中国水稻科学 ›› 2024, Vol. 38 ›› Issue (5): 475-494.DOI: 10.16819/j.1001-7216.2024.231102
收稿日期:
2023-11-07
修回日期:
2024-03-15
出版日期:
2024-09-10
发布日期:
2024-09-10
通讯作者:
*email: xzhxie2010@163.com
基金资助:
XIE Xianzhi1,*(), LIU Qihua1, LI Xinhua1, LI Weiping2
Received:
2023-11-07
Revised:
2024-03-15
Online:
2024-09-10
Published:
2024-09-10
Contact:
*email: xzhxie2010@163.com
摘要:
稻田甲烷(CH4)排放是农业生产中主要碳排放源之一。如何在保证丰产的前提下,有效降低水稻生产中CH4的排放量成为现代农业科研工作者研究的焦点。围绕稻田CH4的产生、排放与减排方式,本文综述了目前稻田CH4产排的相关研究进展,阐述了稻田CH4的产生、氧化过程、排放方式及其主要影响因素。稻田甲烷的产生排放与土壤理化性状(pH值、关键酶活性、含水量、温度、氧化还原程度、质地等)、水稻品种(根系形态活力与分泌物、通气组织、收获指数、株高等)、栽培技术(轮作模式、水肥调控、种植方式)、气候变化(气温、大气CO2浓度、UV-B辐射)等因素密切相关。本文重点从选育高产低排新品种、研发稻田CH4减排新物质、稻-渔低碳循环种养、土壤持续固碳减排、多种栽培调控方式耦合的新技术等方面入手,系统总结了稻田CH4减排的技术措施,提出应根据不同稻区的生产特点,因地制宜,探索建立稻田CH4减排高效综合技术体系。在此基础上,讨论了未来重点研究方向,以期为水稻丰产减排生产提供技术支撑,为顺利实现国家“双碳”目标提供有益参考。
谢先芝, 刘奇华, 李新华, 李维平. 稻田甲烷产生与排放的影响因素及减排措施研究进展[J]. 中国水稻科学, 2024, 38(5): 475-494.
XIE Xianzhi, LIU Qihua, LI Xinhua, LI Weiping. Research Progress in Influencing Factors of Methane Production and Emission as Well as Emission Reduction Measures in Paddy Fields[J]. Chinese Journal OF Rice Science, 2024, 38(5): 475-494.
[1] | 陈迎, 巢清尘, 黄磊, 王谋, 张永香, 张莹, 姜克隽. 碳达峰、碳中和100问[M]. 北京: 人民日报出版社, 2021. |
Chen Y, Chao Q C, Huang L, Wang M, Zhang Y X, Zhang Y, Jiang K J. 100 questions on carbon peak and carbon neutrality[M]. Beijing: People's Daily Publishing House, 2021. | |
[2] | 生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报[EB/OL][2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf. |
Climate Change Response Department of the Ministry of Ecology and Environment. The Third National Information Bulletin on Climate Change of the People's Republic of China[EB/OL] [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf. | |
[3] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
Yan S J, Deng A X, Shang Z Y, Tang Z W, Chen C Q, Zhang J, Zhang W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production[J]. Acta Agronomica Sinica, 2022, 48(4): 930-941. (in Chinese with English abstract) | |
[4] | Change Intergovernmental Panel on Climate. Climate Change 2021:The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021. |
[5] | Conrad R, Rothfuss F. Methane oxidation in the soil surface-layer of a flooded rice field and the effect of ammonium[J]. Biology and Fertility of Soils, 1991, 12: 28-32. |
[6] | 任万辉, 许黎, 王振会. 中国稻田甲烷产生和排放研究 Ⅰ. 产生和排放机理及其影响因子[J]. 气象, 2004, 30(6): 3-7. |
Ren W H, Xu L, Wang Z H. A review on study of methane emission from rice field in China:Ⅰ.mechanism and affecting factors[J]. Meteorology, 2004, 30(6): 3-7. | |
[7] | Kumaraswamy S, Ramakrishnan B, and Sethunathan N. Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species[J]. Journal of Environmental Quality, 2001, 30: 2195-2201. |
[8] | Han X G, Sun X, Wang C, Wu M, Dong D, Zhong T, Thies J E, Wu W. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change[J]. Scientific Reports, 2016, 6(1): 1-10. |
[9] | Anand S, Dahiya R P, Talyan V, Vrat P. Investigations of methane emissions from rice cultivation in Indian context[J]. Environment International, 2005, 31: 469-482. |
[10] | Gogoi N, Baruah K K, Gupta P K. Selection of rice genotypes for lower methane emission[J]. Agronomy for Sustainable development, 2008, 28: 181-186. |
[11] | 卢婉芳, 陈苇, 郭望模, 段斌伍. 气温及水肥管理方式对中稻田甲烷排放的影响[J]. 中国水稻科学, 1997, 11(3): 170-174. |
Lu W F, Chen W, Guo W M, Duan B W. Effects of air temperature, water and fertilizer management on methane emission from middle-season rice fields[J]. Chinese Journal of Rice Science, 1997, 11(3): 170-174. | |
[12] | 徐健鑫, 扆幸运, 李晓明, 丁龙君, 朱永官. 水稻土中铁氧化物对产甲烷古菌群落结构的影响[J]. 生态学报, 2020, 40(9): 3115-3120. |
Xu J X, Yi X Y, Li X M, Ding L J, Zhu Y G. Effects of iron oxides in paddy soils on methanogens communities[J]. Acta Ecologica Sinica, 2020, 40(9) : 3115-3120. | |
[13] | Conrad R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1-63. |
[14] | 唐志伟, 张俊, 邓艾兴, 张卫健. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报, 2022, 30(4): 582-591. |
Tang Z W, Zhang J, Deng A X, Zhang W J. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582-591. | |
[15] | Roland F A, Darchambeau F, Morana C, Bouillon S, Borges A V. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168: 756-764. |
[16] | Ferry J G. Biochemistry of methanogenesis[J]. Critical Reviews in Biochemistry and Molecular Biology, 1992, 27: 473-503. |
[17] | Takai Y. The mechanism of methane fermentation in flooded paddy soil[J]. Soil Science and Plant Nutrition, 1970, 16(6): 238-244. |
[18] | Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. |
[19] | 余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1): 1-12. |
Yu F, Li S Y, Qiu Y Y, Zhuo X X, Huang J, Wang H, Zhu A, Liu K, Liu L J. Microbiological mechanism of methane emission in paddy field and influence of water-saving cultivation on methane emission[J]. Chinese Journal of Rice Science, 2022, 36(1): 1-12. (in Chinese with English abstract) | |
[20] | Alpana S, Vishwakarma P, Adhya T K, Inubushi K, Dubey S K. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem[J]. Science of the Total Environment, 2017, 596-597: 136-146. |
[21] | Conrad R, Klose M, Noll M, Kemnitz D. Soil type links microbial colonization of rice roots to methane emission[J]. Global Change Biology, 2010, 14(3): 657-669. |
[22] | Zhang G B, Ji Y, Ma J, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology and Biochemistry, 2012, 52: 108-116. |
[23] | Kruger M, Frenzel P, Conrad R. Microbial processes influencing methane emission from rice fields[J]. Global Change Biology, 2001, 7(1): 49-63. |
[24] | Kruger M, Eller G, Conrad R. Seasonal variation in pathway of CH4 production and in the CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors[J]. Global Change Biology, 2002, 8(3): 265-280. |
[25] | Liu P F, Klose M, Conrad R. Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil[J]. Soil Biology and Biochemistry, 2018, 124: 236-244. |
[26] | 沈李东. 亚硝酸盐型甲烷厌氧氧化微生物生态学研究进展[J]. 土壤学报, 2015, 52(4): 713-722. |
Shen L D. A review of study on microbical ecology of nitrite-dependent anaerobic methane oxidation[J]. Acta Pedologica Sinica, 2015, 52(4): 713-722. | |
[27] | 闵航, 陈中云, 陈美慈. 水稻田土壤甲烷氧化活性及其环境影响因子的研究[J]. 土壤学报, 2002, 39(5): 686-692. |
Min H, Chen Z Y, Chen M C. Effect of environmental factors on methane oxidizing activity in paddy soil[J]. Acta Pedologica Sinica, 2002, 39(5): 686-692. | |
[28] | 黄剑冰. 铁肥和水稻品种对稻田甲烷排放的影响[D]. 海口: 海南大学, 2016. |
Huang B J. Effects of iron fertilizer and rice varieties on methane emission from paddy fields[D]. Haikou: Hainan University, 2016. | |
[29] | Le M L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Science, 2001, 37(1): 25-50. |
[30] | Conrad R. Micobial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96(7): 1-63. |
[31] | Sass R, Fisher F, Turner F, Jund M. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation[J]. Global Biogeochemical Cycles, 1991, 5(4): 335-350. |
[32] | 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报: 农业与生命科学版, 2016, 42(3): 273-281. |
Cai Z Y, He Z F, Hu B L. Progresses in the classification and mechanism of methane-oxidizing bacteria[J]. Journal of Zhejiang University: Agric. &LifeSci., 2016, 42(3): 273-281. (in Chinese with English abstract) | |
[33] | Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29: 142-452. |
[34] | 林惠颖, 辛嘉英, 李春雨, 孙立瑞, 夏春谷. 颗粒性甲烷单加氧酶分离纯化方法的研究进展[J]. 分子催化, 2018, 32(1): 90-98. |
Lin H Y, Xin J Y, Li C Y, Sun L R, Xia C G. Progress onisolation and purification of particulate methane monooxygenase[J]. Journal of Molecular Catalysis, 2018, 32(1): 90-98. (in Chinese with English abstract) | |
[35] | Hanson R S, Hanson T E. Methanotrophic bacteria[J]. Microbiology Molecular Biology Reviews. 1996, 60(2): 439-471. |
[36] | Bhattacharyya P, Dash P, Swain C, Padhy S, Roy K, Neogi S, Berliner J, Adak T, Pokhare S, Baig M, Mohapatra T. Mechanism of plant mediated methane emission in tropical lowland rice[J]. The Science of the Total Environment, 2019, 651: 84-92. |
[37] | 翟俊, 马宏璞, 陈忠礼, 肖君, 刘显槟, 李媛媛, 杨忠平, 汪昆平, 罗志勇. 湿地甲烷厌氧氧化的重要性和机制综述[J]. 中国环境科学, 2017, 37(9): 3506-3514. |
Zhai J, Ma H P, Chen Z L, Xiao J, Liu X B, Li Y Y, Yang Z P, Wang K P, Luo Z Y. Review on the importance and mechanisms of anaerobic oxidation of methane in wetlands[J]. China Environmental Science, 2017, 37(9): 3506-3514. (in Chinese with English abstract) | |
[38] | Wang Y, Zhu G B, Harhangi H R. Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil[J]. FEMS Microbiology Letters, 2012, 336(2): 79-88. |
[39] | Zhou L, Xia C, Long X E. High abundance and diversity of nitrite-dependent anaerobic methaneoxidizing bacteria in a paddy field profile[J]. FEMS Microbiology Letters, 2014, doi: 10.1111/1574-6968.12567. |
[40] | Hu B L, Shen L D, Lian X. Evidence for nitritedependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wet lands[J]. Proceedings of the National Academy of Science of the United States of America, 2014, 111(12): 4495-4500. |
[41] | Shen L D, Liu S, Huang Q. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied and Environmental Microbiology, 2014, 80(24): 7611-7619. |
[42] | Shen L D, Huang Q, He Z F. Vertical distribution of nitrite-dependent anaerobic methaneoxidising bacteria in natural freshwater wetland soils[J]. Applied Microbiology and Biotechnology, 2014, doi:10.1007/s00253-014-6031-x. |
[43] | Nouchi I, Mariko S, Aoki K. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants[J]. Plant Physiology, 1990, 94(1): 59-66. |
[44] | Edwards J, Johnson C, Christian S M, Lurie E, Podishetty N, Bhatnagar S, Eisen J, Sundaresan V. Structure, variation and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Science, 2015, 112(8): 911-920. |
[45] | Ku H, Hayashi K, Agbisit R, Villegas P G. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate[J]. Science of the Total Environment, 2017: 1254-1262. |
[46] | Wassmann R, Aulakh M S. The role of rice plants in regulating mechanisms of methane missions[J]. Biology and fertility of Soils, 2000, 31(1): 20-29. |
[47] | 贾仲君, 蔡祖聪. 水稻植株对稻田甲烷排放的影响[J]. 应用生态学报, 2003, 14(11): 2049-2053. |
Jia Z J, Cai Z C. Effects of rice plants on methane emission from paddy fields[J]. Chinese Journal of Applied Ecology, 2003, 14(11): 2049-2053. (in Chinese with English abstract) | |
[48] | Butterbach B K, Papen H, Rennenberg H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields[J]. Plant Cell and Environment, 1997, 20: 1175-1183. |
[49] | Tokida T, Cheng W, Adachi M. The contribution of entrapped gas bubbles to the soil methane pool and their role in methane smission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments[J]. Plant and Soil, 2013, 364(1-2):131-143. |
[50] | Zhang G, Yu H, Fan X. Carbon isotope fractionation reveals distinct process of CH4 emission from different comparments of paddy ecosystem[J]. Scientific Reports, 2016, 6: 27065. DOI: 10.1038/srep27065 |
[51] | Nouchi I, Hosono T, Aoki K. Seasonal variation in methane flux from rice psddies associated with methane concentration in soil water, rice biomass and temperature and its modeling[J]. Plant and Soil, 1994, 161(2): 195-208. |
[52] | Wang B, Neue H U, Samonte H P. Role of rice in mediating methane emission[J]. Plant and Soil, 1997, 189: 107-115. |
[53] | 傅志强, 黄璜, 何保良, 谢伟, 廖晓兰. 水稻植株通气系统与稻田CH4排放相关性研究[J]. 作物学报, 2007, 33(9): 1458-1467. |
Fu Z Q, Huang H, He B L, Xie W, Liao X L. Correlation between rice plant aerenchyma system and methane emission from paddy field[J]. Acta Agronomica Sinica, 2007, 33(9): 1458-1467. (in Chinese with English abstract) | |
[54] | 蔡祖聪, 沈光裕, 颜晓元, 土壤质地, 温度和Eh对稻田CH4排放的影响[J]. 土壤学报, 1998(2): 145-154. |
Cai Z C, Shen G Y, Yan X Y. Effects of soil texture, soil temperature and Eh on methane emissions from rice paddy fields[J]. Acta Pedologica Sinica, 1998(2): 145-154. (in Chinese with English abstract) | |
[55] | 肖志祥, 傅志强, 徐华勤, 等. 双季稻品种根际特征与甲烷排放差异及其关系[J]. 环境科学, 2019, 40(2): 904-914. |
Xiao Z X, Fu Z Q, Xu H Q, Su S, Guo Y, Zhang L, Tang J W. Differences and relationship between rhizosphere characteristics and methane emissions of double-cropping rice variety[J]. Environmental Science, 2019, 40(2): 904-914. (in Chinese with English abstract) | |
[56] | 周文涛. 稻田甲烷排放与水稻根系分泌物及土壤特性的关系[M]. 长沙: 湖南农业大学, 2021. |
Zhou W T. Relationship between methane emission from paddy field and rice root exudates and soil properties[M]. Changsha: Hunan Agricultural University, 2021. (in Chinese with English abstract) | |
[57] | 丁维新, 蔡祖聪. 土壤甲烷氧化菌及水分状况对其活性的影响[J]. 中国生态农业学报, 2003, 11(1): 94-97. |
Ding W X, Cai Z C. Mechanism of methane oxidation by methanotrophs and effect of soil moisture content on their activity.[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 94-97. (in Chinese with English abstract) | |
[58] | John B S E, Angeles O R. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants[J]. Geoderma, 2009, 149(1): 45-53. |
[59] | 彭锃琳, 崔远来, 才硕, 刘博, 舒永红. 水肥管理对鄱阳湖流域稻田温室气体排放的影响[J]. 农业工程学报, 2020, 36(16): 85-93. |
Peng Z L, Cui Y L, Cai S, Liu B, Shu Y H. Effects of different water and fertilizer managements on greenhouse gas emissions of rice fields in Poyang Lake Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 85-93. (in Chinese with English abstract) | |
[60] | 高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13): 4617-4627. |
Gao S Q, Song Y Y, Song C C, Ma X Y, Jiang L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020, 40(13): 4617-4627. (in Chinese with English abstract) | |
[61] | Schǜtz H, Holzapfel-Pschorn A, Conrad R. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission from an Italian rice paddy[J]. Journal of Geophysical Research, 1989, 94: 16406-16416. |
[62] | Chidthaisong A, Conrad R. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil[J]. FEMS Microbiology Ecology, 2000, 31: 73-86. |
[63] | 蔡祖聪, 沈光裕, 颜晓元. 土壤质地、温度和Eh对稻田甲烷排放的影响[J]. 土壤学报, 1998, 35(2): 145-154. |
Cai Z C, Shen G Y, Yan X Y. Effects of soil texture, soil temperature and Eh on menthane emissions from paddy fields[J]. Acta Pedologica Sinica, 998, 35(2): 145-154. (In Chinese with English abstract) | |
[64] | 田茂辉, 沈李东, 刘心, 杨王挺, 金靖昊, 杨钰铃, 刘佳琦. 稻田土壤亚硝酸盐型甲烷厌氧氧化菌群落结构的时空特征[J]. 应用生态学报, 2022, 33(1): 239-247. |
Tian M H, Shen L D, Liu X, Yang W T, Jin J H, Yang Y L, Liu J Q. Spatial and temporal characteristics of community of nitrite-dependent anaerobic methane-oxidi-zing bacteria in paddy soil[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 239-247. | |
[65] | 王增远, 徐雨昌, 李震, 过益先, Wassmann R, Neue H U, Lantin R S. 稻田CH4排放及控制技术的研究[J]. 作物学报, 2001, 27(6): 757-768. |
Wang Z Y, Xu Y C, Li Z, Guo Y X, Wassmann R, Neue H U, Lantin R S. Methane emission from irrigated rice fields and its control[J]. Acta Agronomica Sinica, 2001, 27(6): 757-768. (in Chinese with English abstract) | |
[66] | 王楷, 李伏生, 方泽涛, 董艳芳, 刘靖雯, 黄忠华, 罗维钢. 不同灌溉模式和施氮量条件下稻田甲烷排放及其与有机碳组分关系[J]. 农业环境科学学报, 2017, 36(5): 1012-1020. |
Wang K, Li FS, Fang Z T, Dong Y F, Liu J W, Huang Z H, Luo W G. Soil CH4 emission and its relationship with organic carbon fraction under different irrigation methods and nitrogen rates[J]. Journal of Agro-Environment Science, 2017, 36(5): 1012-1020. (in Chinese with English abstract) | |
[67] | Wang B J, Neue H U, Samonte H P. Effects of rice plant on seasonal methane emission patterns[J]. Acta Agronomic Sinica, 1997, 23(3): 271-279. |
[68] | Kimura M, Murase J, Lu Y H. Carbon cyclingin rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4)[J]. Soil Biology and Biochemistry, 2004, 36: 1399-416. |
[69] | Neue H U. Methane emission from rice fields[J]. Bioscience, 1993, 43: 466-474. |
[70] | 周胜, 宋祥甫, 颜晓元. 水稻低碳生产研究进展[J]. 中国水稻科学, 2013, 27(2): 213-222. |
Zhou S, Song X P, Yan X Y. Progress in research on low-carbon rice production technology[J]. Chinese Journal of Rice Science, 2013, 27(2): 213-222. (in Chinese with English abstract) | |
[71] | Gutierrez J, Kim S Y, Kim P J. Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil[J]. Field crops Research, 2013, 146(3): 16-24. |
[72] | Aulakh M S, Wassmann R, Bueno C. Impact of root exudates of different cultivars and plant development stages of rice(Oryza sativa L.) on methane production in a paddy soil[J]. Plant and soil, 2001, 230(1): 77-86. |
[73] | Ding A, Willis C R, Sass R L, Fisher F M. Methane emissions from rice fields: Effect of plant height among several rice cultivars[J]. Global Biogeochemical Cycles, 1999, 13: 1045-1052. |
[74] | 王澜, 赵步洪, 张亚军, 蒋红亮, 李国明, 刘立军, 陈云. 孕穗期剪叶对稻田甲烷排放的影响[J]. 江苏农业科学, 2021, 49(23): 71-76. |
Wang L, Zhao B H, Zhang Y J, Jiang H L, Li G M, Liu L J, Chen Y. Influences of leaf cutting on methane emissions in paddy fields at booting stage[J]. Jiangsu Agricultural Sciences, 2021, 49(23): 71-76. | |
[75] | 黄亚男, 傅志强, 王勃然, 李超. 水稻根际特性与甲烷排放相关性研究[J]. 华北农学报, 2020, 35(5): 115-123. |
Study on the correlation between rhizosphere characteristics and methane emission in rice[J]. Acta Agriculturae Boreali-sinica, 2020, 35(5): 115-123. (in Chinese with English abstract) | |
[76] | Deniervander, Gon H A C, Kropff M J, Breemen N. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. PNAS, 2002, 99(19): 12021-12024. |
[77] | 傅志强, 朱华武, 陈灿, 黄璜. 水稻根系生物特性与稻田温室气体排放相关性研究[J]. 农业环境科学学报. 2012, 30 (12): 2416-2421. |
Fu Z Q, Zhu H W, Chen C, Huang H. Research on the correlation between the greenhouse gases emission from paddy field and the biological characteristics of rice root system[J]. Journal of Agro-Environment Science, 2012, 30 (12): 2416-2421. | |
[78] | Denier van der Gon H A C, Neue H U. Oxidationof methane intherhizosphereofriceplants[J]. Biologv and Fertility of Soils, 1996, 22: 359-366. |
[79] | Kaushik D, Baruah K K. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rained agroeco system of northeast India[J]. Agriculture, Ecosystem& Environment, 2008, 124: 105-113 |
[80] | Wang B, Neue H U, Samonte H P. Effect of cultivar difference ( ‘IR72’, ‘IR65598’ and ‘Dular’ ) on methane emission[J]. Agriculture, Ecosystem& Environment, 1997, 62: 31-40. |
[81] | 王增远, 徐雨昌, 李震, 王步军, 过益先, 丁玉萍, 王占珍. 水稻品种对稻田甲烷排放的影响[J]. 作物学报, 1999, 25(4): 441-446. |
Wang Z Y, Xu Y C, Li Z, Wang B J, Guo Y X, Ding Y P, Wang Z Z. Effects of rice cultivars on methane emissions from rice field[J]. Acta Agronomica Sinica, 1999, 25(4): 441-446. | |
[82] | Das K, Baruah K K. Methane emission associated with anatomical and morphophysiologicalcharacteristicsofrice (Oryza sativa) plant[J]. Physiologra Plantarum, 2008, 134: 303-312. |
[83] | 上官行健, 王明星. 稻田甲烷排放影响因子的研究进展[J]. 中国农业气象, 1993, 14(4): 48-53. |
Shangguan X J, Wang M X. Research progress on influencing factors of methane emissions from paddy fields[J]. Chinese Journal of Agrometeorology, 1993, 14(4): 48-53. (in Chinese with English abstract) | |
[84] | Wassmann R, Lantin R S, Neue H U. Characterization of methane emissions from rice fieldsin Asia: Ⅲ. Mitigation options and future research needs[J]. Nutrient Cycling in Agroecosystems, 2000, 58: 23-36. |
[85] | Jiang Y, Qian H Y, Wang L, Feng J, Huang S, Hungate B A, van Kessel C, Horwath W R, Zhang X, Qin X, Li Y, Feng X, Zhang J, Deng A, Zheng C, Song Z, Hu S, van Groenigen K J, Zhang W. Limited potential of harvest index improvement to reduce methane emissions from rice paddies[J]. Global Change Biology, 2019, 25(2): 1-13. |
[86] | Jiang Y, Tian Y L, Sun Y N, Zhang Y, Hang X, Deng A, Zhang J, Zhang W. Effect of rice panicle size on paddy field CH4emissions[J]. Biology and fertility of soils, 2016, 52 (3): 389-399. |
[87] | Sass R L, Cicerone R J. Photosynthate allocations in rice plants: Food production or atmospheric methane?[J] Proceedings of the National Academy of Sciences, 2002, 99(19): 11993-11995. |
[88] | 王丽丽, 闫晓君, 江瑜, 田云录, 邓艾兴, 张卫健. 超级稻宁粳1号与常规粳稻CH4排放特征的比较分析[J]. 中国水稻科学, 2013, 27(4): 413-418. |
Wang L L, Yan X J, Jiang Y, Tian Y L, Deng A X, Zhang W J. Differences in characteristics of CH4 emission between super-rice variety Ningjing 1 and traditional japonica variety[J]. Chinese Journal of Rice Science, 2013, 27(4): 413-418. (in Chinese with English abstract) | |
[89] | Majumdar D. Methane and nitrousoxide emission from irrigated rice fields: Proposed mitigation strategies[J]. Current Science, 2003, 84: 1317-1326. |
[90] | 唐先亮. 耕作方式对稻油两熟农田温室气体排放及土壤养分的影响[D]. 长沙: 湖南农业大学, 2016. |
Tang X L. Effect of different tillage methods on annual greenhouse gas emissions and soil nutrients from a farmland ecosystem in a rice-oilseed rape cropping system[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese with English abstract) | |
[91] | Ishibashi E, Akai N, Ohya M, Ishii T, Tsuruta H. The influence of no-tilled direct seeding cultivation on methane emission from three rice paddy fields in Okayama, western Japan: Ⅱ. The relationship between the continuation of no-tilled cultivation and methane emission[J]. Japanese Journal of Soil Science and Plant Nutrition, 2001, 72(4): 542-549. |
[92] | Bayer C, Costa F D, Pedroso G M. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a humid subtropical climate[J]. Field Crops Research, 2014, 162: 60-69. |
[93] | Li C, Zhang Z, Guo L, Cai M, Ca C. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods[J]. Atmospheric Environment, 2013, 80: 438-444. |
[94] | 成臣, 曾勇军, 杨秀霞, 黄山, 罗亢, 石庆华, 潘晓华, 商庆银. 不同耕作方式对稻田净增温潜势和温室气体强度的影响[J]. 环境科学学报, 2015, 35(6): 1887-1895. |
Cheng C, Zeng Y J, Yang X X, Huang S, Luo K, Shi Q H, Pan X H, Shang Q Y. Effect of different tillage methods on net global warming potential and greenhouse gas intensity in double ricecropping systems[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1887-1895. (in Chinese with English abstract) | |
[95] | 唐海明, 肖小平, 帅细强, 汤文光, 林叶春, 汤海涛, 杨光立. 双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响[J]. 生态学报, 2012, 32(5): 1481-1489. |
Tang H M, Xiao X P, Shuai X Q, Tang W G, Lin Y C, Tang H T, Yang G L. Effects of different winter covering crops cultivation on methane (CH4) andnitrous oxide (N2O) emission fluxes from double-cropping paddy field. Acta Ecologica Sinica, 2012, 32(5): 1481-1489. (in Chinese with English abstract) | |
[96] | 魏朝富, 高明, 黄勤, 车福才, 杨剑虹, 谢德体, 蔡祖聪, 徐华. 耕种制度对西南地区冬水田甲烷排放的影响[J]. 土壤学报, 2000, 37(2): 157-165. |
Wei C F, Gao M, Huang M, Che F C, Yang J H, Xie D T, Cai Z C, Xu H. Effects of tillage-cropping systems on methane emissions from year-round flooded paddy field in southwest China[J]. Acta Pedologzca Sinica, 2000, 37(2): 157-165. (in Chinese with English abstract) | |
[97] | 刘少文, 殷敏, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响[J]. 中国农业科学, 2019, 52(14):2484-2499. |
Liu S W, Yin M, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the middle and lower reaches of the Yangtze River[J]. Scientia Agricultura Sinica, 2019, 52(14):2484-2499. (in Chinese with English abstract) | |
[98] | 宿敏敏, 况福虹, 吕阳, 赵亚南, 傅先友, 李群英, 雷云飞, 张福锁, 石孝均, 申建波, 刘学军. 不同轮作体系不同施氮量甲烷排放比较研究[J]. 植物营养与肥料学报, 2016, 22(4): 913-920. |
Su M M, Kuang F H, Lü Y, Zhao Y N, Fu X Y, Li Q Y, Lei Y F, Zhang F S, Shi X J, Shen J B, Liu X J. Impact of N fertilization on CH4 emission from paddy field under different rotation systems[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 913-920. (in Chinese with English abstract) | |
[99] | Zhang G B, Ji Y, Ma J, Xu H, Cai Z C, Yagi K. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique[J]. Soil Biology and Biochemistry, 2012, 52: 108-116. |
[100] | 朱小莉, 黄琼, 宋开付, 马静, 张广斌, 徐华. 常年淹水稻田甲烷产生潜力和产生途径的季节变化[J]. 土壤学报, 2023, 60(2): 503-511. |
Zhu X L, Huang Q, Song K F, Ma J, Zhang G B, Xu H. Seasonal variations in methane production potential and methanogenic pathway in a permanently flooded rice field[J]. Acta Pedologica Sinica, 2023, 60(2): 503-511. (in Chinese with English abstract) | |
[101] | Li J L, Li Y, Wan Y F, Wang B, Waqas M, Cai W W, Guo C, Zhou S H, Su R S, Qin X B, Gao Q Z, Wilkes A. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315: 1-10. |
[102] | Haque M, Kim G, Kim P, Kim S. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon M paddy during rice cropping[J]. Field Crops Research, 2016, 193: 133-142. |
[103] | Wang F Q, Guo W, Zhu S J, Gong X L. Study on CH4 and N2O emissions from water-saving irrigation in phaeozem paddy fields in cold areas[J]. Journal of Environmental Biology, 2016, 37(5): 1077-1085. |
[104] | 李熠凡, 李烙布, 李伏生. 不同灌溉施氮模式对稻田甲烷和氧化亚氮排放的影响[J]. 灌溉排水学报, 2021, 40(12): 44-53. |
Li Y F, Li L B, Li F S. CH4 and N2O Emissions from rice field as affected by different combinations of irrigation and nitrogen fertilization[J]. Journal of Irrigation and Drainage, 2021, 40(12): 44-53. (in Chinese with English abstract) | |
[105] | 董艳芳, 黄景, 李伏生, 王楷, 方泽涛, 刘靖雯, 黄忠华, 罗维钢. 不同灌溉模式和施氮处理下稻田CH4和N2O排放[J]. 植物营养与肥料学报, 2017, 23(3): 578-588. |
Dong Y F, Huang J, Li F S, Wang K, Fang Z T, Liu J W, Huang Z H, Luo W G. Emissions of CH4 and N2O under different irrigation methods andnitrogen treatments[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 578-588. (in Chinese with English abstract) | |
[106] | 彭世彰, 和玉璞, 杨士红, 徐俊增, 侯会静. 控制灌溉稻田的甲烷减排效果[J]. 农业工程学报, 2013, 29(8): 100-107. |
Peng S Z, He Y P, Yang S H, Xu J Z, Hou H J. Mitigation of methane emissions from paddy fields under controlled irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(8): 100-107. (in Chinese with English abstract) | |
[107] | 徐华, 蔡祖聪, 李小平. 烤田对种稻土壤甲烷排放的影响[J]. 土壤学报, 2000, 37(1): 69-76. |
Xu H, Cai Z C, Li X P. Effect of soil drying on CH4 flux from rice paddy soil[J]. Acta Pedologica Sinica, 2000, 37(1): 69-76. (in Chinese with English abstract) | |
[108] | Yagi K, Tsuruta H, Kanda K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring[J]. Global Biogeochemical Cycles, 1996, 10(2): 255-267. |
[109] | Xu Y, Ge J Z, Tian S Y, Li S Y, Nguy-Robertson A, Zhan M, Cao C G. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China[J]. Science of the Total Environment, 2015, 5(5): 1043-1052. |
[110] | Xu C M, Chen L P, Chen S, Chu G, Zhang X F, Wang D Y. Effects of soil microbes on methane emissions from paddy fields under varying soil oxygen conditions[J]. Agronomy Journal, 2018, 110(5): 1738-1747. |
[111] | 王赢, 林余涛, 杨文斌, 王家嘉, 左双宝, 宋朝辉, 周楠楠. 延长烤田时间减少紫云英翻压稻田甲烷排放[J]. 农业环境科学学报, 2022, 41(8): 1836-1845. |
Wang Y, Lin Y T, Yang W B, Wang J J, Zuo S B, Song C H, Zhou N N. Increasing the drainage period to reduce methane emissions from Chinese milk vetch(Astragalussinicus L.) ploughed paddy field[J]. Journal of Agro-Environment Science, 2022, 41(8): 1836-1845. (in Chinese with English abstract) | |
[112] | Yang S H, Peng S P, Xu J Z, et al. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation[J]. Physics and Chemistry of the Earth, 2012(53-54): 30-37. |
[113] | Banger K, Tian H Q, Lu C Q. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields[J]. Global Change Biology, 2012, 18: 3259-3267. |
[114] | Linquist B A, Adviento-Borbe M A, Pittelkow C M. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis[J]. Field Crops Research, 2012, 135: 10-21. |
[115] | Banger K, Tian H Q, Lu C Q. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields[J]. Global Change Biology, 2012, 18: 3259-3267. |
[116] | 胡敏杰, 仝川, 邹芳芳. 氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制[J]. 草业学报, 2015, 24(6): 204-212. |
Hu M J, Tong C, Zou F F. Effects of nitrogen input on CH4 production,oxidation and transport in soils,and mechanisms: A review[J]. Acta Prataculturae Sinica, 2015, 24(6): 204-212. (in Chinese with English abstract) | |
[117] | 马晨蕾, 裴自伟, 李伏生. 灌溉方式及施氮对双季稻田甲烷排放及有机碳组分的影响[J]. 华南农业大学学报, 2021, 42(5): 41-49. |
Ma C L, Pei Z W, Li F S. Effects of irrigation method and nitrogen application on methane emission and organic carbon fraction in double-cropping rice field[J]. Journal of South China Agricultural University, 2021, 42(5): 41-49. (in Chinese with English abstract) | |
[118] | 刘珂纯, 王旭东, 赵鑫, 张海林. 我国稻田甲烷主要减排措施的技术效应与影响因素[J]. 吉林农业大学学报, 2022, 44(1): 61-70. |
Liu C K, Wang X D, Zhao X, Zhang H L. Technical effects and influencing factors of main methane emission management practices in China's paddy fields[J]. Journal of Jilin Agricultural University, 2022, 44(1): 61-70. (in Chinese with English abstract) | |
[119] | 樊代佳. 氮肥深施对免耕稻田土壤有机质特性、甲烷减排及微生物群落的影响机制[D]. 武汉: 华中农业大学, 2020. |
Effects of nitrogen fertilizer deep placement on organic matter properties, methane emissions and microbical communities in no-tillage paddy soil[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[120] | 李健陵, 李玉娥, 周守华, 苏荣瑞, 万运帆, 王斌, 蔡威威, 郭晨, 秦晓波, 高清竹, 刘硕. 节水灌溉、树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用[J]. 中国农业科学, 2016, 49(20): 3958-3967. |
Li J L, Li Y E, Zhou S H, Su R R, Wan Y F, Wang B, Cai W W, Guo C, Qin X B, Gao Q Z, Liu S. Synergistic effects of water-saving irrigation, polymer-coated nitrogen fertilizer and urease/nitrification inhibitor on mitigation of greenhouse gas emissions from the double rice cropping system[J]. Scientia Agricultura Sinica, 2016, 49(20): 3958-3967. (in Chinese with English abstract) | |
[121] | Kludze H K, DeLaune R D, Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Science Society of American Journal, 1993, 57: 386-391. |
[122] | Li W W, Ahmad S, Liu D, Gao S, Wang Y H, Tao W, Chen L, Liu Z H, Jiang Y, Li G H, Ding Y F. Subsurface banding of blended controlled-release urea can optimize rice yields while minimizing yield-scaled greenhouse gas emissions[J]. The Crop Journal, 2023, 11(3): 914-921. |
[123] | 何竹, 薛利红, 杨林章, 许琛. 磷对稻田甲烷排放的影响及其可能机制[J]. 农业环境科学学报, 2021, 40(2): 445-450. |
He Z, Xue L H, Yang L Z, Xu C. Effects of phosphorus on methane emissions from rice fields and its possible mechanisms[J]. Journal of Agro-Environment Science, 2021, 40(2): 445-450. (in Chinese with English abstract) | |
[124] | 何竹, 许琛, 周贝贝, 薛利红, 汪玉, 沈明星, 杨林章. 长期不施磷对稻田温室气体排放的影响[J]. 应用生态学报, 2021, 32(3): 942-950. |
He Z, Xu C, Zhou B B, Xue L H, Wang Y, Shen M X, Yang L Z. Effects of long-term fertilization without phosphorus on greenhouse gas emissions from paddy fields[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 942-950. (in Chinese with English abstract) | |
[125] | Fisk M, Santangelo S, Minick K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology and Biochemistry, 2014, 81( 2015): 212-218. |
[126] | Tawaraya K, Horie R, Wagatsuma T. Metabolite profiling of shoot extract, root extract, and root exudate of rice under nitrogen and phosphorus deficiency[J]. Soil Science and Plant Nutrition, 2018, 64(3): 312-322. |
[127] | 马义虎, 顾道健, 刘立军, 王志琴, 张耗, 杨建昌. 玉米秸秆源有机肥对水稻产量与温室气体排放的影响[J]. 中国水稻科学, 2013, 27(5): 520-528. |
Ma Y H, Gu D J, Liu L J, Wang Z Q, Zhang H, Yang J C. Effects of the organic fertilizers made from maize straw on grain yield of rice and emission of greenhouse gases from paddy fields[J]. Chinese Journal of Rice Science, 2013, 27(5): 520-528. (in Chinese with English abstract) | |
[128] | Naser H M, Nagata O, Tamura S, et al. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido Japan[J]. Soil Science and Plant Nutrition, 2007, 53(1): 95-101. |
[129] | Moreno G B, Guillén M, Quilez D. Greenhouse gas emissions as affected by fertilization type (pig slurry vs. mineral) and soil management in Mediterranean rice systems[J]. Agronomy, 2020, 10(4): 493. |
[130] | 吴家梅, 纪熊辉, 霍莲杰, 彭华, 刘勇. 稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性[J]. 生态学报, 2013, 33(15): 4599-4607. |
Wu J M, Ji X H, Huo L J, Peng H, Liu Y. Fraction changes of oxidation organic carbon in paddy soil and its correlation with CH4 emission fluxes[J]. Acta Ecologica Sinica, 2013, 33(15): 4599-4607. (in Chinese with English abstract) | |
[131] | 刘金剑, 吴萍萍, 谢小立, 傅心赣, 沈其荣, 郭世伟. 长期不同施肥制度下湖南红壤晚稻CH4的排放[J]. 生态学报, 2008, 28(6): 2879-2886. |
Liu J J, Wu P P, Xie X L, Fu X G, Shen Q R, Guo S W. Methane emission from late rice fields in Hunan red soil under different longterm fertilizing systems[J]. Acta Ecologica Sinica, 2008, 28(6): 2879-2886. (in Chinese with English abstract) | |
[132] | 吴家梅, 霍莲杰, 纪熊辉, 谢运河, 田发祥, 彭华, 朱坚, 官迪. 不同施肥处理对土壤活性有机碳和甲烷排放的影响[J]. 生态学报, 2017, 37(18): 6167-6175. |
Wu J M, Huo L J, Ji X H, Xie Y H, Tian F X, Peng H, Zhu J, Guan D. Effects of organic manure application on active soil organic carbon and methane emission in paddy soils[J]. Acta Ecologica Sinica, 2017, 37(18): 6167-6175. (in Chinese with English abstract) | |
[133] | 孙志祥. 有机肥替代化肥对双季稻生长及稻田温室气体排放的影响研究[D]. 合肥: 安徽农业大学, 2020. |
Sun Z X. Effects of organic manure substitution for chemical fertilizer on the growth of double cropping rice and greenhouse gas emission in rice field[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese with English abstract) | |
[134] | 邹建文, 黄耀, 宗良纲, 王跃思, Ronald L. Sass. 不同种类有机肥施用对稻田CH4 和 N2O 排放的综合影响[J]. 环境科学, 2003, 24(4): 7-12. |
Zou J W, Huang Y, Zong L G, Wang Y S, Ronald L. Sass. Integrated effect of incorporation with different organic manures on CH4 and N2O emissions from rice paddy[J]. Environmental Science, 2003, 24(4): 7-12. (in Chinese with English abstract) | |
[135] | Wen P, Tang J, Wang Y Q. Hyperthermophilic composting significantly decreases methane emissions: Insights into the microbial mechanism[J]. Science of the Total Environment, 2021, 784: 147-179. |
[136] | 张岳芳, 陈留根, 张传胜, 杨洪建, 盛婧, 朱普平, 郑建初. 水稻机械化播栽对稻田甲烷和氧化亚氮排放的影响[J]. 农业工程学报, 2015, 31(14): 232-241. |
Zhang Y F, Chen L G, Zhang C S, Yang H C, Sheng Q, Zhu P P, Zheng J C. Influence of rice mechanical planting methods on methane and nitrous oxide emissions from paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 232-241. (in Chinese with English abstract) | |
[137] | 时原智, 崔远来, 才硕, 洪大林, 程婕. 鄱阳湖平原直播稻CH4通量及其与 CO2通量的综合温室效应[J]. 环境科学, 2023, 44(3): 1572-1582. |
Shi Y Z, Cui Y L, Cai S, Hong D L, Cheng J. CH4 fluxes and their comprehensive greenhouse effects with CO2 fluxes in direct seeded rice in Poyang Lake Plain[J]. Environmental Science, 2023, 44(3): 1572-1582. (in Chinese with English abstract) | |
[138] | 魏永霞, 冀俊超, 刘慧, 郭彦君, 郑衍波, 石蕴. 水分管理对旱直播稻温室气体排放与土壤无机氮的影响[J]. 农业机械学报, 2021, 52(11): 305-314. |
Wei Y X, Ji J C, Liu H, Guo Y J, Zheng Y B, Shi Y. Effects of water management on greenhouse gas emission and soil inorganic nitrogen of dry direct seeding rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 305-314. (in Chinese with English abstract) | |
[139] | Isubushi K, Sugii H, Nishino S, Nishino E. Effect of aquatic weeds on methane emission from submerged paddy soil[J]. American Journal of Botany, 2001, 88(6): 975-979. |
[140] | 严陈, 许静, 钟文辉, 林毅, 林先贵, 朱建国, 贾仲君. 大气 CO2 浓度升高对稻田根际土壤甲烷氧化细菌丰度的影响[J]. 生态学报, 2013, 33(6): 1881-1888. |
Yan C, Xu J, Zhong W H, Lin Y, Lin X G, Zhu J G, Jia Z J. Effect of elevated CO2 on methanotrophs in the rhizosphere of rice plant[J]. Acta Ecologica Sinica, 2013, 33(6): 1881-1888. (in Chinese with English abstract) | |
[141] | 于海洋, 王天宇, 黄琼, 张广斌, 马静, 朱春梧, 徐华. 长期大气 CO2浓度升高对稻田 CH4排放的影响[J]. 生态学报, 2022, 59(4): 1057-1067. |
Yu H Y, Wang T Y, Huang Q, Zhang G B, Ma J, Zhu C W, Xu H. Effect of Long-term Elevated CO2 concentration on CH4 Emissions from rice paddy fields[J]. Acta Pedologica Sinica, 2022, 59(4): 1057-1067. (in Chinese with English abstract) | |
[142] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B 辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
He X J, Feng S H, Jiang M, Li M R, Zhan F D, Li Y, He Y M. Effects of UV-B radiation on conversion of active organic carbon and methane production potential of rice rhizosphere soil[J]. Ecology and Environmental Sciences, 2022, 31(3): 556-564. (in Chinese with English abstract) | |
[143] | Wang C, Jin Y G, Ji C. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies[J]. Agriculture, Ecosystems and Environment, 2018, 257: 165-174. |
[144] | 王颖, 娄运生, 石一凡, 郑泽华, 左慧婷. 夜间增温对稻田甲烷排放的影响及其高光谱估算[J]. 生态学报, 2018, 38(14): 5099-5108. |
Wang Y, Lou Y S, Shi Y F, Zheng Z H, Zuo H T. Methane emission in response to nighttime warming and its hyperspectral estimation in a paddy field[J]. ActaEcologica Sinica, 2018, 38(14): 5099-5108. | |
[145] | 贾庆宇, 李晓岚, 于文颖, 周莉, 温日红, 谢艳兵, 赵一俊, 孙胜阳. 温度对东北平原水稻甲烷排放的影响[J]. 生态环境学报, 2020, 29(1): 1-10. |
Jia Q Y, Li X L, Yu W Y, Zhou L, Wen R H, Xie Y B, Zhao Y J, Sun S Y. Effect of temperature on methane emission over paddy fields in Northeast Plain[J]. Ecology and Environmental Sciences, 2020, 29(1): 1-10. (in Chinese with English abstract) | |
[146] | 于海洋, 宋开付, 黄琼, 王天宇, 张广斌, 马静, 朱春梧, 徐华. 水稻产量、稻田CH4和N2O排放对长期大气CO2浓度升高的响应[J]. 环境科学, 2021, 42(10): 5021-5029. |
Yu H Y, Song K F, Huang Q, Wang T Y, Zhang G B, Ma J, Zhu C W, Xu H. Response of yield, CH4 and N2O emissions from paddy fields to long-term elevated CO2 concentrations[J]. Environmental Science, 2021, 42(10): 5021-5029. (in Chinese with English abstract) | |
[147] | 刘心, 沈李东, 田茂辉, 杨王挺, 金靖昊, 王昊宇, 胡正华. 大气CO2浓度缓增对稻田土壤甲烷氧化过程的影响[J]. 土壤学报, 2022, 59(2): 568-579. |
Liu X, Shen L D, Tian M H, Yang W T, Jin J H, Wang H Y, Hu Z H. Effects of slow increase of atmospheric CO2concentration on methane oxidation in paddy soils[J]. Acta Pedologica Sinica, 2022, 59(2): 568-579. | |
[148] | 周超, 刘树伟, 张令, 张旭辉, 潘根兴, 邹建文. 温度和CO2浓度升高对稻田CH4排放的影响:T-FACE平台观测研究[J]. 农业环境科学学报, 2013, 32(10): 2077-2083. |
Zhou C, Liu S W, Zhang L, Zhang X H, Pan G X, Zou J W. Effect of elevated CO2 and temperature on CH4 emissions from rice paddy fields: A T-FACE experiment[J]. Journal of Agro-Environment Science, 2013, 32(10): 2077-2083. (in Chinese with English abstract) | |
[149] | 胡正华, 凌慧, 陈书涛, 李琪, 蒋静艳, 牛传坡. UV-B 增强对稻田呼吸速率、CH4和N2O排放的影响[J]. 环境科学, 2011, 32(10): 3018-3022. |
Hu Z H, Ling H, Chen S T, Li Q, Jiang J Y, Niu C P. UV-B enhanced effects on respiration rate, CH4 and N2O emissions in rice fields[J]. Environmental Science, 2011, 32(10): 3018-3022. (in Chinese with English abstract) | |
[150] | 徐渭渭, 何永美, 湛方栋, 祖艳群, 李元. UV-B 辐射增强对元阳哈尼梯田稻田CH4排放规律的影响[J]. 生态学报, 2015, 35(5): 1329-1336. |
Xu W W, He Y M, Zhan F D, Zu Y Q, Li Y. Effects of UV-B radiation enhancement on CH4 emission in rice field of Hani rice terrace in Yuanyang[J]. Acta Ecologica Sinica, 2015, 35(5): 1329-1336. (in Chinese with English abstract) | |
[151] | Zheng H B, Huang H, Yao L. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis[J]. Biogeosciences, 2014, 11(12): 19045-19069. |
[152] | Jiang Y, Wang L L, Yan X J. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China[J]. Rice Science, 2013, 20(6): 427-433. |
[153] | 江瑜. 水稻植株生产力和物质分配对稻田温室气体排放的影响及其机理[D]. 南京: 南京农业大学, 2017: 1-131. |
Jiang Y. Effects of rice plant productivity and photosynthate allocation on greenhouse gas emissions from paddies[D]. Nanjing: Nanjing Agricultural University, 2017: 1-131. (in Chinese with English abstract) | |
[154] | Chen Z D, Dikgwatlhe S B, Xue J F. Tillage impacts on net carbon flux in paddy soil of the southern China[J]. Journal of Cleaner Production, 2015, 103: 70-76. |
[155] | 陈友德, 赵杨, 高杜娟, 罗先富, 崔婷, 童中权, 吴家梅. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响[J]. 环境科学, 2020, 41(10): 4701-4710. |
Chen Y D, Zhao Y, Gao D J, Luo X F, Cui T, Tong Z Q, Wu J M. Effects of different rotation patterns of oil-rice on methane and nitrous oxide emissions in rice fields[J]. Environmental Science, 2020, 41(10): 4701-4710. (in Chinese with English abstract) | |
[156] | 李金秋, 邵晓辉, 缑广林, 邓艺欣, 谭诗敏, 徐文娴, 杨秋, 刘文杰, 伍延正, 孟磊, 汤水荣. 水肥管理对热带地区双季稻区CH4和N2O排放的影响[J]. 环境科学, 2021, 42(7): 3458-3468. |
Li J Q, Shao X H, Gou G L, Deng Y X, Tan S M, Xu W X, Yang Q, Liu W J, Wu Y Z, Meng L, Tang S R. Effects of water and fertilization management on CH4 and N2O emissions in double-rice paddy fields in tropical regions[J]. Environmental Science, 2021, 42(7): 3458-3468. (in Chinese with English abstract) | |
[157] | 郑梅群, 刘娟, 姜培坤, 吴家森, 李永夫, 李松昊. 氮肥运筹对稻田CH4和N2O排放的影响[J]. 环境科学, 2022, 43(4): 2171-2181. |
Zheng M Q, Liu J, Jiang P K, Wu J S, Li Y F, Li S H. Effects of nitrogen fertilizer management on CH4and N2O emissions in paddy field[J]. Environmental Science, 2022, 43(4): 2171-2181. (in Chinese with English abstract) | |
[158] | 马煜春, 孙丽英, 孔宪旺, 黄太庆, 熊正琴. 太湖地区不同集约化栽培模式下稻田 CH4 排放[J]. 土壤学报, 2011, 48(6): 1166-1172. |
Ma Y C, Sun L Y, Kong X W, Huang T Q, Xiong Z Q. Methane emission from rice paddy in TaiHu lake region under different cultivation patterns[J]. Acta Pedologica Sinica, 2011, 48(6): 1166-1172. (in Chinese with English abstract) | |
[159] | Davamani V, Parameswari E, Arulmani S. Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs[J]. Science of the Total Environment, 2020, 726: 1-8. |
[160] | 胡国辉. 生物可降解膜覆盖对机插水稻生长及甲烷排放的影响[D]. 杭州, 中国农业科学院, 2020. |
Hu G H. Effect of biodegradable film mulching on growth and methane emission of mechanical transplanted rice (Oryza sativa L.).[D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract) | |
[161] | Jr M J A, Grønli M. The art, science, and technology of charcoal production[J]. Industrial and Engineering Chemistry Research, 2003, 42(8): 1619-1640. |
[162] | Wang Z P, Delaune R D, Masscheleyn P H. Soil redox and pH effects on methane reduction in a flooded rice soil[J]. Soil Science Society of America Journal, 2003, 57(24): 382-385. |
[163] | 彭灯云, 杨士红, 李伟征, 李明, 戴惠东, 周姣艳. 生物炭施用对节水灌溉稻田甲烷产生菌与氧化菌的影响[J]. 节水灌溉, 2022(5): 54-59. |
Peng D Y, Yang S H, Li W Z, Li M, Dai H D, Zhou J Y. Effects of biochar application on methane-producing and oxidizing bacteria in water-saving irrigation paddy fields[J]. Water Saving Irrigation, 2022(5): 54-59. (in Chinese with English abstract) | |
[164] | 张作合, 李铁成, 张忠学, 李凯, 李浩宇, 孔凡丹. 水炭运筹下稻田痕量温室气体排放与水氮利用关系研究[J]. 农业机械学报, 2022, 53(8): 384-387. |
Zhang Z H, Li T C, Zhang Z X, Li K, Li H Y, Kong F D. Relationship between trace greenhouse gas emission and water and nitrogen utilization under water biochar management in paddy fields[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 384-387. | |
[165] | 王妙莹, 许旭萍, 王维奇, 王广磊, 苏程举. 炉渣与生物炭施加对稻田土壤产甲烷菌群落结构的影响[J]. 生态学报, 2018, 38(8): 1-13. |
Wang M Y, Xu X P, Wang W Q, Wang G L, Su C J. Effects of slag and biochar amendments on methanogenic community structures in paddy fields[J]. Acta Ecologica Sinica, 2018, 38(8): 2816-2828. (in Chinese with English abstract) | |
[166] | 王维奇, 李鹏飞, 曾从盛, 王纯, 林芳. 铁炉渣施加对稻田甲烷产生、氧化与排放的影响[J]. 生态学报, 2013, 33(5): 1578-1583. |
Wang W Q, Li P F, Zeng C S, Wang C, Lin F. Effect of iron slag adding on methane production,oxidation and emission in paddy fields[J]. Acta Ecologica Sinica, 2013, 33(5): 1578-1583. (in Chinese with English abstract) | |
[167] | Ali M A, Lee C H, Kim P J. Effect of silicate fertilizer on reducing methane emission during rice cultivation[J]. Biology and Fertility of Soils, 2008, 44(4): 597-604. |
[168] | 王晓彤, 许旭萍, 王维奇. 炉渣与生物炭施加对稻田土壤铁还原菌群落结构及甲烷排放的影响[J]. 中国环境科学, 2019, 39(6): 2495-2505. |
Wang X T, Xu X P, Wang W Q. Slag and biochar application on community structure and methane emission of iron-reducing bacteria in paddy soil[J]. China Environmental Science, 2019, 39(6): 2495-2505. (in Chinese with English abstract) | |
[169] | Nan Q, Wang C, Wang H, Yi Q Q, Wu W X. Mitigating methane emission via annual biochar amendment pyrolyzed with rice straw from the same paddy field[J]. Science of the Total Environment, 2020, 746: 1-8. |
[170] | 许欣, 陈晨, 熊正琴. 生物炭与氮肥对稻田甲烷产生与氧化菌数量和潜在活性的影响[J]. 土壤学报, 2016, 53(6): 1517-1527. |
Xu X, Chen C, Xiong Z Q. Effects of biochar and nitrogen fertilizer amendment on abundance and potential activity of methanotrophs and methanogens in paddy field[J]. Acta Pedologica Sinica, 2016, 53(6): 1517-1527. | |
[171] | 蒋晨, 麻培侠, 胡保国, 赵海侠, 方晓波, 李松, 任景明. 生物质炭还田对稻田甲烷的减排效果[J]. 农业工程学报, 2013, 29(15): 184-191. |
Jiang C, Ma P X, Hu B G, Zhao H X, Fang X B, Li S, Ren J M. Effect of biochar returning to paddy field on CH4 emission reduction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 184-191. | |
[172] | 胡翔宇, 向秋洁, 木质坚. 脱硫石膏对稻田CH4释放及其功能微生物种群的影响[J]. 环境科学, 2018, 39(8): 3894-3900. |
Hu X Y, Xiang Q J, Mu Z J. Effects of gypsum on CH4 emission and functional microbial communities in paddy soil[J]. Environment Science, 2018, 39(8): 3894-3900. | |
[173] | 王缨. 稻田种养模式生态效益研究[J]. 生态学报, 2000, 20(2): 311-316. |
Wang Y. Studies on the ecological effect of planting breeding models in the rice field[J]. Acta Ecologica Sinica, 2000, 20(2): 311-316. | |
[174] | 李成芳, 曹凑贵, 展茗, 袁伟玲, 汪金平, 代光照. 稻鸭共作生态系统中氧化亚氮排放及温室效应评估[J]. 中国农业科学, 2008, 41(9): 2895-2901. |
Li C F, Cao C G, Zhan M, Yuan W L, Wang J P, Dai G Z. Nitrous oxide emission from rice-duck complex ecosystem[J]. Scientia Agricultura Sinica, 2008, 41(9): 2895-2901. (in Chinese with English abstract) | |
[175] | 邓晓, 廖晓兰, 黄璜. 稻鸭复合生态系统产甲烷细菌数量[J]. 生态学报, 2004, 24(8): 1695-1699. |
Deng X, Liao X L, Huang H. Studies on amount of methanogens in the rice-duck agroecosystem[J]. Acta Ecologica Sinica, 2004, 24(8): 1695-1699. (in Chinese with English abstract) | |
[176] | Sun G, Sun M, Du L S, Zhang Z, Wang Z, Zhang G, Xu H, Wang H. Ecological rice-cropping systems mitigate global warning: a metal-analysis[J]. Science of the total environment, 2021, 789: 147900. |
[177] | 王强盛, 刘欣, 许国春, 余坤龙, 张慧. 稻鸭共作对不同栽培环境稻季CH4和N2O排放的影响[J]. 土壤, 2023, 55(6): 1279-1288. |
Wang Q S, Liu X, Xu G C, Yu K L, Zhang H. Effects of Rice-duck farming on CH4 and N2O emissions in rice season under different cultivation environments[J]. Soils, 2023, 55(6): 1279-1288. (in Chinese with English abstract) | |
[178] | 傅志强, 黄璜, 廖晓兰, 胡英, 谢伟, 何保良. 养鸭数量对CH4排放的影响[J]. 生态学报, 2008, 28(5): 2107-2114. |
Fu Z Q, Huang H, Liao X L, Hu Y, Xie W, He B L. The effect of ducks on CH4 emission from paddy soil: mechanism research in the rice-duck ecosystem[J]. Acta Ecologica Sinica, 2008, 28(5): 2107-2114. (in Chinese with English abstract) | |
[179] | 温婷, 赵本良, 章家恩. 稻鸭共作中CH4和N2O排放规律及影响因素[J]. 农业环境科学学报, 2020, 39(7): 1442-1450. |
Wen T, Zhao B L, Zhang J E. Emission pathways and influencing factors for CH4 and N2O from rice-duck farming[J]. Journal of Agro-Environment Science, 2020, 39(7): 1442-1450. (in Chinese with English abstract) | |
[180] | 徐祥玉, 张敏敏, 彭成林, 佀国涵, 周剑雄, 谢媛圆, 袁家富. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591-1603. |
Xu X Y, Zhang M M, Peng C L, Si G H, Zhou J X, Xie Y Y, Yuan J F. Effect of rice-crayfish co-culture on greenhouse gasesemission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591-1603. (in Chinese with English abstract) | |
[181] | 罗加伟, 钱开国, 徐博, 李虹颖, 刘少君, 熊启中, 李硕, 孙瑞波, 张朝春, 叶新新. 稻虾共作模式下龙虾品种和养殖密度对CH4和N2O排放的影响[J]. 农业环境科学学报, 2023, 42(8): 1852-1859. |
Luo J W, Qian K G, Xu B, Li H Y, L iu S J, Xing Q Z, Li S, Sun R B, Zhang C C, Ye X X. Effects of lobster species and breeding density on CH4 and N2O emissions under rice shrimp co-cropping[J]. Journal of Agro-Environment Science, 2023, 42(8): 1852-1859. (in Chinese with English abstract) | |
[182] | 张怡彬, 徐洋, 王洪媛, 王绍蓬, 翟丽梅, 刘宏斌. 稻蟹共生系统温室气体排放特征及其影响因素[J]. 农业资源与环境学报, 2022, 39(5): 931-939. |
Zhang Y B, Xu Y, Wang H Y, Wang S P, Zhai L M, Liu H B. Greenhouse gas emission characteristics and influencing factors of rice-crab symbiosis system[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 931-939. (in Chinese with English abstract) | |
[183] | 陈佳, 赵璐峰, 戴然欣, 章涛杰, 唐建军, 胡亮亮, 陈欣. 稻鱼共生系统的土壤产甲烷和甲烷氧化微生物群路[J]. 生态学杂志, 2023, 42(12): 2961-2971. |
Chen J, Zhao L F, Dai R X, Zhang T J, Tang J J, Hu L L, Chen X. Soil microbical communities of methanogens and methanotrophs in the rice-fish coculture ecosystem[J]. Chinese Journal of Ecology, 2023, 42(12): 2961-2971. (in Chinese with English abstract) | |
[184] | Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105. (in Chinese with English abstract) |
[185] | 戴然欣, 赵璐峰, 唐建军, 章涛杰, 郭梁, 罗崎月, 胡中元, 胡亮亮, 陈欣. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报, 2022, 30(4): 616-629. |
Dai R X, Zhao L F, Tang J J, Zhang T J, Guo L, Luo Q Y, Hu Z Y, Hu L L, Chen X. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616-629. (in Chinese with English abstract) | |
[186] | 刘庆花, 史学正, 于东升. 中国水稻土有机和无机碳的空间分布特征[J]. 生态环境, 2006, 15: 659-664. |
Liu Q H, Shi X Z, Yu D S. Spatial distribution characteristics of paddy soilorganic and inorganic carbon in China[J]. Ecology and Environment, 2006, 15: 659-664. (in Chinese with English abstract) | |
[187] | 陈松文, 刘天奇, 曹凑贵. 水稻生产碳中和现状及低碳稻作技术策略[J]. 华中农业大学学报, 2021, 40(3): 3-12. |
Chen S W, Liu T Q, Cao C G. Simulation of carbon neutrality in rice production and techniques for low-carbon rice farming[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 3-12. (in Chinese with English abstract) | |
[188] | 郑聚锋, 陈硕桐. 土壤有机质与土壤固碳[J]. 科学, 2021, 73(6): 13-17. |
Zheng J F, Chen S T. Soil organic matter and soil carbon sequestration[J]. Science, 2021, 73(6): 13-17. (in Chinese with English abstract) | |
[189] | 夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841. |
Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841. (in Chinese with English abstract) | |
[190] | 秦晓波, 王金明, 王斌, 万云帆. 稻田甲烷排放现状、减排技术和低碳生产战略途径[J]. 气候变化研究进展, 2023, 19(5): 541-558. |
Qin X B, Wang J M, Wang B, Wan Y F. Status of methane emissions from paddy fields, mitigation technologies and strategic pathways for low-carbonproduction[J]. Climate Change Research, 2023, 19 (5): 541-558. (in Chinese with English abstract) | |
[191] | 张熙栋, 严玲, 周伟, 吴秋玲, 杨波, 马煜春. 稻麦轮作下秸秆不同利用方式还田对稻田甲烷排放的影响[J]. 农业环境科学学报, 2021, 40(3): 685-692. |
Zhang X D, Yan L, Zhou W, Wu Q L, Yang B, Ma Y C. Effects of different straw utilization methods on methane emissions from straw returning to paddy field in a rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2021, 40(3): 685-692. (in Chinese with English abstract) | |
[192] | 胡锦辉, 薛利红, 钱聪, 薛利祥, 曹帅. 增氧对不同秸秆还田稻田田面水养分动态及温室气体排放的影响[J]. 环境科学, 2023, 44(4): 2348-2355. |
Hu J H, Xue L H, Qian C, Xue L X, Cao S. Effects of aeration on surface water nutrient dynamics and greenhouse gas emission in different straw returning paddy fields[J]. Environmental Science, 2023, 44(4): 2348-2355. (in Chinese with English abstract) | |
[193] | Song H J, Jin H L, Jeong H C. Effect of straw incorporation on methane emission in rice paddy: Conversion factor and smart straw management[J]. Applied Biological Chemistry, 2020, 62(1): 70-82. |
[194] | Atkinson C J, Fitzgerald J D, Hipps NA. Potential mechanismsforachievingagricultural benefitsfrom biochar applicationtotemperate soils: A review[J]. Plant Soil, 2010, 337: 1-18. |
[195] | 张学智, 王继岩, 张藤丽, 李柏霖, 焉莉. 中国农业系统甲烷排放量评估及低碳措施[J]. 环境科学与技术, 2021, 44(3): 200-208. |
Zhang X Z, Wang J Y, Zhang T L, Li B L, Yan L. Assessment of methane emissions from China’s agricultural system and low carbon measures[J]. Environmental Science & Technology, 2021, 44(3): 200-208. (in Chinese with English abstract) | |
[196] | 江瑜, 朱相成, 钱浩宇, 张楠, 丁艳锋. 水稻丰产与稻田甲烷减排协同的研究展望[J]. 南京农业大学学报, 2022, 45(5): 839-847. |
Jiang Y, Zhu X C, Qian H Y, Zhang N, Ding Y F. Higher rice yields and lower methane emissions can be reconciled for rice cultivation: A review[J]. Journal of Nanjing Agricultural University, 2022, 45(5): 839-847. | |
[197] | 凌瑞瑜, 罗献宝. 广西地区1999—2017年农业活动甲烷排放量估算分析[J]. 南方农业, 2020, 14(12): 150-153. |
Ling R Y, Luo X B. Estimation and analysis of methane emissions from agricultural activities in Guangxi Region from 1999 to 2017[J]. South China Agriculture, 2020, 14(12): 150-153. | |
[198] | 唐海明, 肖小平, 汤文光, 杨光立. 双季稻区冬季覆盖作物残茬还田对稻田甲烷和氧化亚氮排放的影响[J]. 作物学报, 2011, 37(9): 1666-1675. |
Tang H M, Xiao X P, Tang W G, Yang G L. Effects of straw recycling of winter covering crop on methane and nitrous oxide emissions in paddy field[J]. Acta Agronomica Sinica, 2011, 37(9): 1666-1675. (in Chinese with English abstract) | |
[199] | 陈洪儒, 鲁艳红, 廖育林, 王斌, 万运帆, 王开悦, 张志伟, 聂军, 秦晓波. 等养分投入下冬种紫云英比秸秆还田更有效抑制稻田 CH4 的产生和排放[J]. 植物营养与肥料学报, 2022, 28(8): 1376-1387. |
Chen H R, Lu Y H, Liao Y L, Wang B, Wan Y F, Wang K Y, Zhang Z W, Nie J, Qin X B. Chinese milk vetch (Astragalus sinicus L.) is a more effective inhibitor of methane production and emission than straw under equal nutrient condition in paddy field[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1376-1387. (in Chinese with English abstract) | |
[200] | 李帅帅, 张雄智, 刘冰洋, 赵鑫, 张海林. Meta分析湖南省双季稻田甲烷排放影响因素[J]. 农业工程学报, 2019, 35(12): 124-132. |
Li S S, Zhang X Z, Liu B Y, Zhao X, Zhang H L. Influencing factors of CH4 emissions from double cropping paddy fields in Hunan Province, China based on Meta-analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 124-132. (in Chinese with English abstract) | |
[201] | 王天宇, 樊迪, 宋开付, 张广斌, 徐华, 马静. 巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究[J]. 农业环境科学学报, 2021, 40(8): 1829-1838. |
Wang T Y, Fan D, Song K F, Zhang G B, Xu H, Ma J. Reduced methane and nitrous oxide emissions from ratoon rice paddy in Chaohu polder area,China[J]. Journal of Agro-Environment Science, 2021, 40(8): 1829-1838. (in Chinese with English abstract) | |
[202] | 林志敏, 李洲, 翁佩莹, 吴冬青, 邹京南, 庞孜钦, 林文雄. 再生稻田温室气体排放特征及碳足迹[J]. 应用生态学报, 2022, 33(5): 1340-1351. |
Lin Z M, Li Z, Weng P Y, Wu D Q, Zou J N, Pang Z Q, Lin W X. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1340-1351. (in Chinese with English abstract) | |
[203] | 张昆, 陈忠平, 温伟平, 王斌强, 武琳, 王馨悦, 陈国钧, 宗焕青, 黄欠如. 减氮增密对江西双季稻温室气体排放的影响[J]. 江西农业学报, 2021, 33(5): 17-23. |
Zhang K, Chen Z P, Wen W P, Wang B Q, Wu L, Wang X Y, Chen G J, Zong H Q, Huang Q R. Effects of less basal nitrogen and dense planting on greenhouse gas emission of double cropping rice in Jiangxi Province[J]. Acta Agriculturae Jiangxi, 2021, 33(5): 17-23. (in Chinese with English abstract) | |
[204] | 周文涛, 龙文飞, 毛燕, 王勃然, 龙攀, 徐莹, 傅志强. 节水轻简栽培模式下增密减氮对双季稻田温室气体排放的影响[J]. 应用生态学报, 2020, 31(8): 2604-2612. |
Zhou W T, Long W F, Mao Y, Wang B R, Long P, Xu Y, Fu Z Q. Zhi-qiang Effects of increased planting density with reduced nitrogen fertilizer application on greenhouse gas emission in double-season rice fields under water saving and simple cultivation mode[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2604-2612. (in Chinese with English abstract) | |
[205] | 李诗, 张俊辉, 胡钧铭, 等. 等氮替代施入生物炭对南方免耕早稻田温室气体排放的影响[J]. 中国农业气象, 2023, 44(10): 863-875. |
Li S, Zhang J H, Hu J M, Zhou F J, Li T T, Xu M H, Ma J P, Lu Z C. Effect of isonitrogen substitution for biochar application on greenhouse gas emissions from southern no-till early rice fields[J]. Chinese Journal of Agrometeorology, 2023, 44(10): 863-875. (in Chinese with English abstract) | |
[206] | 周兴兵, 蒋鹏, 徐富贤, 张林, 朱永川, 郭晓艺, 刘茂, 陈琳, 熊洪. 冬水田减量施氮对免耕直播杂交稻产量及氮肥利用率的影响[J]. 作物研究, 2021, 35(6): 555-560. |
Zhou X B, Jiang P, Xu F X, Zhang L, Zhu Y C, Guo X Y, Liu M, Chen L, Xiong H. Effects of Reduced Nitrogen Application Rate on grain yield and nitrogen use efficiency of no-tillage direct-seeded hybrid rice in an all-time logged-water paddy field[J]. Crop Research, 2021, 35(6): 555-560. (in Chinese with English abstract) | |
[207] | 胡国辉, 王军可, 王亚梁, 朱德峰, 陈惠哲, 向镜, 张义凯, 张玉屏. 生物可降解膜覆盖对水稻温室气体排放及产量的影响[J]. 生态环境学报, 2020, 29(5): 977-986. |
Hu G H, Wang J K, Wang Y L, Zhu D F, Chen H Z, Xiang J, Zhang Y K, Zhang Y P. Effect of biodegradable film mulching on greenhouse gas emission and yield of rice (Oryza sativa L.)[J]. Ecology and Environmental Sciences, 2020, 29(5): 977-986. (in Chinese with English abstract) | |
[208] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175-181. |
Jiang Y, Guan D H, Zhang W J. The effect of rice plant traits on methane emissions from paddy fields: A review[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 175-181. (in Chinese with English abstract) | |
[209] | 张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53-57. |
Zhang W J, Zhang Y, Deng AX, Zhang J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53-57. (in Chinese with English abstract) | |
[210] | 王斌, 蔡岸冬, 宋春燕, 秦晓波, 刘硕, 李玉娥. 稻田甲烷减排:技术、挑战与策略[J]. 中国农业资源与区划, 2023, 44(10): 10-19. |
Wang B, Cai A D, Song C Y, Qin X B, Liu S, Li Y E. CH4 reduction in rice paddy: technology, challenge and strategy[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(10): 10-19. (in Chinese with English abstract) | |
[211] | 刘燕, 娄运生, 杨蕙琳, 周东雪. 施硅对增温稻田 CH4和 N2O 排放的影响[J]. 生态学报, 2020, 40(18): 6621-6631. |
Liu Y, Lou Y S, Yang H L, Zhou D X. Effects of silicate supply on the emissions of methane and nitrous oxide in paddy field under nighttime warming[J]. Acta Ecologica Sinica, 2020, 40(18): 6621-6631. (in Chinese with English abstract) | |
[212] | 陈佳义, 李君, 娄运生, 张震, 马莉, 李睿. 农田管理对夜间增温稻-麦农田CH4和N2O排放强度的影响[J]. 农业环境科学学报, 2023, 42(5): 1166-1180. |
Chen J Y, Li J, Lou Y S, Zhang Z, Ma L, Li R. Effects of management practices on the emission intensity of CH4 and N2O in a rice-wheat rotated field under nighttime warming[J]. Journal of Agro-Environment Science, 2023, 42(5): 1166-1180. (in Chinese with English abstract) | |
[213] | 曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜. 秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响[J]. 中国水稻科学, 2022, 36(5): 543-550. |
Zeng W J, Qiu L Y, Chen J J, Qian H Y, Zhang N, Ding Y F, Jiang Y. Effect of elevated CO2 concentration on rice growth and CH4 emission from paddy fields under straw incorporation[J]. Chinese Journal of Rice Science, 2022, 36(5): 543-550. (in Chinese with English abstract) | |
[214] | 王永明, 徐永记, 纪洋, 冯彦房. 节水灌溉和控释肥施用耦合措施对单季稻田CH4和N2O排放的影响[J]. 环境科学, 2021, 42(12): 6025-6036. |
Wang Y M, Xu Y J, Ji Y, Feng Y F. Coupling effects of water-saving irrigation and controlled-release fertilizer (CRF) application on CH4 and N2O emission in single cropping paddy field[J]. Environmental Science, 2021, 42(12): 6025-6036. (in Chinese with English abstract) | |
[215] | Gao S J, Li S, Zhou G P, Cao W D. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. Journal of Integrative Agriculture, 2023, 22(7): 2233-2247. |
[1] | 周子榆, 王孟佳, 冯向前, 覃金华, 王爱冬, 马横宇, 褚光, 刘元辉, 徐春梅, 章秀福, 王丹英, 郑希, 陈松. 轮作模式和氮肥处理对稻田土壤有机碳储量及其结构的影响[J]. 中国水稻科学, 2024, 38(5): 577-590. |
[2] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[3] | 唐志伟, 朱相成, 张俊, 邓艾兴, 张卫建. 水分调控下绿肥种植和石灰施用对双季稻稻米镉含量的影响[J]. 中国水稻科学, 2024, 38(2): 211-222. |
[4] | 马晓慧, 邢亚楠, 郭莉, 刘郁, 车喜庆, 桑海旭. 辽宁盘锦地区稻飞虱天敌螯蜂种群动态研究[J]. 中国水稻科学, 2024, 38(1): 99-105. |
[5] | 曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜. 秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响[J]. 中国水稻科学, 2022, 36(5): 543-550. |
[6] | 王梦杰, 吴俊男, 刘耀斌, 徐春春, 冯金飞, 李凤博, 方福平. 饲料蛋白含量对稻-黄颡鱼共作模式气态氮排放、黄颡鱼生长和氮利用率的影响[J]. 中国水稻科学, 2022, 36(4): 428-438. |
[7] | 余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1): 1-12. |
[8] | 陈国奇, 唐伟, 李俊, 陆永良, 董立尧. 我国水稻田稗属杂草种类分布特点:以9个省级行政区73个样点调查数据为例[J]. 中国水稻科学, 2019, 33(4): 368-376. |
[9] | 张文学, 杨成春, 王少先, 孙刚, 刘增兵, 李祖章, 刘光荣. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31(4): 417-424. |
[10] | 朱平阳, 郑许松, 张发成, 徐红星, 姚晓明, 杨亚军, 陈桂华, 吕仲贤. 应用生态工程技术控制水稻害虫对水生昆虫数量的影响[J]. 中国水稻科学, 2017, 31(2): 207-215. |
[11] | 商庆银, 杨秀霞, 成臣, 罗亢, 黄山, 石庆华, 潘晓华, 曾勇军. 秸秆还田条件下不同水分管理对双季稻田综合温室效应的影响[J]. 中国水稻科学, 2015, 29(2): 181-190. |
[12] | 董春华1,2,3 ,曾闹华3 ,高菊生2,3,*,刘强1,* ,徐明岗3 ,文石林2,3 . 长期不同施肥模式下红壤性稻田水稻产量及有机碳含量变化特征[J]. 中国水稻科学, 2014, 28(2): 193-198. |
[13] | 马殿荣*,孔德秀,高齐,徐凡,赵明辉,唐亮,徐正进,陈温福*. 杂草稻对东北移栽稻群体生长环境及产量的影响[J]. 中国水稻科学, 2014, 28(2): 211-216. |
[14] | 王丽丽1 ,闫晓君1 ,江瑜1 ,田云录3 ,邓艾兴2 ,张卫建1,2,*. 超级稻宁粳1号与常规粳稻CH4排放特征的比较分析[J]. 中国水稻科学, 2013, 27(4): 413-418. |
[15] | 周胜1,宋祥甫1,* ,颜晓元2. 水稻低碳生产研究进展[J]. 中国水稻科学, 2013, 27(2): 213-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||