中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 437-446.DOI: 10.16819/j.1001-7216.2024.230805
胡继杰1,2, 胡志华3, 张均华1, 曹小闯1, 金千瑜1, 章志远2, 朱练峰1,*()
收稿日期:
2023-08-15
修回日期:
2024-03-20
出版日期:
2024-07-10
发布日期:
2024-07-12
通讯作者:
*email: zlfnj@163.com
基金资助:
HU Jijie1,2, HU Zhihua3, ZHANG Junhua1, CAO Xiaochuang1, JIN Qianyu1, ZHANG Zhiyuan2, ZHU Lianfeng1,*()
Received:
2023-08-15
Revised:
2024-03-20
Online:
2024-07-10
Published:
2024-07-12
Contact:
*email: zlfnj@163.com
摘要:
【目的】 研究分蘖期根际饱和溶解氧对水稻光合及叶绿素荧光参数的调节作用,对提高水稻光能利用效率和优化水稻氧营养栽培理论具有重要意义。【方法】 通过水培试验,以水稻、深水稻和旱稻3种生态类型水稻品种为试验材料,设置根际饱和溶解氧(RSDO)和自然生长(CK)2种处理,分别测定水稻分蘖期叶绿素荧光参数、光合特性和干物质积累量等指标。【结果】 根际饱和溶解氧条件下,水稻和深水稻叶片光响应曲线下降,且在光强高于500 μmol/(m2·s)时,与对照的光响应曲线差距变大。光响应曲线拟合结果表明,根际饱和溶解氧会降低水稻叶片最大净光合速率、表观量子效率(Q)、暗呼吸速率(Rd)和光补偿点(LCP)。3个水稻品种在根际饱和溶解氧环境中光下最大光化学效率(Fv'/Fm')、实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和光化学猝灭系数(qP)均低于对照,非光化学猝灭(NPQ)和1-qP高于对照。根际饱和溶解氧能提高水稻夜间呼吸速率(Rn)和胞间CO2浓度(Ci)。3个水稻品种叶片叶绿素a、叶绿素b以及总叶绿素含量均表现为RSDO<CK,类胡萝卜素和相对电导率表现为RSDO>CK。根际饱和溶解氧显著降低水稻和深水稻的地上部干物质量与叶面积指数,分别较对照下降12.6%、9.4%和9.2%、6.6%,旱稻品种处理间无显著差异。【结论】 分蘖期根际饱和溶解氧抑制了水稻叶片光合色素合成,降低了叶片PSⅡ性能和光能利用效率,不利于水稻早期生长;相较于水稻和深水稻,旱稻对根际饱和溶解氧有更好的适应性。
胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446.
HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage[J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446.
图1 不同溶解氧浓度动态 CK: 对照; RSDO: 根际饱和溶解氧。下同。
Fig. 1. Dynamics of different dissolved oxygen concentrations CK, Control; RSDO, Rhizosphere saturated dissolved oxygen. The same below.
图2 根际饱和溶解氧对水稻叶片光响应曲线的影响
Fig. 2. Effects of rhizosphere saturated dissolved oxygen on rice leaf photosynthetic light response curves Pn, Net photosynthetic rate; PPFD, Photosynthetic photon-quanta flux density.
品种 Variety | 处理 Treatment | 最大净光合速率Pnmax [μmol/(m2·s)] | 表观量子效率 Q (mol/mol) | 光补偿点 LCP [μmol/(m2·s)] | 光饱和点 LSP [μmol/(m2·s)] | 暗呼吸速率 Rd [μmol/(m2·s)] | 曲线曲角 k | R2 |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 26.9±0.7 bc | 0.050±0.001 bc | 30.0±2.0 a | 1676±45 b | 1.68±0.08 a | 0.80±0.02 a | 0.998 |
RSDO | 25.6±0.2 c | 0.047±0.002 c | 29.3±2.3 a | 1723±77 b | 1.51±0.08 a | 0.77±0.02 a | 0.999 | |
IR45765-3B | CK | 28.6±2.4 ab | 0.056±0.003 a | 22.7±2.3 b | 2164±295 a | 1.46±0.13 a | 0.60±0.08 a | 0.997 |
RSDO | 25.6±2.0 c | 0.046±0.005 c | 20.0±6.9 bc | 2413±306 a | 1.05±0.20 b | 0.58±0.24 a | 0.999 | |
中旱221 Zhonghan 221 | CK | 30.8±0.9 a | 0.055±0.001 ab | 17.3±2.3 bc | 2175±313 a | 1.07±0.13 b | 0.65±0.11 a | 0.998 |
RSDO | 30.1±0.6 a | 0.054±0.001 ab | 14.7±2.3 c | 2025±219 ab | 0.87±0.12 b | 0.71±0.08 a | 0.999 |
表1 光响应曲线拟合光合参数
Table 1. Related photosynthesis parameters of light response curve
品种 Variety | 处理 Treatment | 最大净光合速率Pnmax [μmol/(m2·s)] | 表观量子效率 Q (mol/mol) | 光补偿点 LCP [μmol/(m2·s)] | 光饱和点 LSP [μmol/(m2·s)] | 暗呼吸速率 Rd [μmol/(m2·s)] | 曲线曲角 k | R2 |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 26.9±0.7 bc | 0.050±0.001 bc | 30.0±2.0 a | 1676±45 b | 1.68±0.08 a | 0.80±0.02 a | 0.998 |
RSDO | 25.6±0.2 c | 0.047±0.002 c | 29.3±2.3 a | 1723±77 b | 1.51±0.08 a | 0.77±0.02 a | 0.999 | |
IR45765-3B | CK | 28.6±2.4 ab | 0.056±0.003 a | 22.7±2.3 b | 2164±295 a | 1.46±0.13 a | 0.60±0.08 a | 0.997 |
RSDO | 25.6±2.0 c | 0.046±0.005 c | 20.0±6.9 bc | 2413±306 a | 1.05±0.20 b | 0.58±0.24 a | 0.999 | |
中旱221 Zhonghan 221 | CK | 30.8±0.9 a | 0.055±0.001 ab | 17.3±2.3 bc | 2175±313 a | 1.07±0.13 b | 0.65±0.11 a | 0.998 |
RSDO | 30.1±0.6 a | 0.054±0.001 ab | 14.7±2.3 c | 2025±219 ab | 0.87±0.12 b | 0.71±0.08 a | 0.999 |
品种 Variety | 处理 Treatment | 最大光化学 效率 Fv/Fm | 光下最大光化学 效率 Fv'/Fm' | 实际光化学 效率 ΦPSII | 电子传递 速率 ETR | 非光化学 猝灭 NPQ | 光化学猝灭 系数 qP | 1−qP |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.775±0.012 a | 0.709±0.012 a | 0.655±0.031 ab | 330.3±15.8 ab | 0.386±0.045 b | 0.924±0.034 ab | 0.076±0.034 ab |
RSDO | 0.779±0.003 a | 0.709±0.011 a | 0.637±0.010 ab | 321.2±4.9 ab | 0.405±0.043 ab | 0.899±0.022 b | 0.101±0.022 a | |
IR45765-3B | CK | 0.721±0.012 c | 0.705±0.020 a | 0.664±0.042 a | 334.5±21.0 a | 0.239±0.071 c | 0.941±0.037 ab | 0.059±0.037 ab |
RSDO | 0.735±0.014 b | 0.667±0.020 b | 0.611±0.044 b | 308.2±22.4 b | 0.434±0.110 ab | 0.916±0.047 ab | 0.084±0.047 ab | |
中旱221 Zhonghan 221 | CK | 0.771±0.011 a | 0.669±0.022 b | 0.635±0.026 ab | 320.3±13.0 ab | 0.480±0.103 ab | 0.949±0.025 a | 0.051±0.025 b |
RSDO | 0.773±0.003 a | 0.662±0.025 b | 0.611±0.038 b | 308.0±19.3 b | 0.512±0.089 a | 0.922±0.029 ab | 0.078±0.029 ab |
表2 根际饱和溶解氧对叶绿素荧光参数的影响
Table 2. Effects of rhizosphere saturated dissolved oxygen on chlorophyll fluorescence parameters
品种 Variety | 处理 Treatment | 最大光化学 效率 Fv/Fm | 光下最大光化学 效率 Fv'/Fm' | 实际光化学 效率 ΦPSII | 电子传递 速率 ETR | 非光化学 猝灭 NPQ | 光化学猝灭 系数 qP | 1−qP |
---|---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.775±0.012 a | 0.709±0.012 a | 0.655±0.031 ab | 330.3±15.8 ab | 0.386±0.045 b | 0.924±0.034 ab | 0.076±0.034 ab |
RSDO | 0.779±0.003 a | 0.709±0.011 a | 0.637±0.010 ab | 321.2±4.9 ab | 0.405±0.043 ab | 0.899±0.022 b | 0.101±0.022 a | |
IR45765-3B | CK | 0.721±0.012 c | 0.705±0.020 a | 0.664±0.042 a | 334.5±21.0 a | 0.239±0.071 c | 0.941±0.037 ab | 0.059±0.037 ab |
RSDO | 0.735±0.014 b | 0.667±0.020 b | 0.611±0.044 b | 308.2±22.4 b | 0.434±0.110 ab | 0.916±0.047 ab | 0.084±0.047 ab | |
中旱221 Zhonghan 221 | CK | 0.771±0.011 a | 0.669±0.022 b | 0.635±0.026 ab | 320.3±13.0 ab | 0.480±0.103 ab | 0.949±0.025 a | 0.051±0.025 b |
RSDO | 0.773±0.003 a | 0.662±0.025 b | 0.611±0.038 b | 308.0±19.3 b | 0.512±0.089 a | 0.922±0.029 ab | 0.078±0.029 ab |
品种 Variety | 处理 Treatment | 呼吸速率Rn (μmol·m−2s−1) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (mmol·m−2s−1) | 气孔导度Gs (mol·m−2s−1) | 水分利用率WUE (μmol/mmol) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 1.07±0.15 b | 423.2±7.6 bc | 0.89±0.24 ab | 0.06±0.02 a | 1.24±0.29 bc |
RSDO | 1.33±0.15 a | 430.4±8.1 ab | 0.89±0.09 ab | 0.06±0.01 a | 1.52±0.34 ab | |
IR45765-3B | CK | 0.74±0.12 c | 409.3±1.7 c | 0.96±0.13 a | 0.06±0.01 a | 0.77±0.07 c |
RSDO | 1.08±0.15 b | 437.9±3.1 ab | 0.59±0.10 b | 0.05±0.01 a | 1.84±0.14 ab | |
中旱221 Zhonghan 221 | CK | 1.29±0.06 ab | 432.1±7.8 ab | 0.64±0.18 ab | 0.05±0.01 a | 2.11±0.60 a |
RSDO | 1.36±0.05 a | 440.7±13.8 a | 0.92±0.19 a | 0.04±0.01 a | 1.52±0.25 ab |
表3 根际饱和溶解氧对水稻叶片夜间呼吸速率的影响
Table 3. Effects of rhizosphere saturated dissolved oxygen on respiration rate of rice leaves at night
品种 Variety | 处理 Treatment | 呼吸速率Rn (μmol·m−2s−1) | 胞间CO2浓度Ci (μmol/mol) | 蒸腾速率Tr (mmol·m−2s−1) | 气孔导度Gs (mol·m−2s−1) | 水分利用率WUE (μmol/mmol) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 1.07±0.15 b | 423.2±7.6 bc | 0.89±0.24 ab | 0.06±0.02 a | 1.24±0.29 bc |
RSDO | 1.33±0.15 a | 430.4±8.1 ab | 0.89±0.09 ab | 0.06±0.01 a | 1.52±0.34 ab | |
IR45765-3B | CK | 0.74±0.12 c | 409.3±1.7 c | 0.96±0.13 a | 0.06±0.01 a | 0.77±0.07 c |
RSDO | 1.08±0.15 b | 437.9±3.1 ab | 0.59±0.10 b | 0.05±0.01 a | 1.84±0.14 ab | |
中旱221 Zhonghan 221 | CK | 1.29±0.06 ab | 432.1±7.8 ab | 0.64±0.18 ab | 0.05±0.01 a | 2.11±0.60 a |
RSDO | 1.36±0.05 a | 440.7±13.8 a | 0.92±0.19 a | 0.04±0.01 a | 1.52±0.25 ab |
品种 Variety | 处理 Treatment | 叶绿素a Chl a(mg/g) | 叶绿素b Chl b(mg/g) | 总叶绿素 Chl a+Chl b(mg/g) | 叶绿素a/叶绿素b Chl a/Chl b | 类胡萝卜素Carotenoid(mg/g) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 2.76±0.07 a | 1.73±0.05 b | 4.49±0.12 b | 1.60±0.02 d | 0.33±0.01 b |
RSDO | 2.58±0.08 c | 1.26±0.08 d | 3.84±0.16 d | 2.05±0.07 b | 0.39±0.01 a | |
IR45765-3B | CK | 2.65±0.03 bc | 1.46±0.04 c | 4.11±0.01 c | 1.81±0.07 c | 0.36±0.02 ab |
RSDO | 2.37±0.03 d | 1.06±0.02 e | 3.43±0.04 e | 2.23±0.04 a | 0.39±0.01 a | |
中旱221 Zhonghan 221 | CK | 2.83±0.05 a | 1.85±0.08 a | 4.68±0.09 a | 1.53±0.08 d | 0.32±0.04 b |
RSDO | 2.75±0.07 ab | 1.72±0.07 b | 4.47±0.03 b | 1.60±0.11 d | 0.33±0.04 b |
表4 根际饱和溶解氧对水稻叶片光合色素含量的影响
Table 4. Effects of rhizosphere saturated dissolved oxygen on photosynthetic pigment contents in rice leaves
品种 Variety | 处理 Treatment | 叶绿素a Chl a(mg/g) | 叶绿素b Chl b(mg/g) | 总叶绿素 Chl a+Chl b(mg/g) | 叶绿素a/叶绿素b Chl a/Chl b | 类胡萝卜素Carotenoid(mg/g) |
---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 2.76±0.07 a | 1.73±0.05 b | 4.49±0.12 b | 1.60±0.02 d | 0.33±0.01 b |
RSDO | 2.58±0.08 c | 1.26±0.08 d | 3.84±0.16 d | 2.05±0.07 b | 0.39±0.01 a | |
IR45765-3B | CK | 2.65±0.03 bc | 1.46±0.04 c | 4.11±0.01 c | 1.81±0.07 c | 0.36±0.02 ab |
RSDO | 2.37±0.03 d | 1.06±0.02 e | 3.43±0.04 e | 2.23±0.04 a | 0.39±0.01 a | |
中旱221 Zhonghan 221 | CK | 2.83±0.05 a | 1.85±0.08 a | 4.68±0.09 a | 1.53±0.08 d | 0.32±0.04 b |
RSDO | 2.75±0.07 ab | 1.72±0.07 b | 4.47±0.03 b | 1.60±0.11 d | 0.33±0.04 b |
图3 根际饱和溶解氧对水稻叶片相对电导率的影响 方柱上方相同小写字母表示处理间在0.05水平差异不显著。
Fig. 3. Effects of rhizosphere saturated dissolved oxygen on relative conductivity of rice leaves Common lowercase letters above the bars indicate no significant difference among treatments at the 0.05 level.
品种 Variety | 处理 Treatment | 根Root (g/plant) | 茎Stem (g/plant) | 叶Leaf (g/plant) | 地上部Shoot (g/plant) | 根冠比 Root/shoot ratio | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.97±0.06 a | 2.44±0.14 a | 2.27±0.13 a | 4.71±0.25 a | 0.206±0.006 a | 3.71±0.14 a |
RSDO | 0.79±0.09 bc | 2.06±0.31 b | 2.06±0.11 bc | 4.12±0.32 b | 0.192±0.009 ab | 3.36±0.17 bc | |
IR45765-3B | CK | 0.85±0.07 b | 2.37±0.30 ab | 2.21±0.09 ab | 4.58±0.26 a | 0.186±0.019 ab | 3.47±0.13 b |
RSDO | 0.74±0.05 bc | 2.15±0.05 ab | 2.01±0.08 cd | 4.15±0.07 b | 0.17±0.0149 b | 3.24±0.09 c | |
中旱221 Zhonghan 221 | CK | 0.70±0.06 cd | 1.99±0.10 b | 1.85±0.09 de | 3.84±0.18 b | 0.18±0.0082 b | 2.59±0.06 d |
RSDO | 0.65±0.03 d | 2.00±0.29 b | 1.74±0.08 e | 3.75±0.31 b | 0.17±0.004 b | 2.58±0.08 d |
表5 根际饱和溶解氧对水稻干物质积累量的影响
Table 5. Effects of rhizosphere saturated dissolved oxygen on the dry matter weight of rice
品种 Variety | 处理 Treatment | 根Root (g/plant) | 茎Stem (g/plant) | 叶Leaf (g/plant) | 地上部Shoot (g/plant) | 根冠比 Root/shoot ratio | 叶面积指数 Leaf area index |
---|---|---|---|---|---|---|---|
中浙优1号 Zhongzheyou 1 | CK | 0.97±0.06 a | 2.44±0.14 a | 2.27±0.13 a | 4.71±0.25 a | 0.206±0.006 a | 3.71±0.14 a |
RSDO | 0.79±0.09 bc | 2.06±0.31 b | 2.06±0.11 bc | 4.12±0.32 b | 0.192±0.009 ab | 3.36±0.17 bc | |
IR45765-3B | CK | 0.85±0.07 b | 2.37±0.30 ab | 2.21±0.09 ab | 4.58±0.26 a | 0.186±0.019 ab | 3.47±0.13 b |
RSDO | 0.74±0.05 bc | 2.15±0.05 ab | 2.01±0.08 cd | 4.15±0.07 b | 0.17±0.0149 b | 3.24±0.09 c | |
中旱221 Zhonghan 221 | CK | 0.70±0.06 cd | 1.99±0.10 b | 1.85±0.09 de | 3.84±0.18 b | 0.18±0.0082 b | 2.59±0.06 d |
RSDO | 0.65±0.03 d | 2.00±0.29 b | 1.74±0.08 e | 3.75±0.31 b | 0.17±0.004 b | 2.58±0.08 d |
图4 不同溶解氧浓度下水稻农艺性状与光合特性的相关性分析 DOr: 溶解氧浓度; LAI: 叶面积指数; DMS: 地上部干物质量; Chl: 叶绿素含量; Rn: 夜间呼吸速率; Fv′/Fm′: 光下最大光化学效率; ΦPSII: 实际光化学效率; NPQ: 非光化学猝灭; Pnmax: 最大净光合速率; *和**分别表示在0.05和0.01水平上显著。
Fig. 4. Correlation analysis between agronomic traits and photosynthetic characteristics of rice at two dissolved oxygen concentrations DOr, Dissolved oxygen concentration; LAI, Leaf area index; DMS, Dry matter of shoot; Chl, Chlorophyll content; Rn, Nighttime respiration rate; Fv′/Fm′, Maximal photochemical efficiency; ΦPSII, Actual photochemical efficiency; NPQ, Non-photochemical quenching; Pnmax, Maximum net photosynthetic rate; * and ** indicate significant difference at 0.05 and 0.01 level respectively.
[1] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. |
National Bureau of Statistics. China Statistical Yearbook[M]. Bejing: China Statistics Press, 2019. (in Chinese) | |
[2] | 柴娟娟, 廖敏, 徐培智, 解开治, 徐昌绪, 刘光荣, 杨生茂. 我国主要低产水稻冷浸田养分障碍因子特征分析[J]. 水土保持学报, 2012, 26(2): 284-288. |
Chai J J, Liao M, Xu P Z, Xie K Z, Xu C X, Liu G R, Yang S M. Feature analysis on nutrient’s restrictive factors of major low productive waterlogged paddy soil in China[J]. Journal of Soil and Water Conservation, 2012, 26(2): 284-288. (in Chinese with English abstract) | |
[3] | Liu Y X, Lu H H, Yang S M, Wang Y F. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161-167. |
[4] | Yamauchi T, Shimamura S, Nakazono M, Mochizuki T. Aerenchyma formation in crop species: A review[J]. Field Crops Research, 2013, 152(10): 8-16. |
[5] | Perata P, Armstrong W, Voesenek L A C J. Plants and flooding stress[J]. New Phytologist, 2011, 190(2): 269-273. |
[6] | Limami A M, Diab H, Lothier J. Nitrogen metabolism in plants under low oxygen stress[J]. Planta, 2014, 239(3): 531-541. |
[7] | Panda D, Barik J. Flooding Tolerance in rice: Focus on mechanisms and approaches[J]. Rice Science, 2021, 28(1): 43-57. |
[8] | Yamauchi M, Chuong P V. Rice seedling establishment as affected by cultivar, seed coating with calcium peroxide, sowing depth, and water level[J]. Field Crops Research, 1995, 41(2): 123-134. |
[9] | 胡志华, 朱练峰, 林育炯, 张均华, 胡继杰, 禹盛苗, 曹小闯, 金千瑜. 根部增氧模式对水稻产量与氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1503-1512. |
Hu Z H, Zhu L F, Lin Y J, Zhang J H, Hu J J, Yu S M, Cao X C, Jin Q Y. Effect of root aeration methods on rice yield and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1503-1512. (in Chinese with English abstract) | |
[10] | 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征[J]. 作物学报, 2010, 36(2): 303-312. |
Zhao F, Wang D Y, Xu C M, Zhang W J, Li F B, Mao H J, Zhang X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere[J]. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese with English abstract) | |
[11] | Zhu L F, Yu S M, Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice[J]. Rice Science, 2012, 19(1): 44-48. |
[12] | 徐春梅, 谢涛, 王丹英, 陈松, 计成林, 章秀福, 石庆华. 根际氧浓度对水稻分蘖期养分吸收和根系形态的影响[J]. 中国水稻科学, 2015, 29(6): 619-627. |
Xu C M, Xie T, Wang D Y, Chen S, Ji C L, Zhang X F, Shi Q H. Effects of rhizosphere oxygen concentration on nutrient uptake and root morphology of rice at tillering stage[J]. Chinese Journal of Rice Science, 2015, 29(6): 619-627. (in Chinese with English abstract) | |
[13] | 周晚来, 易永健, 屠乃美, 谭志坚, 汪洪鹰, 杨媛茹, 王朝云, 易镇邪. 根际增氧对水稻根系形态和生理影响的研究进展[J]. 中国生态农业学报, 2018, 26(3): 367-376. |
Zhou W L, Yi Y J, Tu N M, Tan Z J, Wang H Y, Yang N R, Wang C Y, Yi Z X. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367-376. (in Chinese with English abstract) | |
[14] | Kronzucker H J, Siddiqi M Y, Glass A D M, Kirk G J D,. Effects of hypoxia on 13NH4+ fluxes in rice roots. Kinetics and compartmental analysis[J]. Plant Physiology, 1998, 116(2): 581-587. |
[15] | 赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J]. 作物学报, 2012, 38(2): 344-351. |
Zhao F, Zhang W J, Zhang X F, Wang D Y, Xu C M. Effect of continuous aeration on growth and activity of enzymes related to nitrogen metabolism of different rice genotypes at tillering stage[J]. Acta Agronomica sinica, 2012, 38(2): 344-351. (in Chinese with English abstract) | |
[16] | 胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜. 根际氧浓度对水稻产量及其氮素利用的影响[J]. 中国水稻科学, 2015, 29(4): 382-389. |
Hu Z H, Zhu L F, Lin Y J, Hu J J, Zhang J H, Jin Q Y. Effects of rhizosphere oxygen concentration on rice grain yield and nitrogen utilization[J]. Chinese Journal of Rice Science, 2015, 29(4): 382-389. (in Chinese with English abstract) | |
[17] | Farquhar G D, Caemmerers S, Berry A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90. |
[18] | 叶子飘, 于强. 光合作用光响应模型的比较[J], 植物生态学报, 2008, 32(6): 1356-1361. |
Ye Z P, Yu Q. Comparison of new and several classical models of photosynthesis in response to irradiance[J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1356-1361. (in Chinese with English abstract) | |
[19] | 彭丽丽, 姜卫兵, 韩健, 王明玉, 张斌斌, 马瑞娟. 不同呈色早熟桃叶片夜间呼吸速率的影响因素[J]. 江苏农业学报, 2013, 29(5): 1131-1135. |
Peng L L, Jiang W B, Han J, Wang M Y, Zhang B B, Ma R J. Factors affecting night respiration of early-maturing peach leaf coloring differently[J]. Jiangsu Journal of Agricultural Sciences, 2013, 29(5): 1131-1135. (in Chinese with English abstract) | |
[20] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
Li H S. The Experiment Principle and Technique on Plant Physiology and Biochemistry[M]. Beijing: Higher Education Press, 2000. (in Chinese). | |
[21] | Xu C M, Chen L P, Chen S, Chu G, Wang D Y, Zhang X F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice[J]. Annals of Applied Biology, 2020, 177(1): 61-73. |
[22] | 赵霞, 徐春梅, 王丹英, 陈松, 陶龙兴, 章秀福. 根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响[J]. 中国农业科学, 2015, 48(18): 3733-3742. |
Zhao X, Xu C M, Wang D Y, Chen S, Tao L X, Zhang X F. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage[J]. Scientia Agricultura Sinica, 2015, 48(18): 3733-3742. (in Chinese with English abstract) | |
[23] | Stirbet A, Lazár D, Kromdijk J, Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses[J]? Photosynthetica, 2018, 56(1): 86-104. |
[24] | 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. |
Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism[J]. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese with English abstract) | |
[25] | Sun C X, Gao X X, Fu J Q, Zhou J H, Wu X F. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress[J]. Plant and Soil, 2015, 388(1-2): 99-117. |
[26] | Cal A J, Sanciangco M, Rebolledo M C, Luquet D, Torres R O, McNally K L, Henry A. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought[J]. Plant, Cell and Environment, 2019, 42(5): 1532-1544. |
[27] | 郑小兰, 侯亚兵, 王瑞娇, 赵群法, 王媛媛, 孙治强. 根际氧浓度对番茄幼苗生长发育的影响[J]. 华北农学报, 2017, 32(4): 208-214. |
Zheng X L, Hou Y B, Wang R J, Zhao Q F, Wang Y Y, Sun Z Q. Effects of oxygen concentration in rhizosphere on the growth of tomato seedings[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(4): 208-214. (in Chinese with English abstract) | |
[28] | 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响[J]. 中国农业科学, 2021, 54(7): 1525-1536. |
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C, Liu S K, Jin Q Y, Zhu L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice[J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese with English abstract) | |
[29] | Liu J, Hasanuzzaman M, Sun H Z, Zhang J, Peng T, Sun H W, Xin Z Y, Zhao Q Z. Comparative morphological and transcriptomic responses of lowland and upland rice to root-zone hypoxia[J]. Environmental and Experimental Botany, 2019, 169: 103916. |
[30] | Cheng X Y, Wang M, Zhang C F, Wang S Q, Chen Z H. Relationships between plant photosynthesis, radial oxygen loss and nutrient removal in constructed wetland microcosms[J]. Biochemical Systematics and Ecology, 2014, 54: 299-306. |
[31] | Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water Rice(Oryza sativa L.)[J]. Annals of Botany, 2003, 91(2): 301-309. |
[32] | Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3): 235-246. |
[33] | 杨虎, 戈长水, 应武, 杨京平, 李金文, 何俊俊. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3): 580-587. |
Yang H, Ge C S, Ying W, Yang J P, Li J W, He J J. Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 580-587. (in Chinese with English abstract) | |
[34] | Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, RÖdenbeck C, Arain M A, Baldocchi D, Bonan G B, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson K W, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward F I, Papale D. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838. |
[35] | Thakur A K, Mandal K G, Mohanty R K, Ambast S K. Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management[J]. Agricultural Water Management, 2018, 206: 67-77. |
[36] | Yamane K, Kawasaki M, Taniguchi M, Miyake H. Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity[J]. Plant Production Science, 2008, 11(1): 139-145. |
[37] | 乔媛, 殷红, 李虎, 杨振兴, 高敏. 增强UV-B辐射对水稻叶绿素荧光特性的影响[J]. 华北农学报, 2014, 29(2): 146-151. |
Qiao Y, Yin H, Li H, Yang Z X, Gao M. Influence of enhanced UV-B radiation on chlorophyll fluorescence characteristics of rice[J]. Acta Agriculturae Boreali-Sinica, 2014, 29(2): 146-151. (in Chinese with English abstract) | |
[38] | Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, Lukasik I, Goltsev V, Ladle R J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38: 102. |
[39] | 褚润, 陈年来. UV-B辐射增强对芦苇叶绿素荧光参数的影响[J]. 环境科学学报, 2018, 38(8): 3375-3382. |
Chu R, Chen N L. Effects of enhanced UV-B radiation on chlorophyll fluorescence characteristics of Phragmites australis[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3375-3382. (in Chinese with English abstract) | |
[40] | Pompeiano A, Landi M, Meloni G, Vita F, Guglielminetti L, Guidi L. Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. in responses to salinity stress[J]. Plant Biosystems, 2017, 151: 613-622. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[7] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[8] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[13] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[14] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[15] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||