su Y R, Wang G H, Liu K P, Hu Y J, Chen X B, Zheng X D, He X Y. Straw returning plus nitrogen fertilizer affects the soil microbial community and organic carbon mineralization in karst farmland[J]. Environmental Science, 2019, 40(6): 2912-2919. (in Chinese with English abstract) | |
[26] | Eclesia R P, Jobbagy E G, Jackson R B, Rizzotto M, Pineiro G. Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions[J]. Plant and Soil, 2016, 409: 93-116. |
[27] | Hu Q Y, Liu T Q, Ding H N, Guo L J, Li C F, Jiang Y, Cao C G. Application rates of nitrogen fertilizers change the pattern of soil organic carbon fractions in a rice-wheat rotation system in China[J]. Agriculture, Ecosystems and Environment, 2022, 338: 108081. |
[28] | 黄容, 高明, 黎嘉成, 徐国鑫, 吕盛, 罗梅. 秸秆与化肥减量配施对菜地土壤温室气体排放的影响[J]. 环境科学, 2018, 39(10): 4694-4704. |
Huang R, Gao M, Li J C, Xu G S, Lü S, Luo M. Effect of straw residues in combination with reduced fertilization rate on greenhouse gas emissions from a vegetable field[J]. Environmental Science, 2018, 39(10): 4694-4704. (in Chinese with English abstract) | |
[29] | Meyer N, Welp G, Bornemann L, Amelung W. Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow[J]. Soil Biology and Biochemistry, 2017, 104: 175-184. |
[30] | Zheng B C, Chen P, Du Q, Yang H, Luo K, Wang X C, Yang F, Yong T W, Yang W Y. Soil organic matter, aggregates, and microbial characteristics of intercropping soybean under straw incorporation and N input[J]. Agriculture, 2022, 12(9): 1409. |
[31] | Li M, Hu H L, He X S, Jia J H, Marios D, Wang G X, Liu F L, Hu Z Y, Xi B D. Organic carbon sequestration in soil humic substances as affected by application of different nitrogen fertilizers in a vegetable-rotation cropping system[J]. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3106-3113. |
[32] | 杭子清, 王国祥, 刘金娥, 王刚, 王会. 互花米草盐沼土壤有机碳库组分及结构特征[J]. 生态学报, 2014, 34(15): 4175-4182. |
Hang Z Q, Wang G X, Liu J E, Wang G, Wang H. Characterization of soil organic carbon fractions at Spartina alterniflora saltmarsh in North Jiangsu[J]. Acta Ecologica Sinica, 2014, 34(15): 4175-4182. (in Chinese with English abstract) | |
[33] | 赵亚南. 长期不同施肥下紫色水稻土有机碳变化特征及影响机制[D]. 重庆: 西南大学, 2016. |
Zhao Y N. Characteristic and mechanism of organic carbon sequestration of purple paddy soil under long-term fertilization[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract) | |
[34] | Shrestha B M, Singh B R, Forte C, Certini G. Long-term effects of tillage, nutrient application and crop rotation on organic matter quality assessed by NMR spectroscopy[J]. Soil Use and Management, 2015, 31(3): 358-366. |
[35] | Dias T, Oakley S, Alarcón-Gutiérrez E, Ziarelli F, Trindade H, Martins-Loução A M, Sheppard L, Ostle N, Cruz C. N-driven changes in a plant community affect leaf-litter traits and may delay organic matter decomposition in a Mediterranean maquis[J]. Soil Biology and Biochemistry, 2013, 58: 163-171. |
[36] | Dou S, Zhang J J, Li K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil[J]. European Journal of Soil Science, 2008, 59(3): 532-539. |
[37] | Ussiri D A N, Johnson C E. Characterization of organic matter in a northern hardwood forest soil by 13C-NMR spectroscopy and chemical methods[J]. Geoderma, 2003, 111(1/2): 123-149. |
[38] | Zheng S, Dou S, Duan H M, Zhang B Y, Bai Y. Fluorescence spectroscopy and 13C NMR spectroscopy characteristics of HA in black soil at different corn straw returning modes[J]. International Journal of Analytical Chemistry, 2021(1): 9940116. |
[39] | 李今今, 季宏兵. 土壤腐殖物质的固体13C核磁共振技术研究[J]. 安徽农业科学, 2015, 43(10): 111-112. |
Li J J, Li H B. Study on solid state 13C nuclear magnetic resonance technology of soil humic substances[J]. Journal of Anhui Agricultural Sciences, 2015, 43(10): 111-112. (in Chinese with English abstract) | |
[40] | Chen J S, Chiu C Y. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR[J]. Geoderma, 2003, 117(1/2): 129-141. |
[41] | 孙慧敏, 姜姜, 崔莉娜, 张水锋, 张金池. 互花米草入侵对漳江口红树林湿地土壤有机碳官能团特征的影响[J]. 植物生态学报, 2018, 42(7): 774-784. |
Sun H M, Jiang J, Cui L N, Zhang Y F, Zhang J C. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary[J]. Chinese Journal of Plant Ecology, 2018, 42(7): 774-784. (in Chinese with English abstract) | |
[42] | 杨淑琪. 滇南地区油桃种植模式对土壤有机碳组分及其稳定性的影响[D]. 昆明: 云南大学, 2022. |
Yang S Q. Effects of nectarine planting patterns on soil organic carbon fractions and its stability in southern Yunnan[D]. Kunming: Yunnan University, 2022. (in Chinese with English abstract) | |
[43] | 郝近羽, 陈源泉, 代红翠, 李超, 徐洁, 刘瑾, 隋鹏. 不同有机物料还田后砂质土壤有机碳组分结构特征[J]. 农业生物技术学报, 2022, 30(11): 2201-2211. |
Hao J Y, Chen Y Q, Dai H C, Li C, Xu J, Liu J, Sui P. Characterization of soil organic carbon fractions under different organic materials amendment in sandy soil. Journal of Agricultural Biotechnology, 2022, 30(11): 2201-2211. (in Chinese with English abstract) | |
[44] | Baldock J A, Oades J M, Waters A G, Peng X, Vassallo M A, Wilson A M. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry, 1992, 16: 1-42. |
[45] | 张需琴. 水力侵蚀对红壤丘陵区土壤有机碳分子组成及稳定性的影响[D]. 长沙: 湖南大学, 2019. |
Zhang X Q. Effects of water erosion on soil organic carbon molecular composition and stability in Hilly Red Soil Region. Changsha: Hunan University, 2019. (in Chinese with English abstract) | |
[46] | 张方方, 高娜, 吴锁智, 白炬, 李阳, 岳善超, 李世清. 长期施氮和覆膜对土壤溶解性有机质含量及其结构特征的影响[J]. 环境科学学报, 2023, 43(11): 300-313. |
Zhang F F, Gao N, Wu S Z, Bai J, Li Y, Yue S C, Li S Q. Effects of long-term film mulching and nitrogen application on soil dissolved organic matter content and structure characteristics in different soil layers[J]. Acta Scientiae Circumstantiae, 43(11): 300-313. (in Chinese with English abstract) |
[1] | 谢先芝, 刘奇华, 李新华, 李维平. 稻田甲烷产生与排放的影响因素及减排措施研究进展[J]. 中国水稻科学, 2024, 38(5): 475-494. |
[2] | 唐志伟, 朱相成, 张俊, 邓艾兴, 张卫建. 水分调控下绿肥种植和石灰施用对双季稻稻米镉含量的影响[J]. 中国水稻科学, 2024, 38(2): 211-222. |
[3] | 马晓慧, 邢亚楠, 郭莉, 刘郁, 车喜庆, 桑海旭. 辽宁盘锦地区稻飞虱天敌螯蜂种群动态研究[J]. 中国水稻科学, 2024, 38(1): 99-105. |
[4] | 陈国奇, 唐伟, 李俊, 陆永良, 董立尧. 我国水稻田稗属杂草种类分布特点:以9个省级行政区73个样点调查数据为例[J]. 中国水稻科学, 2019, 33(4): 368-376. |
[5] | 张文学, 杨成春, 王少先, 孙刚, 刘增兵, 李祖章, 刘光荣. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31(4): 417-424. |
[6] | 朱平阳, 郑许松, 张发成, 徐红星, 姚晓明, 杨亚军, 陈桂华, 吕仲贤. 应用生态工程技术控制水稻害虫对水生昆虫数量的影响[J]. 中国水稻科学, 2017, 31(2): 207-215. |
[7] | 商庆银, 杨秀霞, 成臣, 罗亢, 黄山, 石庆华, 潘晓华, 曾勇军. 秸秆还田条件下不同水分管理对双季稻田综合温室效应的影响[J]. 中国水稻科学, 2015, 29(2): 181-190. |
[8] | 董春华1,2,3 ,曾闹华3 ,高菊生2,3,*,刘强1,* ,徐明岗3 ,文石林2,3 . 长期不同施肥模式下红壤性稻田水稻产量及有机碳含量变化特征[J]. 中国水稻科学, 2014, 28(2): 193-198. |
[9] | 马殿荣*,孔德秀,高齐,徐凡,赵明辉,唐亮,徐正进,陈温福*. 杂草稻对东北移栽稻群体生长环境及产量的影响[J]. 中国水稻科学, 2014, 28(2): 211-216. |
[10] | 李凤博1 ,卢光德2 ,周锡跃1 ,岳超2 ,徐春春1 ,倪会祥2 ,杨秀美2 ,方福平1,*. 云南元阳梯形稻田土壤碳氮空间分布及其影响因素[J]. 中国水稻科学, 2012, 26(5): 576-582. |
[11] | 王莉1,王鑫1,余喜初2,黄欠如2,赵锋1,张卫建1,3,* . 长期绿肥还田对江南稻田系统生产力及抗逆性的影响[J]. 中国水稻科学, 2012, 26(1): 92-100. |
[12] | 张志勇,王冬兰,张存政,吴长付,刘贤进. 苯醚甲环唑在水稻和稻田中的残留[J]. 中国水稻科学, 2011, 25(3): 339-342 . |
[13] | 李淑顺,张连举,强 胜. 江苏中部轻型栽培稻田杂草群落特征及草害综合评价[J]. 中国水稻科学, 2009, 23(2): 207-207~214 . |
[14] | 王彦荣,岩石真嗣 ,三木孝昭 ,华泽田, 张三元, 代贵金,. 自然农法条件下稻田有益微生物菌群多年施用累积效果[J]. 中国水稻科学, 2006, 20(4): 443-446 . |
[15] | 吴竞仑, 周恒昌. 稻田土壤多年生杂草种子库研究[J]. 中国水稻科学, 2006, 20(1): 89-96 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||