中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 555-566.DOI: 10.16819/j.1001-7216.2024.231203
杨铭榆1,2, 陈志诚3, 潘美清1,2, 张汴泓1,2, 潘睿欣1,2, 尤林东1,2, 陈晓艳1,2, 唐莉娜3,*(), 黄锦文1,2,*()
收稿日期:
2023-12-07
修回日期:
2024-04-17
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: 704142780@qq.com; huangjw1126@sohu.com
基金资助:
YANG Mingyu1,2, CHEN Zhicheng3, PAN Meiqing1,2, ZHANG Bianhong1,2, PAN Ruixin1,2, YOU Lindong1,2, CHEN Xiaoyan1,2, TANG Lina3,*(), HUANG Jinwen1,2,*()
Received:
2023-12-07
Revised:
2024-04-17
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: 704142780@qq.com; huangjw1126@sohu.com
摘要:
【目的】在烟-稻复种连作系统中,探讨烟后作水稻茎鞘物质转运及其产量对减氮配施生物炭处理的响应,以期为复种连作土壤改良提供科学依据。【方法】以杂交水稻甬优1540为材料,常规施氮栽培为对照(T0),在烤烟收获后全土层施用30 t/hm2生物炭的前提下,设置纯氮不减施(T1)、纯氮减施10%(T2)、纯氮减施20%(T3)和纯氮减施30%(T4)处理,分析了水稻产量变化与茎鞘同化物积累、转运的关系及其调控机制。【结果】结果表明,2年田间试验各处理产量均表现为T1>T2>T3>T0>T4,其中减氮10%~20%处理(T2和T3)与未减氮处理(T1)之间差异不显著,但均显著高于T0和T4,T2与T3处理2年平均实际产量分别比对照提高了13.94%和13.46%。收获指数方面,T2和T3处理均显著高于其他处理,各处理谷草比表现为T3>T2>T4>T1>T0。生物炭处理并适当减氮下抽穗期叶片净光合速率及SPAD值均显著高于对照。T1处理分蘖数峰值最高,但其分蘖成穗率却显著低于T2和T3处理。在茎鞘物质输出率和茎鞘物质转化率上,T3与T2处理差异不显著,但均显著高于其他处理;茎鞘非结构性碳水化合物(Non-Structural Carbohydrate,NSC)转运量、转运率及籽粒贡献率与茎鞘物质输出率和茎鞘物质转化率表现一致。茎鞘蔗糖相关酶活性分析表明,T3和T2处理水稻灌浆早中期α-淀粉酶、β-淀粉酶、蔗糖合成酶(SS)、蔗糖磷酸合成酶(SPS)活性均最高,但抽穗后20 d这些酶活性则以T1处理最高。【结论】生物炭可改善水稻灌浆期叶片光合性能,减施10%~20%氮肥有利于提高水稻抽穗期茎鞘蔗糖合成与转运酶活性,促进茎鞘物质的积累与转运,提高水稻收获指数,实现“减氮保产”的栽培目标。
杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566.
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen. Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation[J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566.
年份 Year | 处理 Treatment | 有效穗数 Effective panicles (×104/hm2) | 每穗粒数 No. of grains per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight(g) | 理论产量 Theoretical yield (kg/hm2) | 实际产量 Actual yield (kg/hm2) | 收获指数Harvest index |
---|---|---|---|---|---|---|---|---|
2022 | T0 | 213.95±2.03 c | 245.60±3.28 c | 78.86±0.34 b | 22.46±0.20 a | 9309.09±158.86 b | 9003.61±73.23 b | 0.47±0.01 b |
T1 | 219.46±1.05 a | 268.48±1.26 a | 80.77±0.24 a | 22.69±0.15 a | 10800.12±153.60 a | 10199.67±48.23 a | 0.48±0.01 b | |
T2 | 217.92±1.45 a | 266.11±0.74 ab | 81.26±0.17 a | 22.69±0.04 a | 10694.78±138.59 a | 10104.30±45.17 a | 0.50±0.01 a | |
T3 | 217.18±1.46 a | 263.50±2.28 b | 81.45±0.56 a | 22.68±0.06 a | 10575.12±174.55 a | 10092.64±66.98 a | 0.50±0.01 a | |
T4 | 212.75±1.04 c | 243.20±1.65 c | 78.28±0.35 b | 22.59±0.13 a | 9149.19±184.97 b | 9073.97±57.51 b | 0.48±0.01 b | |
2023 | T0 | 213.87±0.97 c | 245.72±1.02 c | 78.58±0.19 c | 22.46±0.12 a | 9275.49±78.56 b | 8725.34±89.13 b | 0.48±0.01 b |
T1 | 219.34±1.99 a | 268.35±1.45 a | 80.58±0.11 b | 22.64±0.16 a | 10737.59±143.23 a | 10188.71±67.61 a | 0.48±0.01 b | |
T2 | 217.85±3.52 a | 266.01±1.32 ab | 80.86±0.08 a | 22.63±0.13 a | 10606.16±141.25 a | 10096.52±125.45 a | 0.50±0.01 a | |
T3 | 217.26±2.29 a | 263.33±1.21 b | 81.50±0.19 a | 22.64±0.04 a | 10555.52±125.36 a | 10021.78±33.08 a | 0.51±0.01 a | |
T4 | 212.93±1.04 c | 242.67±1.44 c | 78.19±0.08 c | 22.60±0.08 a | 9132.28±151.68 b | 8849.68±119.82 b | 0.48±0.01 b | |
方差分析 Analysis of variance | ||||||||
年份Year(Y) | NS | NS | NS | NS | NS | NS | NS | |
处理Treatment(T) | ** | ** | ** | NS | ** | ** | * | |
Y×T | NS | NS | NS | NS | NS | NS | NS |
表1 减氮与生物炭配施下水稻产量及产量构成因素与收获指数变化
Table 1. Changes in rice yield, yield components and harvest index under nitrogen reduction combined with biochar application
年份 Year | 处理 Treatment | 有效穗数 Effective panicles (×104/hm2) | 每穗粒数 No. of grains per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight(g) | 理论产量 Theoretical yield (kg/hm2) | 实际产量 Actual yield (kg/hm2) | 收获指数Harvest index |
---|---|---|---|---|---|---|---|---|
2022 | T0 | 213.95±2.03 c | 245.60±3.28 c | 78.86±0.34 b | 22.46±0.20 a | 9309.09±158.86 b | 9003.61±73.23 b | 0.47±0.01 b |
T1 | 219.46±1.05 a | 268.48±1.26 a | 80.77±0.24 a | 22.69±0.15 a | 10800.12±153.60 a | 10199.67±48.23 a | 0.48±0.01 b | |
T2 | 217.92±1.45 a | 266.11±0.74 ab | 81.26±0.17 a | 22.69±0.04 a | 10694.78±138.59 a | 10104.30±45.17 a | 0.50±0.01 a | |
T3 | 217.18±1.46 a | 263.50±2.28 b | 81.45±0.56 a | 22.68±0.06 a | 10575.12±174.55 a | 10092.64±66.98 a | 0.50±0.01 a | |
T4 | 212.75±1.04 c | 243.20±1.65 c | 78.28±0.35 b | 22.59±0.13 a | 9149.19±184.97 b | 9073.97±57.51 b | 0.48±0.01 b | |
2023 | T0 | 213.87±0.97 c | 245.72±1.02 c | 78.58±0.19 c | 22.46±0.12 a | 9275.49±78.56 b | 8725.34±89.13 b | 0.48±0.01 b |
T1 | 219.34±1.99 a | 268.35±1.45 a | 80.58±0.11 b | 22.64±0.16 a | 10737.59±143.23 a | 10188.71±67.61 a | 0.48±0.01 b | |
T2 | 217.85±3.52 a | 266.01±1.32 ab | 80.86±0.08 a | 22.63±0.13 a | 10606.16±141.25 a | 10096.52±125.45 a | 0.50±0.01 a | |
T3 | 217.26±2.29 a | 263.33±1.21 b | 81.50±0.19 a | 22.64±0.04 a | 10555.52±125.36 a | 10021.78±33.08 a | 0.51±0.01 a | |
T4 | 212.93±1.04 c | 242.67±1.44 c | 78.19±0.08 c | 22.60±0.08 a | 9132.28±151.68 b | 8849.68±119.82 b | 0.48±0.01 b | |
方差分析 Analysis of variance | ||||||||
年份Year(Y) | NS | NS | NS | NS | NS | NS | NS | |
处理Treatment(T) | ** | ** | ** | NS | ** | ** | * | |
Y×T | NS | NS | NS | NS | NS | NS | NS |
图3 减氮与生物炭配施处理下水稻叶片净光合速率(A)、胞间CO2浓度(B)、气孔导度(C)、蒸腾速率(D)(2022年)
Fig. 3. Net photosynthetic rate (A), intercellular CO2 concentration (B), stomatal conductance (C) and transpiration rate (D) of rice leaves under nitrogen reduction combined with biochar application (2022)
图5 减氮与生物炭配施处理下水稻各生育时期干物质积累变化
Fig. 5. Changes of dry matter accumulation in rice at different growth stages under nitrogen reduction combined with biochar application
年份 Year | 处理Treatment | 茎鞘干质量 Dry weight of stems and sheaths (kg/hm2) | 茎鞘物质输出量 Export amount of stem-sheath assimilates (kg/hm2) | 茎鞘物质输出率 Export percentage of stem-sheath assimilates (%) | 茎鞘物质转化率 Translocation percentage of stem-sheath assimilates (%) | 谷草比 Grain to straw ratio | |
---|---|---|---|---|---|---|---|
抽穗期 Heading | 成熟期 Maturity | ||||||
2022 | T0 | 8983.38±49.42 c | 7978.37±71.51 c | 1005.01±95.05 c | 11.19±1.24 c | 10.79±1.25 c | 0.89±0.02 b |
T1 | 11077.56±33.20 a | 9210.05±37.11 a | 1867.51±57.31 b | 16.86±0.63 b | 17.29±0.47 b | 0.91±0.01 b | |
T2 | 10856.72±77.72 ab | 8680.04±36.83 b | 2176.68±86.10 a | 20.05±0.88 a | 20.35±1.15 a | 1.00±0.03 a | |
T3 | 10661.72±70.49 b | 8505.04±86.33 b | 2156.68±99.50 a | 20.22±1.06 a | 20.39±0.92 a | 1.01±0.05 a | |
T4 | 8870.88±51.53 c | 7801.71±44.87 c | 1069.17±55.15 c | 12.05±0.29 c | 11.69±0.21 c | 0.92±0.01 b | |
2023 | T0 | 9035.00±97.02 c | 7865.83±49.69 c | 1169.17±137.02 c | 12.94±1.88 c | 12.60±1.48 c | 0.92±0.03 b |
T1 | 10884.17±40.47 a | 9031.67±34.29 a | 1852.50±55.91 b | 17.02±0.62 b | 17.25±0.51 b | 0.93±0.01 b | |
T2 | 10693.33±44.04 ab | 8541.67±17.50 b | 2151.67±26.73 a | 20.12±0.92 a | 20.29±0.70 a | 1.01±0.03 a | |
T3 | 10604.17±40.92 b | 8460.00±53.05 b | 2144.17±91.39 a | 20.22±1.04 a | 20.31±1.07 a | 1.05±0.03 a | |
T4 | 8792.50±45.36 d | 7607.50±28.39 d | 1185.00±71.68 c | 13.48±0.85 c | 12.98±0.78 c | 0.94±0.04 b |
表2 减氮与生物炭配施处理下水稻茎鞘干物质积累与表观转运特征
Table 2. Dry matter accumulation and apparent transport characteristics in stems and sheathes under nitrogen reduction combined with biochar application
年份 Year | 处理Treatment | 茎鞘干质量 Dry weight of stems and sheaths (kg/hm2) | 茎鞘物质输出量 Export amount of stem-sheath assimilates (kg/hm2) | 茎鞘物质输出率 Export percentage of stem-sheath assimilates (%) | 茎鞘物质转化率 Translocation percentage of stem-sheath assimilates (%) | 谷草比 Grain to straw ratio | |
---|---|---|---|---|---|---|---|
抽穗期 Heading | 成熟期 Maturity | ||||||
2022 | T0 | 8983.38±49.42 c | 7978.37±71.51 c | 1005.01±95.05 c | 11.19±1.24 c | 10.79±1.25 c | 0.89±0.02 b |
T1 | 11077.56±33.20 a | 9210.05±37.11 a | 1867.51±57.31 b | 16.86±0.63 b | 17.29±0.47 b | 0.91±0.01 b | |
T2 | 10856.72±77.72 ab | 8680.04±36.83 b | 2176.68±86.10 a | 20.05±0.88 a | 20.35±1.15 a | 1.00±0.03 a | |
T3 | 10661.72±70.49 b | 8505.04±86.33 b | 2156.68±99.50 a | 20.22±1.06 a | 20.39±0.92 a | 1.01±0.05 a | |
T4 | 8870.88±51.53 c | 7801.71±44.87 c | 1069.17±55.15 c | 12.05±0.29 c | 11.69±0.21 c | 0.92±0.01 b | |
2023 | T0 | 9035.00±97.02 c | 7865.83±49.69 c | 1169.17±137.02 c | 12.94±1.88 c | 12.60±1.48 c | 0.92±0.03 b |
T1 | 10884.17±40.47 a | 9031.67±34.29 a | 1852.50±55.91 b | 17.02±0.62 b | 17.25±0.51 b | 0.93±0.01 b | |
T2 | 10693.33±44.04 ab | 8541.67±17.50 b | 2151.67±26.73 a | 20.12±0.92 a | 20.29±0.70 a | 1.01±0.03 a | |
T3 | 10604.17±40.92 b | 8460.00±53.05 b | 2144.17±91.39 a | 20.22±1.04 a | 20.31±1.07 a | 1.05±0.03 a | |
T4 | 8792.50±45.36 d | 7607.50±28.39 d | 1185.00±71.68 c | 13.48±0.85 c | 12.98±0.78 c | 0.94±0.04 b |
年份 Year | 处理 Treatment | 茎鞘NSC积累量 Stem-sheath NSC accumulation (g/m2) | 茎鞘NSC转运量 NSC amount translocated from stem-sheath(g/m2) | 茎鞘NSC转运率 NSC translocation rate from stem-sheath (%) | 茎鞘NSC 籽粒贡献率 Stem-sheath NSC contribution rate to grains(%) | 糖花比 Sugar-spikelet ratio (mg/spikelet) | |
---|---|---|---|---|---|---|---|
抽穗期 Heading | 成熟期 Maturity | ||||||
2022 | T0 | 229.86±10.78 d | 120.15±2.12 b | 109.71±5.06 d | 47.73±1.53 d | 11.79±0.13 d | 5.05±0.13 d |
T1 | 285.23±8.57 b | 126.20±3.50 a | 159.02±10.79 b | 55.76±1.37 b | 14.72±0.15 b | 5.52±0.15 b | |
T2 | 316.67±12.53 a | 117.12±4.02 b | 199.55±11.47 a | 63.01±1.59 a | 18.66±0.42 a | 6.05±0.02 a | |
T3 | 319.50±12.16 a | 117.53±2.04 b | 201.97±11.32 a | 63.21±1.14 a | 19.10±0.13 a | 6.14±0.12 a | |
T4 | 242.17±8.71 c | 116.58±7.21 b | 125.59±10.50 c | 51.84±1.05 c | 13.73±0.21 c | 5.34±0.01 c | |
2023 | T0 | 227.67±7.49 d | 119.57±1.46 b | 108.10±7.76 d | 47.40±1.15 d | 11.65±1.41 c | 5.04±0.17 d |
T1 | 281.59±3.07 b | 130.05±2.64 a | 151.55±5.16 b | 53.81±1.45 b | 14.11±0.58 b | 5.56±0.07 b | |
T2 | 316.46±5.50 a | 120.57±1.44 b | 195.56±4.78 a | 61.86±0.63 a | 18.43±0.70 a | 6.08±0.12 a | |
T3 | 322.02±10.26 a | 117.74±2.04 b | 204.28±3.96 a | 63.43±0.92 a | 19.35±0.49 a | 6.18±0.02 a | |
T4 | 242.98±9.46 c | 119.71±2.36 b | 123.27±4.16 c | 50.74±2.05 c | 13.50±1.21 b | 5.39±0.11 c |
表3 减氮与生物炭配施处理下水稻茎鞘NSC转运指标和糖花比变化
Table 3. Changes of stem-sheath NSC transport index and sugar-spikelets ratio in rice under nitrogen reduction combined with biochar application
年份 Year | 处理 Treatment | 茎鞘NSC积累量 Stem-sheath NSC accumulation (g/m2) | 茎鞘NSC转运量 NSC amount translocated from stem-sheath(g/m2) | 茎鞘NSC转运率 NSC translocation rate from stem-sheath (%) | 茎鞘NSC 籽粒贡献率 Stem-sheath NSC contribution rate to grains(%) | 糖花比 Sugar-spikelet ratio (mg/spikelet) | |
---|---|---|---|---|---|---|---|
抽穗期 Heading | 成熟期 Maturity | ||||||
2022 | T0 | 229.86±10.78 d | 120.15±2.12 b | 109.71±5.06 d | 47.73±1.53 d | 11.79±0.13 d | 5.05±0.13 d |
T1 | 285.23±8.57 b | 126.20±3.50 a | 159.02±10.79 b | 55.76±1.37 b | 14.72±0.15 b | 5.52±0.15 b | |
T2 | 316.67±12.53 a | 117.12±4.02 b | 199.55±11.47 a | 63.01±1.59 a | 18.66±0.42 a | 6.05±0.02 a | |
T3 | 319.50±12.16 a | 117.53±2.04 b | 201.97±11.32 a | 63.21±1.14 a | 19.10±0.13 a | 6.14±0.12 a | |
T4 | 242.17±8.71 c | 116.58±7.21 b | 125.59±10.50 c | 51.84±1.05 c | 13.73±0.21 c | 5.34±0.01 c | |
2023 | T0 | 227.67±7.49 d | 119.57±1.46 b | 108.10±7.76 d | 47.40±1.15 d | 11.65±1.41 c | 5.04±0.17 d |
T1 | 281.59±3.07 b | 130.05±2.64 a | 151.55±5.16 b | 53.81±1.45 b | 14.11±0.58 b | 5.56±0.07 b | |
T2 | 316.46±5.50 a | 120.57±1.44 b | 195.56±4.78 a | 61.86±0.63 a | 18.43±0.70 a | 6.08±0.12 a | |
T3 | 322.02±10.26 a | 117.74±2.04 b | 204.28±3.96 a | 63.43±0.92 a | 19.35±0.49 a | 6.18±0.02 a | |
T4 | 242.98±9.46 c | 119.71±2.36 b | 123.27±4.16 c | 50.74±2.05 c | 13.50±1.21 b | 5.39±0.11 c |
图6 减氮与生物炭配施处理下水稻抽穗灌浆期茎鞘中淀粉(A)、可溶性糖(B)和蔗糖含量(C) (2022年)
Fig. 6. Contents of starch (A), soluble sugar (B) and sucrose (C) in stems and sheathes of rice during the filling period under nitrogen reduction combined with biochar application (2022)
图7 减氮与生物炭配施处理下茎鞘同化物积累转运与产量的相关分析(2022年) HI表示收获指数,SSWH表示抽穗期茎鞘干质量,EPSS表示茎鞘物质表观输出率,TPSS表示茎鞘物质表观转化率,TMNSC表示抽穗期茎鞘NSC积累量,TNSC表示NSC转运量,TRNSC表示NSC转运率,ARNSC表示对籽粒贡献率。
Fig. 7. Correlation analysis between rice yield and stem sheath assimilate translocation indicators under nitrogen reduction combined with biochar application (2022) HI represents harvest index; SSWH represents dry weight of stem and sheath at heading stage; EPSS represents apparent output rate of stem and sheath; TPSS represents apparent conversion rate of stem and sheath; TMNSC indicates NSC accumulation in stem and sheath at heading stage; TNSC indicates NSC transport volume; TRNSC indicates NSC transport rate; ARNSC indicates contribution rate to grains.
图8 减氮与生物炭配施处理下水稻抽穗灌浆期茎鞘中α-淀粉酶(A)、β-淀粉酶(B)、蔗糖合成酶(C)、蔗糖磷酸合成酶活性(D)变化(2022年)
Fig. 8. Changes in activities of α-amylase(A) β-amylase(B), sucrose synthase(C), sucrose phosphate synthase (D) in stems and sheathes of rice at the filling stage under nitrogen reduction combined with biochar application (2022)
[1] | 刘默涵. 烟稻轮作让农民把“饭碗”端得更稳[EB/OL]. [2022-06-09]. http://m.news.cn/fj/2022-06/09/c_1128726624.html. |
Liu M H. Tobacco rice rotation makes farmers more stable in their “rice bowl” [EB/OL]. [2022-06-09]. http://m.news.cn/fj/2022-06/09/c_1128726624.html. (in Chinese) | |
[2] | Lei Y, Xiao Y, Li L. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China[J]. Journal of Microbiology, 2017, 55, 349-356. |
[3] | 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 北京: 中国农业科学院, 2019. |
Bai Z G. Effects of N management strategy on N metabolism in rice plant and N use efficiency in paddy soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[4] | 黄锦文, 李日坤, 陈志诚, 张汴泓, 雷涵, 潘睿欣, 杨铭榆, 潘美清, 唐莉娜. 不同稻草还田技术对烟-稻轮作系统土壤养分、有机碳及微生物多样性的影响[J]. 中国水稻科学, 2023, 37(4): 415-426. |
Huang J W, Li R K, Chen Z C, Zhang B H, Lei H, Pan R X, Yang M Y, Pan M Q, Tang L N. Effects of straw returning techniques on soil nutrients, organic carbon and microbial diversity in tobacco-rice rotation system[J]. Chinese Journal of Rice Science, 2023, 37(4): 415-426. (in Chinese with English abstract) | |
[5] | 张汴泓, 王成己, 杨铭榆, 潘睿欣, 潘美清, 唐莉娜, 黄锦文. 生物炭对植烟土壤氮循环微生物及其功能基因的影响[J]. 南方农业学报, 2022, 53(9): 2444-2456. |
Zhang B H, Wang C J, Yang M Y, Pan R X, Pan M Q, Tang L N, Huang J W. Impact of biochar on nitrogen cycling microorganisms and their functional genes in tobacco-planting soils[J]. Journal of Southern Agriculture, 2022, 53(9): 2444-2456. (in Chinese with English abstract) | |
[6] | 唐莉娜, 王月敏, 曾文龙, 林建麒, 吴平, 李春英. 福建烟区土壤养分演变特征[J]. 江西农业学报, 2022, 34(8): 77-81. |
Tang L N, Wang Y M, Zeng W L, Lin J Q, Wu P, Li C Y. Evolution characteristics of soil nutrients in Fujian tobacco growing areas[J]. Jiangxi Agricultural Journal, 2022, 34(8): 77-81. (in Chinese with English abstract) | |
[7] | 袁帅, 赵立欣, 孟海波, 沈玉君. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402-1417. |
Yuan S, Zhao L X, Meng H B, Shen Y J. Main types, physicochemical properties and research prospects of biochar[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1402-1417. (in Chinese with English abstract) | |
[8] | Kang M W, Yibeltal M, Kim Y H, Oh S J, Lee J C, Kwon E E, Lee S S. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments[J]. Science of the Total Environment, 2022, 836: 155746. |
[9] | 张伟明, 孟军, 王嘉宇, 范淑秀, 陈温福. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8): 1445-1451. |
Zhang W M, Meng J, Wang J Y, Fan S X, Chen W F. Effects of biochar on root morphology, physiological characteristics and yield of rice[J]. Acta Agronomica Sinica, 2013, 39(8): 1445-1451. (in Chinese with English abstract) | |
[10] | 王成己, 郭学清, 曾文龙, 黄毅斌, 唐莉娜. 不同生物质炭用量对烤烟生长和烟叶品质的影响[J]. 南方农业学报, 2019, 50 (10): 2160-2168. |
Wang C J, Guo X Q, Zeng W L, Huang Y B, Tang L N. Effects of different biochar dosage on the growth and quality of flue-cured tobacco[J]. Journal of Southern Agriculture, 2019, 50(10): 2160-2168. (in Chinese with English abstract) | |
[11] | 赵军, 耿增超, 尚杰, 耿荣, 王月玲, 王森, 赵宏飞. 生物炭及炭基硝酸铵对土壤微生物量碳、氮及酶活性的影响[J]. 生态学报, 2016, 36(8): 2355-2362. |
Zhao J, Geng Z C, Shang J, Geng R, Wang Y L, Wang S, Zhao H F. Effects of biochar and biochar-based ammonium nitrate fertilizers on soil microbial biomass carbon and nitrogen and enzyme activities[J]. Journal of Ecology, 2016, 36(8): 2355-2362. (in Chinese with English abstract) | |
[12] | 戴明宏, 陶洪斌, 王利纳, 王璞. 不同氮肥管理对春玉米干物质生产、分配及转运的影响[J]. 华北农学报, 2008(1): 154-157. |
Dai M H, Tao H B, Wang L N, Wang P. Effects of different nitrogen management on dry matter production, distribution and transportation of spring maize[J]. Acta Agriculturae Boreali-sinica, 2008(1): 154-157. (in Chinese with English abstract) | |
[13] | 索炎炎, 张翔, 司贤宗, 李亮, 程培军, 余辉, 刘娟. 施用石灰与生物炭对酸性土壤花生氮素吸收及产量的影响[J]. 中国油料作物学报, 2023, 45(1): 148-154. |
Suo Y Y, Zhang X, Si X Z, Li L, Cheng P J, Yu H, Liu J. Effects of lime and biochar application on nitrogen uptake and yield of peanut in acid soil[J]. Chinese Journal of Oil Crops, 2023, 45(1): 148-154. (in Chinese with English abstract) | |
[14] | 荣飞龙, 蔡正午, 覃莎莎, 张凯, 吴立群, 阳树英, 肖智华, 任勃, 林元山, 陈法霖. 酸性稻田添加生物炭对水稻生长发育及产量的影响:基于5年大田试验[J]. 生态学报, 2020, 40(13): 4413-4424. |
Rong F L, Cai Z W, Qin S S, Zhang K, Wu L Q, Yang S Y, Xiao Z H, Ren B, Lin Y S, Chen F L. Effect of biochar addition on rice growth and yield in acid paddy field: Based on 5-year field experiment[J]. Journal of Ecology, 2020, 40(13): 4413-4424. (in Chinese with English abstract) | |
[15] | 张国, 崔克辉. 水稻茎鞘非结构性碳水化合物积累与转运研究进展[J]. 植物生理学报, 2020, 56(6): 1127-1136. |
Zhang G, Cui K H. Research progress on accumulation and transport of nonstructural carbohydrates in rice stems and sheaths[J]. Journal of Plant Physiology, 2020, 56(6): 1127-1136. (in Chinese with English abstract) | |
[16] | 周驰燕, 李国辉, 许轲, 郭保卫, 戴其根, 霍中洋, 魏海燕, 张洪程. 水稻茎鞘非结构性碳水化合物转运机理及栽培调控研究进展[J]. 生命科学, 2021, 33(1): 111-120. |
Zhou C Y, Li G H, Xu K, Guo B W, Dai Q G, Huo Z Y, Wei H Y, Zhang H C. Research progress on non- structural carbohydrate transport mechanism and cultivation regulation in rice stems and sheaths[J]. Life Sciences, 2021, 33(1): 111-120. (in Chinese with English abstract) | |
[17] | Hakata M, Kuroda M, Ohsumi A, Hieose T, Nakamura H, Muramatsu M, Ichikawa H, Yamakawa H. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J]. Bioscience, Biotechnology & Biochemistry, 2012, 76(11): 2129-2134. |
[18] | 任维晨, 常庆霞, 张亚军, 朱宽宇, 王志琴, 杨建昌. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制[J]. 中国水稻科学, 2022, 36(6): 586-600. |
Ren W C, Chang Q X, Zhang Y J, Zhu K Y, Wang Z Q, Yang J C. Characteristics and physiological mechanism of carbon and nitrogen accumulation and translocation of japonica rice varieties differing in nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2022, 36(6): 586-600. (in Chinese with English abstract) | |
[19] | 梁栋, 周巧林, 张辉, 马洪波, 宁运旺, 张永春, 徐聪, 焦加国, 汪吉东. 生物质炭和有机肥配施对水稻土溶解性有机质光谱学特征的影响[J]. 土壤学报, 2023(1): 1-12. |
Liang D, Zhou Q L, Zhang H, Ma H B, Ning Y W, Zhang Y C, Xu C, Jiao J G, Wang J D. Effect of combined application of biochar and organic fertilizer on spectral characteristics of dissolved organic matter in paddy soil[J]. Journal of Soil Science, 2023(1): 1-12. (in Chinese with English abstract) | |
[20] | Partey S T, Preziosi R F, Robson G D. Short-term interactive effects of biochar, green manure, and inorganic fertilizer on soil properties and agronomic characteristics of maize[J]. Agricultural Research, 2014, 3(2): 128-136. |
[21] | 魏春辉, 任奕林, 刘峰, 邓宇玄, 苑晓辰. 生物炭及生物炭基肥在农业中的应用研究进展[J]. 河南农业科学, 2016, 45(3): 14-19. |
Wei C H, Ren Y L, Liu F, Deng Y X, Yuan X C. Research progress on the application of biochar and biochar based fertilizer in agriculture[J]. Henan Agricultural Science, 2016, 45(3): 14-19. (in Chinese with English abstract) | |
[22] | Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice[M]. Los Baños, The Philippines: International Rice Research Institute, 1976: 24-79. |
[23] | Chu G, Wang Z Q, Zhang H, Yang J C, Zhang J H. Agronomic and physiological performance of rice under integrative crop management[J]. Agronomy Journal, 2016, 108(1): 117-128. |
[24] | 刘慧, 龙学毅, 焦岩, 王丽红. 生物炭与磷肥配施对水稻生长发育及产量的影响[J]. 作物杂志, 2023(5): 238-248. |
Liu H, Long X Y, Jiao Y, Wang L H. Effect of combined application of biochar and phosphate fertilizer on rice growth and yield[J]. Journal of Crops, 2023(5): 238-248. (in Chinese with English abstract) | |
[25] | 马星竹, 郝小雨, 高中超, 李一丹, 周宝库. 氮肥用量对土壤养分含量、春玉米产量及农学效率的影响[J]. 玉米科学, 2016, 24(6): 131-135. |
Ma X Z, Hao X Y, Gao Z C, Li Y D, Zhou B K. The effect of nitrogen fertilizer application on soil nutrient content, spring corn yield, and agronomic efficiency[J]. Maize Science, 2016, 24(6): 131-135. (in Chinese with English abstract) | |
[26] | 邹彤, 林强, 陈志琴, 连加攀, 杨肖娥. 土壤重金属无机钝化剂及其有机改良化钝化剂对稻田镉钝化和温室气体排放的影响[J]. 环境科学学报, 2024, 44(5): 1-11. |
Zou T, Lin Q, Chen Z Q, Lian J P, Yang X E. Effects of soil heavy metal inorganic passivator and its organic improvement passivator on cadmium passivation and greenhouse gas emissions in paddy field[J]. Journal of Environmental Science, 2024, 44(5): 1-11. (in Chinese with English abstract) | |
[27] | Jin Z W, Chen C, Chen X M, Hopkins l. Zhang X L, Han Z Q, Jiang F, Billy G. The crucial factors of soil fertlity and rape seed yield: A five year field trial with biochar addition in upland red soil, China[J]. Science of the Total Environment, 2019, 649(1): 1467-1480. |
[28] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
Jing X, Zhou M, Wang J, Wang Y, Wang W, Wang K, Guo B W, Hu Y J, Xing Z P, Xu K, Zhang H C. Effect of drought stress on root morphology and leaf photosynthetic characteristics of good taste japonica rice from late stage of panicle differentiation to early stage of grain filling[J]. Chinese Journal of Rice Science, 2024, 38(1): 33-47. (in Chinese with English abstract) | |
[29] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
Zhu W, Zhang X, Geng X Y, Zhang Z, Chen Y L, Wei H H, Dai Q G, Xu K, Zhu G L, Zhou G S, Meng T Y. Morphological and physiological characteristics of rice roots under combined salinity-drought stress and their relationships with yield formation[J]. Chinese Journal of Rice Science, 2023, 37(6): 617-627. (in Chinese with English abstract) | |
[30] | Zhang B, Tang L N, Wang Y M, Yang M Y, Pan R X, Pan M Q, Chen X Y, You L D, Lin W X, Huang J W. Effect of reduced nitrogen fertilizer application combined with biochar on nitrogen utilization of flue-cured tobacco and its association with functional gene expressions of the nitrogen cycle in rhizosphere soil[J]. Technology in Agronomy, 2023, 3(1): 12. |
[31] | 李纲, 朱旺冲, 黄晶, 莫志军, 唐利忠. 种植和秸秆还田模式对一季稻产量和产量因子的影响[J]. 湖南农业大学学报: 自然科学版, 2022, 48(3): 251-256. |
Li G, Zhu W C, Huang J, Mo Z J, Tang L Z. Effects of planting and straw returning patterns on yield and yield factors of one-season rice[J]. Journal of Hunan Agricultural University: Natural Science Edition, 2022, 48(3): 251-256. (in Chinese with English abstract) | |
[32] | Xu Y, Zhang W, Ju C, Li Y, Yang J, Zhang J. Involvement of abscisic acid in fructan hydrolysis and starch biosynthesis in wheat under soil drying[J]. Plant Growth Regulation, 2016, 80: 265-279. |
[33] | Pan J F, Cui K H, Wei D, Huang J L, Xiang J, Nie L X. Relationships of nonstructural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels[J]. Physiologia Plantarum, 2011, 141(4): 321-331. |
[34] | 李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系[J]. 植物生理学报, 2019, 55(3): 329-341. |
Li G H, Zhang G, Cui K H. Characteristics of vascular bundles in panicle neck of rice and its relationship with translocation of assimilates in stem sheath and yield[J]. Journal of Plant Physiology, 2019, 55(3): 329-341. (in Chinese with English abstract) | |
[35] | 李国辉, 崔克辉. 氮对水稻叶蔗糖磷酸合成酶的影响及其与同化物积累和产量的关系[J]. 植物生理学报, 2018, 54(7): 1195-1204. |
Li G H, Cui K H. Effects of nitrogen on sucrose phosphate synthase in rice leaves and its relationship with assimilate accumulation and yield[J]. Journal of Plant Physiology, 2018, 54(7): 1195-1204. (in Chinese with English abstract) | |
[36] | 赵金标, 胡雪, 徐承昱, 陈远杰, 俞施龙, 黄丽芬. 高温下秸秆还田耦合减氮对水稻剑叶光合生理特性的影响[J]. 中国农业大学学报, 2023, 28(12): 39-53. |
Zhao J B, Hu X, Xu C Y, Chen Y J, Yu S L, Huang L F. Effect of coupled nitrogen reduction of straw returning to field on photosynthetic physiological characteristics of rice sword leaf under high temperature[J]. Journal of China Agricultural University, 2023, 28(12): 39-53. (in Chinese with English abstract) | |
[37] | Wang G Q, Hao S S, Gao B, Chen M X, Liu Y G, Yang J C. Regulation of gene expression in the remobilization of carbon reserves in rice stems during grain filling[J]. Plant Cell Physiology, 2017, 58(8): 1391-1404. |
[38] | Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice[J]. Plant Science, 2011, 181(2): 159-166. |
[39] | Counce P A, Gravois K A. Sucrose synthase activity as a potential indicator of high rice grain yield[J]. Crop Science, 2006, 46(4): 1501-1507. |
[40] | 郑广杰, 陶怡, 沈兴连, 叶昌, 徐亚楠, 褚光, 徐春梅, 王丹英. 水稻种子萌发出苗研究及直播生产上相关难题[J]. 中国稻米, 2023, 29(6): 49-55. |
Zheng G J, Tao Y, Shen X L, Ye C, Xu Y N, Chu G, Xu C M, Wang D Y. Study on rice seed germination and seedling emergence and related problems in direct seeding production[J]. China Rice, 2023, 29(6): 49-55. (in Chinese with English abstract) |
[1] | 冯向前, 王爱冬, 洪卫源, 李子秋, 覃金华, 詹丽钏, 陈里鹏, 张运波, 王丹英, 陈松. 基于低空无人机遥感的水稻产量估测方法研究进展 [J]. 中国水稻科学, 2024, 38(6): 604-616. |
[2] | 叶苗, 毛雨欣, 张德海, 康钰莹, 袁榕, 张祖建. 高光效水稻品种的叶片和冠层生理生态特征及其氮素调控机制研究进展 [J]. 中国水稻科学, 2024, 38(6): 617-626. |
[3] | 汪晴, 王艳茹, 张秀丽, 吕启明. 水稻孤雌生殖诱导基因BBM1序列变异分析 [J]. 中国水稻科学, 2024, 38(6): 627-637. |
[4] | 钟智慧, 秦璐, 黎志力, 杨珍, 贺晓鹏, 蔡怡聪. 水稻IDD基因家族的全基因组鉴定及综合分析 [J]. 中国水稻科学, 2024, 38(6): 638-652. |
[5] | 杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8 [J]. 中国水稻科学, 2024, 38(6): 665-671. |
[6] | 毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响 [J]. 中国水稻科学, 2024, 38(6): 685-694. |
[7] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[8] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506. |
[9] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[10] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[11] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[12] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[13] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[14] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[15] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||