中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 495-506.DOI: 10.16819/j.1001-7216.2024.231107
许用强1,#, 徐军2,#, 奉保华1, 肖晶晶3, 王丹英1, 曾宇翔1, 符冠富1,*()
收稿日期:
2023-11-10
修回日期:
2024-05-27
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email:fuguanfu@caas.cn
作者简介:
#共同第一作者
基金资助:
XU Yongqiang1,#, XU Jun2,#, FENG Baohua1, XIAO Jingjing3, WANG Danying1, ZENG Yuxiang1, FU Guanfu1,*()
Received:
2023-11-10
Revised:
2024-05-27
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email:fuguanfu@caas.cn
About author:
#These authors contributed equally to this work
摘要:
水稻是我国乃至全世界最为重要的粮食作物之一。全球气候变暖背景下,高温、干旱、低温寡照等极端天气频繁发生,水稻产量品质形成受到不同程度的影响,严重威胁我国的粮食安全。花粉管在雌蕊组织中的生长是水稻生殖生长最为关键的过程,高温等非生物逆境胁迫可严重干扰花粉管生长的信号传递和能量代谢,进而导致水稻受孕失败。因此,研究高温等逆境胁迫影响水稻花粉管生长及其调控机制具有重要意义。本文综述了水稻花粉管生长的基本过程,包括信号传递以及能量代谢,同时阐述了高温、干旱、低温寡照、重金属等逆境影响花粉管生长致使小穗败育的作用机制及其栽培调控技术,为减缓高温等逆境胁迫干扰水稻花粉管生长,提高水稻授粉受孕能力的栽培技术提供理论参考,并对今后的研究方向进行展望。
许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展[J]. 中国水稻科学, 2024, 38(5): 495-506.
XU Yongqiang, XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu. Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress[J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506.
图1 水稻花粉管在雌蕊组织中生长的信号传递及能量代谢调控机制及其对非生物胁迫的响应 花粉管在雌蕊组织生长过程中受到Ca2+、ROS、IAA等信号分子以及蔗糖、脂质、ATP等能量物质的共同调控。细胞壁重建、肌动蛋白细胞骨架构建、胞吞胞吐是影响花粉管极性生长的重要组部分,是能量消耗的过程。Ca2+,ROS,IAA等信号分子引导花粉管在雌蕊组织中生长进入胚珠,而RALFs小肽基因负责维持花粉管完整性,防止花粉管进入胚珠前爆炸。高温、低温及弱光等非生物逆境胁迫干扰雌蕊组织信号传递及能量代谢过程可抑制花粉管生长,诱导小穗败育。
Fig. 1. Descriptive model of signal transduction and energy metabolism involving in pollen tube growth in pistil of rice and its response to abiotic stress The growth of pollen tubes in the pistil of rice is regulated by both signaling molecules such as Ca2+,ROS,and IAA as well as the energetic substances including sucrose, lipids, and ATP. The cell wall reconstruction, actin cytoskeleton construction, endocytosis and exocytosis play key roles in pollen tube growth, which is a high-energy consuming process. The signaling molecules such as Ca2+,ROS,and IAA are mainly responsible for guiding the pollen tube toward the ovule, with RALF genes playing a role in maintaining pollen tube integrity. However, both signaling molecules and energy metabolism can be disrupted by abiotic stresses such as heat, drought, cold and heavy metals, leading to the inhibition of pollen tube growth and inducing spikelet sterility
[1] | Shi J, An G, Weber A P M, Zhang D. Prospects for rice in 2050[J]. Plant, Cell and Environment, 2023, 46(4): 1037-1045. |
[2] | 朱凤霞, 刘博, 陈渠玲, 易继中, 张源泉, 甘平洋, 陈昌勇, 周涛. 米制主食产品发展现状及思路[J]. 农产品加工, 2020(21): 104-107. |
Zhu F X, Liu B, Chen Q L, Yi J Z, Zhang Y Q, Gan P Y, Chen C Y, Zhou T. Development status and trend of rice staple products[J]. Farm Products Processing, 2020(21): 104-107. (in Chinese) | |
[3] | Yuan S, Linquist B A, Wilson L T, Cassman K G, Stuart A M, Pede V, Miro B, Saito K, Agustiani N, Aristya V E, Krisnadi L Y, Zanon A J, Heinemann A B, Carracelas G, Subash N, Brahmanand P S, Li T, Peng S, Grassini P. Sustainable intensification for a larger global rice bowl[J]. Nature Communications, 2021, 12(1): 7163. |
[4] | Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[5] | Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11(1): 3357. |
[6] | Chen J, Xu Y, Fei K, Wang R, He J, Fu L, Shao S, Li K, Zhu K, Zhang W, Wang Z, Yang J. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines[J]. Scientific Reports, 2020, 10(1): 2210. |
[7] | 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. |
Duan Y, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research Advances in the Effect of Heat and Drought on Rice and Its Mechanism[J]. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese with English abstract) | |
[8] | Gerona M E B, Deocampo M P, Egdane J, Ismail A, Dionisio-Sese M. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage[J]. Rice Science, 2019, 26(04): 207-219. |
[9] | Matsui T, Hasegawa T. Effect of long anther dehiscence on seed set at high temperatures during flowering in rice[J]. Scientific Reports, 2019, 9(1): 20363. |
[10] | Shi W, Li X, Schmidt R C, Struik P C, Yin X, Jagadish S V K. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant, Cell and Environment, 2018, 41(6): 1287-1297. |
[11] | Prasad P V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field Crops Research, 2006, 95: 398-411. |
[12] | Rottmann T, Fritz C, Sauer N, Stadler R. Glucose Uptake via STP Transporters Inhibits in Vitro Pollen Tube Growth in a HEXOKINASE1-Dependent Manner in Arabidopsis thaliana[J]. The Plant Cell, 2018, 30(9): 2057-2081. |
[13] | Seitz J, Reimann T M, Fritz C, Schröder C, Knab J, Weber W, Stadler R. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth[J]. Frontiers in Plant Science, 2023, 14:1063765. |
[14] | Wang Y, Lü X, Sheng D, Hou X, Mandal S, Liu X, Zhang P, Shen S, Wang P, Krishna Jagadish S V, Huang S. Heat-dependent postpollination limitations on maize pollen tube growth and kernel sterility[J]. Plant Cell Environment, 2023, 46(12): 3822-3838. |
[15] | Li R L, Shen J H, Jia Y, Li W, Wang L M. Fertilization process in sorghum and its performance time for each stage[J]. Acta Agronomica Sinica, 2009, 35(12): 2234. |
[16] | Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer S, Bennett J, Craufurd P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2010, 61(1): 143-156. |
[17] | 陈士强. 关于稻麦花粉管伸长和极核受精过程的研究[D]. 扬州: 扬州大学, 2007. |
Chen S Q. Studies of pollen tube growth and polar nucleus fertilization of rice, wheat and barley[D]. Yangzhou: Yangzhou University, 2007. (in Chinese with English abstract) | |
[18] | Stewman S F, Jones-Rhoades M, Bhimalapuram P, Tchernookov M, Preuss D, Dinner A R. Mechanistic insights from a quantitative analysis of pollen tube guidance[J]. BMC Plant Biology, 2010, 10: 32. |
[19] | Johnson M A, Harper J F, Palanivelu R. Pollen tube navigation from germination to fertilization[J]. Annual Review of Plant Biology, 2019, 70(1): 809-837. |
[20] | Scheible N, McCubbin A. Signaling in pollen tube growth: beyond the tip of the polarity iceberg[J]. Plants (Basel, Switzerland), 2019, 8(6): 156. |
[21] | Hoffmann R D, Portes M T, Olsen L I, Damineli D S C, Hayashi M, Nunes C O, Pedersen J T, Lima P T, Campos C, Feijó J A, Palmgren M. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization[J]. Nature Communications, 2020, 11(1): 2395. |
[22] | Kim Y J, Kim M H, Hong W J, Moon S, Kim S T, Park S K, Jung K H. OsMTD2-mediated reactive oxygen species (ROS) balance is essential for intact pollen tube elongation in rice[J]. The Plant Journal, 2021, 107(4): 1131-1147. |
[23] | Hernández M L, Lima-Cabello E, Alché J D, Martínez-Rivas J M, Castro A J. Lipid composition and associated gene expression patterns during pollen germination and pollen tube growth in olive (Olea europaea L.)[J]. Plant Cell Physiology, 2020, 61(7): 1348-1364. |
[24] | Chebli Y, Geitmann A. FRAP experiments show pectatelyases promote pollen germination and lubricate the path of the pollen tube in Arabidopsis thaliana[J]. Microscopy and Microanalysis, 2018, 24(S1): 1376-1377. |
[25] | Cascallares M, Setzes N, Marchetti F, López G A, Distéfano A M, Cainzos M, Zabaleta E, Pagnussat G C. A complex journey: cell wall remodeling, interactions, and integrity during pollen tube growth[J]. Frontiers in Plant Science, 2020, 11: 599247. |
[26] | Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman J M, Qin Y, Zhu X, Yang Z. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil[J]. Developmental Cell, 2021, 56(7): 1030-1042.e6. |
[27] | Scheible N, Henning P M, McCubbin A G. Calmodulin-Domain protein kinase PiCDPK1 interacts with the 14-3-3-like protein NtGF14 to modulate pollen tube growth[J]. Plants (Basel, Switzerland), 2024, 13(3): 451. |
[28] | Yang N, Wang T. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice[J]. BMC Plant Biology, 2017, 17(1): 2. |
[29] | Chen D, Zhao J. Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum[J]. Physiologia Plantarum, 2008, 134(1): 202. |
[30] | Wu J Z, Lin Y, Zhang X L, Pang D W, Zhao J. IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri[J]. Journal of Experimental Botany, 2008, 59(9): 2529-2543. |
[31] | He S L, Hsieh H L, Jauh G Y. SMALL AUXIN UP RNA62/75 are required for the translation of transcripts essential for pollen tube growth[J]. Plant Physiology, 2018, 178(2): 626-640. |
[32] | 卢鑫蕊, 沈绍琴, 常雅薇, 周利明. 钙传感器调控花粉管生长的研究进展[J]. 分子植物育种, 2022, 20(7): 2320-2325. |
Lu X R, Shen S Q, Chang Y W, Zhou L M. Research progress of calcium sensor regulating pollen tube growth[J]. Molecular Plant Breeding, 2022, 20(7): 2320-2325. (in Chinese with English abstract) | |
[33] | 龙涛, 张伟伟, 张卿, 邢宇, 曹庆芹, 秦岭, 房克凤. Ca2+螯合剂乙二醇二乙醚二胺四乙酸对板栗花粉管发育的影响[J]. 北京农学院学报, 2022, 37(3): 31-37. |
Long T, Zhang W W, Zhang Q, Xing Y, Cao Q Q, Qin L, Fang K F. Effect of Ca2+ chelating agent ethylene glycol tetraacetic acid on pollen tube development of Castanea mollissima[J]. Journal of Beijing University of Agriculture, 2022, 37(3): 31-37. (in Chinese with English abstract) | |
[34] | Liu P, Li R L, Zhang L, Wang Q L, Niehaus K, Baluska F, Samaj J, Lin J X. Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth[J]. Plant Journal, 2009, 60(2): 303-313. |
[35] | Ge Z, Cheung A Y, Qu L J. Pollen tube integrity regulation in flowering plants: insights from molecular assemblies on the pollen tube surface[J]. New Phytologist, 2019, 222(2): 687-693. |
[36] | Kaya H, Nakajima R, Iwano M, Kanaoka M M, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth[J]. Plant Cell, 2014, 26(3): 1069. |
[37] | Do T H T, Choi H, Palmgren M, Martinoia E, Hwang J U, Lee Y. Arabidopsis ABCG28 is required for the apical accumulation of reactive oxygen species in growing pollen tubes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12540-12549. |
[38] | Fu Y. The actin cytoskeleton and signaling network during pollen tube tip growth[J]. Journal of Integrative Plant Biology, 2010, 52(2): 131-137. |
[39] | Potocký M, Jones M A, Bezvoda R, Smirnoff N, Žárský V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth[J]. New Phytologist, 2007, 174(4): 742-751. |
[40] | Kou X, Liu Q, Sun Y, Wang P, Zhang S, Wu J. The peptide PbrPSK2 from Phytosulfokine family induces reactive oxygen species (ROS) production to regulate pear pollen tube growth[J]. Frontiers in Plant Science, 2020, 11: 601993. |
[41] | Hempel F, Stenzel I, Heilmann M, Krishnamoorthy P, Menzel W, Golbik R, Helm S, Dobritzsch D, Baginsky S, Lee J, Hoehenwarter W, Heilmann I. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain[J]. The Plant Cell, 2017, 29(12): 3030-3050. |
[42] | 张鹏, 张文超. 花粉萌发与花粉管生长的信号调控机制[J]. 广东农业科学, 2013, 40(5): 138-141. |
Zhang P, Zhang W C. Signal regulation mechanism of pollen germination and pollen tube growth[J]. Guangdong Agricultural Sciences, 2013, 40(5): 138-141. (in Chinese with English abstract) | |
[43] | Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M. C, Luo X, Ruan H, García-Valencia L E, Zhong S, Hou S, Huang Q, Lai L, Moura D S, Gu H, Dong J, Wu H M, Dresselhaus T, Xiao J, Cheung A Y, Qu L J. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370): 1596-1600. |
[44] | Li H X, Yang Y, Zhang H K, Li C Y, Du P Z, Bi M M, Chen T, Qian D, Niu Y, Ren H Y, An L Z, Xiang Y. The Arabidopsis GPI-anchored protein COBL11 is necessary for regulating pollen tube integrity[J]. Cell Reports, 2023, 42(11): 113353. |
[45] | Gao Q, Wang C, Xi Y, Shao Q, Hou C, Li L, Luan S. RALF signaling pathway activates MLO calcium channels to maintain pollen tube integrity[J]. Cell Research, 2023, 33(1): 71-79. |
[46] | Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. A. Receptor-channel trio conducts Ca2+ signaling for pollen tube reception[J]. Nature, 2022, 607(7919): 534-539. |
[47] | Kim E J, Kim J H, Hong W J, Kim E Y, Kim M H, Lee S K, Min C W, Kim S T, Park S K, Jung K H, Kim Y J. Rice pollen-specific OsRALF17 and OsRALF19 are essential for pollen tube growth[J]. Journal of Integrative Plant Biology, 2023, 10.1111. |
[48] | Duan Q, Liu M C J, Kita D, Jordan S S, Yeh F L J, Yvon R, Carpenter H, Federico A N, Carcia-Valencia L E, Eyles S J, Wang C S, Wu H M, Cheung A Y. FERONIA controls pectin- and nitric oxide-mediated male-female interaction[J]. Nature, 2020, 579(7800): 561-566. |
[49] | Rounds C M, Winship L J, Hepler P K. Pollen tube energetics: Respiration, fermentation and the race to the ovule[J]. AoB Plants, 2011(S1): plr019. DOI:10.1093/aobpla/plr019 |
[50] | 王忠. 水稻的开花与结实:水稻生殖器官发育图谱[M]. 北京: 科学出版社, 2015: 183. |
Wang Z. Flowering and Fruiting of Rice: A Map of Reproductive Organ Development in Rice[M]. Beijing: Science Press, 2015: 183. (in Chinese) | |
[51] | Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function[J]. Journal of Integrative Plant Biology, 2021, 63(1): 241-250. |
[52] | Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth[J]. Journal of Integrative Plant Biology, 2015, 57(1): 63-78. |
[53] | Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein analysis of pollen tubes after the treatments of membrane trafficking inhibitors gains insights on molecular mechanism underlying pollen tube polar growth[J]. Protein Journal, 2021, 40(2): 205-222. |
[54] | Liu J, Lim S L, Zhong J Y, Lim B L. Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors[J]. Nature Communications, 2022, 13(1): 7822. |
[55] | De Block M, van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity[J]. Current Opinion in Plant Biology, 2011, 14(3): 275-282. |
[56] | Falhof J, Pedersen J T, Fuglsang A T, Palmgren M. Plasma membrane H(+)-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337. |
[57] | Li Y, Zeng H, Xu F, Yan F, Xu W. H+-ATPases in plant growth and stress responses[J]. Annual Review of Plant Biology, 2022, 73: 495-521. |
[58] | Zhang M, Wang Y, Chen X, Xu F, Ding M, Ye W, Kawai Y, Toda Y, Hayashi Y, Suzuki T, Zeng H, Xiao L, Xiao X, Xu J, Guo S, Yan F, Shen Q, Xu G, Kinoshita T, Zhu Y. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communications, 2021, 12(1): 735. |
[59] | Lang V, Pertl-Obermeyer H, Safiarian M J, Obermeyer G. Pump up the volume: A central role for the plasma membrane H(+) pump in pollen germination and tube growth[J]. Protoplasma, 2014, 251(3): 477-488. |
[60] | Hoffmann R D, Portes M T, Olsen L I, Damineli D S C, Hayashi M, Nunes C O, Pedersen J T, Lima P T, Campos C, Feijó J A, Palmgren M. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization[J]. Nature Communications, 2020, 11(1): 2395. |
[61] | Chen W, Jia P F, Yang W C, Li H J. Plasma membrane H+-ATPases-mediated cytosolic proton gradient regulates pollen tube growth[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1817-1822. |
[62] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
Xu Y Q, Jiang N, Feng B H, Xiao J J, Tao L X, Fu G F. Research progress in mechanism behind heat damage and its regulatory techniques during flowering in rice[J]. Chinese Journal of Rice Science, 2024, 38(2): 111-126. (in Chinese with English abstract) | |
[63] | Zhang C X, Li G Y, Chen T T, Feng B B, Fu W M, Yan J X, Islam M R, Jin Q Y, Tao L X, Fu G F. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J]. Rice, 2018, 11(1): 14. |
[64] | 徐坤. 高温对梨花粉萌发及生长的影响[D]. 南京: 南京农业大学, 2015. |
Xu K. The effect of high temperature on pollen germination and tube growth of pera[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[65] | Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes[J]. Planta, 2016, 243(1): 43-63. |
[66] | Muhlemann J K, Younts T L, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11188-E11197. |
[67] | Jiang N, Yu P H, Fu W M, Li G Y, Feng B H, Chen T T, Li H B, Tao L X, Fu G F. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets[J]. Plant Cell Environment, 2020, 43(5): 1273-1287. |
[68] | Wagner J, Gastl E, Kogler M, Scheiber M. Cold Tolerance of the male gametophyte during germination and tube growth depends on the flowering time[J]. Plants (Basel), 2016, 6(1): 2. |
[69] | Qian D, Li T, Chen S Y, Wan D S, He Y X, Zheng C, Li J J, Sun Z P, Li J J, Sun J X, Niu Y Z, Li H X, Wang M X, Niu Y, Yang Y, An Z L, Xiang Y. Evolution of the thermostability of actin-depolymerizing factors enhances the adaptation of pollen germination to high temperature[J]. Plant Cell, 2024, 36(4): 881-898. |
[70] | Zeng Y H, Zhang Y P, Xiang J, Uphoff N T, Pan X H, Zhu D F. Effects of low temperature stress on spikelet-related parameters during anthesis in indica-japonica hybrid rice[J]. Frontiers in Plant Science, 2017, 8: 1350. |
[71] | Coast O, Murdoch A J, Ellis R H, Hay F R, Jagadish K S. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress[J]. Plant Cell Environment, 2016, 39(1): 26-37. |
[72] | Shimono H, Abe A, Aoki N, Koumoto T, Sato M, Yokoi S, Kuroda E, Endo T, Saeki K I, Nagano K. Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice[J]. Plant Physiology, 2016, 157(2): 175-192. |
[73] | Preston J C, Fjellheim S. Flowering time runs hot and cold[J]. Plant Physiology, 2022, 190(1): 5-18. |
[74] | Usman B, Derakhshani B, Jung K H. Recent molecular aspects and integrated omics strategies for understanding the abiotic stress tolerance of rice[J]. Plants (Basel), 2023, 12(10): 2019. |
[75] | 刘次桃, 王威, 毛毕刚, 储成才, 张红生. 水稻耐低温逆境研究: 分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
Liu C T, Wang W, Mao B G, Chu C C, Zhang H S. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects[J]. Hereditas(Beijing), 2018, 40(3): 171-185. (in Chinese with English abstract) | |
[76] | Wu J Y, Jin C, Qu H Y, Tao S T, Xu G H, Wu J, Wu H Q, Zhang S L. Low temperature inhibits pollen viability by alteration of actin cytoskeleton and regulation of pollen plasma membrane ion channels in Pyrus pyrifolia[J]. Environmental and Experimental Botany, 2012, 78(none), 70-75. |
[77] | Gao Y B, Wang C L, Wu J Y, Zhou H S, Jiang X T, Wu J, Zhang S. Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd[J]. Plant Physiology and Biochemistry, 2014, 74C, 255-262. |
[78] | Wang W D, Sheng X Y, Shu Z F, Li D Q, Pan J T, Ye X L, Chang P P, Li X H, Wang Y H. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth[J]. Frontiers in Plant Science, 2016, 7(342): 456. |
[79] | Parrotta L, Faleri C, Guerriero G, Cai G. Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes[J]. Plant Science, 2019, 283: 329-342. |
[80] | Çetinbaş-Genç A, Cai G, Del Duca S. Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis[J]. Plant Physiology and Biochemistry, 2020, 156: 578-590. |
[81] | Gad A G, Habiba, Zheng X Z, Miao Y. Low light/darkness as stressors of multifactor-induced senescence in rice plants[J]. International Journal of Molecular Sciences, 2021, 22(8): 3936. |
[82] | Deng F, Zeng Y, Li Q, He C, Li B, Zhu Y, Zhu X, Yang F, Zhong X, Wang L. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress[J]. Field Crops Research, 2021, 273: 108291. |
[83] | Li H B, Feng B H, Li J C, Fu W M, Wang W T, Chen T T, Liu L M, Wu Z H, Peng S B, Tao L X, Fu G F. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant Cell Environment, 2023, 46(4): 1363-1383. |
[84] | Cantagallo J E, Medan D, Hall A J. Grain number in sunflower as affected by shading during floret growth, anthesis and grain setting[J]. Field Crops Research, 2004, 85(2-3): 191-202. |
[85] | Campbell A W, Griffin W B, Burritt D J, Conner A J. The importance of light intensity for pollen tube growth and embryo survival in wheat × maize crosses[J]. Annals of Botany, 2001(4): 517-522. |
[86] | Fu G F, Song J, Xiong J, Li Y R, Tao L X. Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress[J]. Agricultural Sciences in China, 2011, 10(7): 1016-1025. |
[87] | Chen T T, Feng B H, Fu W M, Zhang C X, Fu G F. Nodes protect against drought stress in rice (Oryza sativa) by mediating hydraulic conductance[J]. Environmental and Experimental Botany, 2018, 155: 411-419. |
[88] | Hu W, Liu Y, Loka D A, Zahoor R, Wang S S, Zhou Z G. Drought limits pollen tube growth rate by altering carbohydrate metabolism in cotton (Gossypium hirsutum) pistils[J]. Plant Science, 2019, 286: 108-117. |
[89] | Li Y Q, Zhang H Q, Pierson E S, Huang F Y, Linskens H F, Hepler P K, Cresti M. Enforced growth-rate fluctuation causes pectin ring formation in the cell wall of Lilium longiflorum pollen tubes[J]. Planta, 1996, 200, 41-49. |
[90] | Biagini G, Faleri C, Cresti M, Cai G. Sucrose concentration in the growth medium affects the cell wall composition of tobacco pollen tubes[J]. Plant Reproduction, 2014, 27(3): 129-144. |
[91] | González M V, Coque M, Herrero M. Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae)[J]. American Journal of Botany, 1996, 83(2): 148-154. |
[92] | Fu G F, Song J, Li Y R, Yue M K, Xiong J, Tao L X. Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress[J]. Rice Science, 2010, 17(4): 303-310. |
[93] | Hu W, Liu Y, Loka D A, Zahoor R, Wang S, Zhou Z. Drought limits pollen tube growth rate by altering carbohydrate metabolism in cotton (Gossypium hirsutum) pistils[J]. Plant Science, 2019, 286: 108-117. |
[94] | Xiang M T, Li Y, Yang J Y, Lei K G, Li Y, Li F, Zheng D F, Fang X Q, Cao Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 2021, 278(2): 116911. |
[95] | Mesnoua M, Roumani M, Mizab O, Zeguerrou R. Heavy metals differentially affect date palm pollen germination and tube elongation[J]. Italus Hortus, 2020, 27(3): 64-71. |
[96] | Wang X X, Zhang S S, Gao Y, Lü W G, Sheng X Y. Different heavy metals have various effects on Picea wilsonii pollen germination and tube growth[J]. Plant Signaling & Behavior, 2015, 10(4): e989015. |
[97] | Sawidis T, Reiss H D. Effects of heavy metals on pollen tube growth and ultrastructure[J]. Protoplasma, 1995, 185: 113-122. |
[98] | Wang X X, Gao Y, Feng Y, Li X, Wei Q, Sheng X Y. Cadmium stress disrupts the endomembrane organelles and endocytosis during Picea wilsonii pollen germination and tube growth[J]. PLoS One, 2014, 9(4): e94721. |
[99] | Liu X Y, Xiao Y L, Zi J, Yan J, Li C H, Du C X, Wan J X, Wu H X, Zheng B, Wang S B, Liang Q Z. Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes[J]. Scientific Reports, 2023, 13(1): 611. |
[100] | Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: uptake, transport, signaling, and tolerance mechanisms[J]. Plant Physiology, 2021, 173(1): 430-448. |
[101] | Kumari V V, Banerjee P, Verma V C, Sukumaran S, Chandran M A S, Gopinath K A, Venkatesh G, Yadav S K, Singh V K, Awasthi N K. Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops[J]. International Journal of Molecular Sciences, 2022, 23(15): 8519. |
[102] | Hu W, Loka D A, Fitzsimons T R, Zhou Z, Oosterhuis D M. Oosterhuis, Potassium deficiency limits reproductive success by altering carbohydrate and protein balances in cotton (Gossypium hirsutum L.)[J]. Environmental and Experimental Botany, 2018, 145: 87-94. |
[103] | Pandey N, Pathak G C, Sharma C P. Zinc is critically required for pollen function and fertilization in lentil[J]. Journal of Trace Elements in Medicine and Biology, 2006, 20(2): 89-96. |
[104] | 杨晓冬, 孙素琴, 李一勤. 硼缺乏导致花粉管细胞壁多糖分布的改变[J]. 植物学报, 1999, 41(11): 1169-1176. |
Yang X D, Sun S Q, Li Y Q. Boron deficiency causes changes in the distribution of major polysaccharides of pollen tube wall[J]. Acta Botanica Sinica, 1999, 41(11): 1169-1176. (in Chinese with English abstract) | |
[105] | 李光彦. 能量代谢影响水稻耐热性的作用机理[D]. 武汉: 华中农业大学, 2022. |
Li G Y. The mechanism of energy metabolism mediating rice heat resistance[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[106] | Lau T C, Stephenson A G. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (cucurbitaceae)[J]. Sexual Plant Reproduction, 1994, 7(4): 215-220. |
[107] | Laggoun F, Ali N, Tourneur S, Prudent G, Gügi B, Kiefer-Meyer M C, Mareck A, Cruz F, Yvin J C, Nguema-Ona E, Mollet J C, Jamois F, Lehner A. Two carbohydrate-based natural extracts stimulate in vitro pollen germination and pollen tube growth of tomato under cold temperatures[J]. Frontiers in Plant Science, 2021, 12: 552515. |
[108] | Wolukau J N, Zhang S L, Xu G H, Chen D. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume[J]. Scientia Horticulturae, 2004, 99(3-4): 289-299. |
[109] | Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231(6): 1237-1249. |
[110] | Gupta K, Gupta B, Ghosh B, Sengupta N A. Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress[J]. Acta Physiologiae Plantarum, 2012, 34(1): 29. |
[111] | Upadhyay R K, Shao J, Mattoo A K. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: Presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses[J]. Planta, 254(5): 108. |
[112] | Aloisi I, Piccini C, Cai G, Del Duca S. Male fertility under environmental stress: Do polyamines act as pollen tube growth protectants[J]. International Journal of Molecular Sciences, 2022, 23(3): 1874. |
[113] | Xu X H, Tian Z Q, Xing A Q, Wu Z C, Li X Y, Dai L C, Yang Y Y, Yin J, Wang Y H. Nitric oxide participates in aluminum-stress-induced pollen tube growth inhibition in tea (Camelliasinensis) by regulating CsALMTs. Plants (Basel), 2022, 11(17): 2233. |
[114] | Fahad S, Hussain S, Saud S, Tanveer M, Bajwa A A, Hassan S, Shah A N, Ullah A, Wu C, Khan F A, Shah F, Ullah S, Chen Y, Huang J. A biochar application protects rice pollen from high-temperature stress[J]. Plant Physiology and Biochemistry, 2015, 96: 281-287. |
[115] | 法哈德. 高温胁迫对水稻产量和品质的影响与化学调控的缓解效应与机理[D]. 武汉: 华中农业大学, 2016. |
Shah F. Effect of high temperature stress on rice grain yield and quality, and mitigation through application of chemical regulators, and its mechanism[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract) | |
[116] | Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein analysis of pollen tubes after the treatments of membrane trafficking inhibitors gains insights on molecular mechanism underlying pollen tube polar growth[J]. Protein Journal, 2021, 40(2): 205-222. |
[1] | 冯向前, 王爱冬, 洪卫源, 李子秋, 覃金华, 詹丽钏, 陈里鹏, 张运波, 王丹英, 陈松. 基于低空无人机遥感的水稻产量估测方法研究进展 [J]. 中国水稻科学, 2024, 38(6): 604-616. |
[2] | 叶苗, 毛雨欣, 张德海, 康钰莹, 袁榕, 张祖建. 高光效水稻品种的叶片和冠层生理生态特征及其氮素调控机制研究进展 [J]. 中国水稻科学, 2024, 38(6): 617-626. |
[3] | 汪晴, 王艳茹, 张秀丽, 吕启明. 水稻孤雌生殖诱导基因BBM1序列变异分析 [J]. 中国水稻科学, 2024, 38(6): 627-637. |
[4] | 钟智慧, 秦璐, 黎志力, 杨珍, 贺晓鹏, 蔡怡聪. 水稻IDD基因家族的全基因组鉴定及综合分析 [J]. 中国水稻科学, 2024, 38(6): 638-652. |
[5] | 杜彦修, 孙文玉, 袁泽科, 张倩倩, 李富豪, 李俊周, 孙红正. 利用QTL-Seq结合分子标记定位粳稻垩白粒率控制位点qChalk8 [J]. 中国水稻科学, 2024, 38(6): 665-671. |
[6] | 毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响 [J]. 中国水稻科学, 2024, 38(6): 685-694. |
[7] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望[J]. 中国水稻科学, 2024, 38(5): 463-474. |
[8] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[9] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[10] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[11] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响[J]. 中国水稻科学, 2024, 38(5): 555-566. |
[12] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响[J]. 中国水稻科学, 2024, 38(5): 567-576. |
[13] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[14] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[15] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||