中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 409-421.DOI: 10.16819/j.1001-7216.2024.240307
候小琴1,2,#, 王莹3,#, 余贝1,4,#, 符卫蒙1, 奉保华1, 沈煜潮2, 谢杭军1, 王焕然1,4, 许用强1, 武志海4, 王建军2, 陶龙兴1, 符冠富1,4,*()
收稿日期:
2024-03-11
修回日期:
2024-05-13
出版日期:
2024-07-10
发布日期:
2024-07-11
通讯作者:
*email: fuguanfu@caas.cn
作者简介:
#共同第一作者
基金资助:
HOU Xiaoqin1,2,#, WANG Ying3,#, YU Bei1,4,#, FU Weimeng1, FENG Baohua1, SHEN Yichao2, XIE Hangjun1, WANG Huanran1,4, XU Yongqiang1, WU Zhihai4, WANG Jianjun2, TAO Longxing1, FU Guanfu1,4,*()
Received:
2024-03-11
Revised:
2024-05-13
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: fuguanfu@caas.cn
About author:
#These authors contributed equally to this work
摘要: 【目的】盐胁迫是限制水稻等作物产量品质形成的重要环境因子之一,研发能提高水稻耐盐性风险栽培技术有助于保障我国粮食安全。【方法】以日本晴为材料,于水稻秧苗期进行盐胁迫处理,外源喷施适合浓度的黄腐酸钾(Potassium fulvic acid, PFA),并取样测定干物质量、光合作用、碳水化合物含量、能量物质、钠钾离子浓度及抗氧酶活性等生理指标。【结果】常规种植条件下,黄腐酸钾对水稻秧苗生长发育影响较小,其株高和干物质量与清水(H2O)处理之间的差异未达显著水平,但盐胁迫处理后黄腐酸钾明显提高了水稻秧苗的干物质量和株高。盐胁迫下,黄腐酸钾显著增强水稻秧苗叶片POD和APX活性,降低其相对电导率、过氧化氢及丙二醛含量;另外,黄腐酸钾处理能减轻盐胁迫对叶绿素含量、实际光量子效率、相对电子传递速率和净光合速率的抑制。黄腐酸钾对碳水化合物含量的影响较小,但能减轻盐胁迫对能量代谢的抑制,表现为盐胁迫后水稻叶片非结构性碳水化合物处理间的差异不明显,但黄腐酸钾处理的叶片ATP含量、能荷值以及ATPase活性均显著高于清水处理。相应地,盐胁迫下黄腐酸钾处理的水稻秧苗叶片、茎及根的钠离子浓度显著下降,钾离子浓度则显著上升。【结论】黄腐酸钾可一定程度上提高水稻叶片光合作用,促进ATP的产生及利用,增强抗氧化能力,维持较高的钾离子浓度以及较低的活性氧、钠离子浓度,进而减轻盐胁迫对水稻秧苗的伤害。研究结果可为水稻秧苗耐盐性栽培技术及化学调控物质的研发提供技术及理论支撑。
候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421.
HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings[J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421.
图1 盐胁迫下黄腐酸钾对水稻植株形态的影响 H2O: 清水处理;PFA: 黄腐酸钾处理。相同小写字母者表示在0.05水平上差异不显著。下同。
Fig. 1. Effect of PFV on plant morphology of rice seedlings under salt stress H2O,Distilled water;PFA,Potassium fulvic acid. The same lowercase letters above the bars represent no significant difference at 0.05 leve1. The same below.
图9 黄腐酸钾影响水稻秧苗耐盐性作用途径模式图 H2O: 蒸馏水处理;PFV: 黄腐酸钾处理;PN: 净光合速率;TAC: 总抗氧化能力; ROS: 活性氧。盐胁迫下,水稻秧苗叶片光合作用受阻,能量代谢紊乱,抗氧化能力下降,致使ROS及Na+浓度大幅度增加,进而干扰水稻秧苗生长发育过程,严重者甚至死亡。外源喷施黄腐酸钾能减缓盐胁迫对光合作用的抑制,改善能量代谢及利用,增强抗氧化能力,维持ROS及Na+/K+的平衡,提高水稻秧苗对盐胁迫耐受性。
Fig. 9. Descriptive model of potassium fulvic acid (PFA) conferring salt tolerance in rice seedlings H2O, Distilled water; PFV, Potassium fulvic acid; PN,Net photosynthetic rate; TAC, Total antioxidant capacity; ROS, Reactive oxygen. Salt stress significantly decreases photosynthesis, disturb energy metabolism, and thus impair the antioxidant capacity, leading to the excess accumulation of ROS and Na+ in rice, which could hamper the plant growth and development, and even result in death. Under such conditions, potassium fulvic acid could improve photosynthesis and energy status, enhance the antioxidant capacity to maintain ROS and Na+/K+ homeostasis, and thus increase the salt tolerance of rice seedlings.
[1] | 余贝, 武志海, 符冠富. 盐胁迫影响水稻生理特性及其调控机理研究进展[J]. 作物研究, 2023, 37(2): 189-198. |
Yu B, Wu Z H, Fu G F. Advanced on salt stress affecting rice plants growth development and its regulating mechanisms[J]. Crop Research, 2023, 37(2): 189-198. (in Chinese with English abstract) | |
[2] | Hernández J A. Salinity tolerance in plants: Trends and perspectives[J]. International Journal of Molecular Science, 2019, 20(10): 2408. |
[3] | Melino V, Tester M. Salt-tolerant crops: Time to deliver[J]. Annual Review of Plant Biology, 2023, 74: 671-696. |
[4] | 黄洁, 白志刚, 钟楚, 金千瑜, 朱练峰, 曹小闯, 朱春权, 张均华. 水稻耐盐生理及分子调节机制[J]. 核农学报, 2020, 34(6): 1359-1367. |
Huang J, Bai Z G, Zhong C, Qian J Y, Zhu L F, Cao X C, Zhu C Q, Zhang J H. Physiological and molecular mechanisms of salt stress tolerance in rice[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(6): 1359-1367. (in Chinese with English abstract) | |
[5] | 冷春旭, 郑福余, 赵北平, 刘海英, 王玉杰. 水稻耐碱性研究进展[J]. 生物技术通报, 2020, 36(11): 103-111. |
Leng C X, Zheng F Y, Zhao B P, Liu H Y, Wang Y J. Advances on alkaline tolerance of rice[J]. Biotechnology Bulletin, 2020, 36(11): 103-111. (in Chinese with English abstract) | |
[6] | Rasool S, Hameed A, Azooz M M, Muneeb-u-Rehman, Siddiqi T O, Ahmad P. Salt stress: Causes, types and responses of plants// Ahmad P, Azooz M, Prasad M. ed. Ecophysiology and responses of plants under salt stress, New York: Springer, 2013, 1-24. https://doi.org/10.1007/978-1-4614-4747-4_1. |
[7] | 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾骏飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J]. 中国水稻科学, 2023, 37(2): 153-165. |
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms[J]. Chinese Journal of Rice Science, 2023, 37(2): 153-165. (in Chinese with English abstract) | |
[8] | 王爱斌, 柯维忠, 彭永明. 氯化钙浸种和水杨酸浇灌复配处理对水稻幼苗抗盐性的影响[J]. 广东农业科学, 2010, 37(7): 18-19. |
Wang A B, Ke W Z, Peng Y M. Effects of complex treatment with CaCl2 soaking and SA watering on rice seedling growth[J]. Guangdong Agricultural Sciences, 2010, 37(7): 18-19. (in Chinese with English abstract) | |
[9] | 王雅倩. 黄腐酸钾对梨组培苗耐盐生理特性的影响[D]. 泰安: 山东农业大学, 2022. |
Wang Y Q. Effects of potassium Fulvic acid on physiological characteristics of salt tolerance in pear tissue culture seedlings[D]. Tai’an: Shandong Agricultural University, 2022. | |
[10] | 宋挚, 郭新送, 范仲卿, 高涵, 陈卫民, 侯文聪, 丁方军. 叶面喷施黄腐酸钾对水稻产量及品质的影响[J]. 腐植酸, 2022, 204(1): 52-55. |
Song Z, Guo X S, Fan Z Q, Gao H, Chen W M, Hou W C, Ding F J. Effects of foliar spraying potassium fulvate on yield and quality of rice[J]. Humic Acid, 2022, 204(1): 52-55. (in Chinese with English abstract) | |
[11] | 赵旺辉, 祝海竣, 李丹妮, 王学华. 抗盐碱剂对盐碱胁迫条件下水稻生长发育的影响[J]. 湖南农业科学, 2021(11): 29-33. |
Zhao D H, Zhu H J, Li D N, Wang X H. Effects of four salt-alkali resistant agents on rice growth and development in salt-alkali stress condition. Hunan Agricultural Sciences, 2021(11): 29-33. (in Chinese with English abstract) | |
[12] | 刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020. |
Liu X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020. | |
[13] | 杨小奎. 黄腐酸钾对草莓氮素吸收分配及产量品质的影响[D]. 泰安: 山东农业大学, 2018. |
Yang X K. Effects of fulvic acid potassium on nitrogen absorption and distribution and fruit yield and quality of strawberry[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese with English abstract) | |
[14] | 宋挚, 郭新送, 范仲卿, 高涵, 陈卫民, 侯文聪, 丁方军. 叶面喷施黄腐酸钾对水稻产量及品质的影响[J]. 腐植酸, 2022, 204(1): 52-55. |
Song Z, Guo X S, Fan Z Q, Gao H, Chen W M, Hou W C, Ding F J. Effects of foliar spraying potassium fulvate on yield and quality of rice[J]. Humic Acid, 2022, 204(1): 52-55. (in Chinese with English abstract) | |
[15] | 王安东, 萧长亮, 那永光. 配施含钾黄腐酸对寒地水稻产量的影响[J]. 安徽农业科学, 2019, 47(13): 143-145. |
Wang A D, Xiao C L, Na Y G. Effects of potassium-containing fulvic acid on rice yield in cold regions[J]. Journal of Anhui Agricultural Sciences, 2019, 47(13): 143-145. (in Chinese with English abstract) | |
[16] | Xiong J, Zhang L, Fu G F, Yang Y Y, Zhu C, Tao L X. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice[J]. Journal of Plant Research, 2012, 125(1): 155-164. |
[17] | Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear[J]. Plant Physiology, 1977, 59(3): 411-416. |
[18] | Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 32: 93-101. |
[19] | Giannopolitis C N, Ries S K. Superoxide dismutases: I occurrence in higher[J]. Plant Physiology, 1977, 59(2): 309-314. |
[20] | Maehly. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 1954, 1: 357-424. |
[21] | Aebi H. Catalase//Bergmeyer H U. Ed. Methods of Enzymatic Analysis[M]. New York: Academic Press, 1983: 273-288. |
[22] | Bonnecarrère V, Borsani O, Díaz P, Capdevielle F, Blanco P, Monza J. Response to photoxidative stress induced by cold in japonica rice is genotype dependent[J]. Plant Science, 2011, 180(5): 726-732. |
[23] | DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry 1956, 28: 350-356 |
[24] | Li H B, Feng B H, Li J C, Fu W M, Wang W T, Chen T T, Liu L M, Wu Z H, Peng S B, Tao L X, Fu G F. RGA1 alleviates low-light-repressed pollen tube elongation by improving the metabolism and allocation of sugars and energy[J]. Plant Cell &Environment, 2023, 46(4): 1363-1383. |
[25] | Ma J Y, Chen T T, Lin J, Fu W M, Feng B H, Li G Y, Li H B, Li J C, Wu Z H, Tao L X, Fu G F. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development[J]. Rice Science, 2022, 29(2): 166-178. |
[26] | Zhao X, Chen T T, Feng B H, Zhang C X, Peng S B, Zhang X F, Fu G F, Tao L X. Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color[J]. Frontiers in Plant Science, 2017, 7: 1968. |
[27] | 鲁如坤. 土壤农业化学分析方法[M]. 南京: 河海大学出版社, 2000: 308-315. |
Lu R K. Methods for agrochemical analysis of soil[M]. Nanjing: Hehai University Press, 2000: 308-315. (in Chinese) | |
[28] | 李放, 宋东涛, 王丹丹, 孟泽凤, 刘晓丽, 刘怀龙, 王红. 黄腐酸钾和黄腐酸锌对夏玉米的增产效果[J]. 河北农业科学, 2014, 18(4): 64-68. |
Li F, Song D T, Wang D D, Meng Z F, Liu X L, Liu H L, Wang H. The effects of potassium fulvate and zinc fulvate on increasing yield of summer maize[J]. Journal of Hebei Agricultural Sciences, 2014, 18(4): 64-8. | |
[29] | 高伟, 李明悦, 杨军, 冯海娟, 张善平, 郑春莲. 黄腐酸钾不同用量对番茄产量、品质及土壤理化性质的影响[J]. 中国农学通报, 2017, 33(33): 46-49. |
Gao W, Li M Y, Yang J. Feng H J, Zhang S P, Zheng C L. Effect of different application amounts of potassium fulvate on yield and quality of tomato and soil physical and chemical properties[J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 46-49. | |
[30] | 周毅, 王传江, 曹一平. 两种黄腐酸钾对增强冬小麦抗旱性状的效果与评价[J]. 腐植酸, 2003(2): 24-28. |
Zhou Y, Wang C J, Cao Y P. Appraising effect of two potassium fulvate samples as anti-transpirant for winter wheat[J]. Humic Acid, 2003(2): 24-28. (in Chinese with English abstract) | |
[31] | 张茜, 宋昕, 高中超, 王中业, 黄文功, 王艳, 宋柏权. 叶喷黄腐酸钾对甜菜幼苗生理指标和光合特性的影响[J]. 中国糖料, 2022, 44(3): 41-46. |
Zhang Q, Song X, Gao Z C, Wang Z Y, Huang W G, Wang Y, Song B Q. Effects of spraying fulvic acid potassium on physiological indexes and photosynthetic characteristics of sugar beet seedlings[J]. Sugar Crops of China, 2022, 44(3): 41-46. | |
[32] | 周海涛, 张艳阳, 赵孟圆, 李天亮, 曹丽霞, 张新军. S-诱抗素和黄腐酸对干旱胁迫下皮燕麦光合特性及产量的影响[J]. 农学学报, 2021, 11(2): 30-34. |
Zhou H T, Zhang Y Y, Zhao M Y, Li T L, Cao L X, Zhang X J. S-ABA and fulvic acid: Effect on physiological characteristics and yield of oats under drought stress[J]. Journal of Agriculture, 2021, 11(2): 30-34. (in Chinese with English abstract) | |
[33] | 李俊材. 耐热及强再生力水稻品种筛选鉴定及其生理机理研究[D]. 长春: 吉林农业大学, 2023. |
Li J C. Screening and identification of heat-tolerant and highly regenerative rice varieties and their physiological mechanisms[D]. Changchun: Jilin Agricultural University, 2023. | |
[34] | 陈环宇, 何苏南, 汤康, 董正中, 卢明海, 郁凯, 刘冲, 王凯, 赵小慧, 邢锦城. 叶面喷施黄腐酸钾对玉米幼苗光合特性的影响[J]. 大麦与谷类科学, 2024, 41(1): 43-48. |
Chen H Y, He S N, Yang K, Dong Z Z, Lu M H, Yu K, Liu C, Wang K, Zhao X H, Xing J C. Effect of foliar spraying of potassium fulvic acid on photosynthetic characteristics of maize seedlings[J]. Barley and Cereal Sciences, 2024, 41(1): 43-48. (in Chinese with English abstract) | |
[35] | Zhang M M, Li X Y, Wang X L, Feng J P, Zhu S P. Potassium fulvic acid alleviates salt stress of citrus by regulating rhizosphere microbial community, osmotic substances and enzyme activities[J]. Frontiers in Plant Science, 2023, 14: 1161469. |
[36] | Wen F T, Gao Y, Zeng Y X, Li G Y, Feng B H, Li H B, Chen T T, Wang D Y, Tao L X, Xiong J, Fu G F. MiR408 balances plant growth and heat response in rice[J]. Environmental and Experimental Botany, 2024, 221: 105717.https://doi.org/10.1016/j.envexpbot.2024.105717. |
[37] | Reddy I N B L, Kim B K, Yoon I, Kim K H, Kwon T R. Salt tolerance in rice: Focus on mechanisms and approaches[J]. Rice Science, 2017, 24(3): 123-144. |
[38] | Ashraf M, Akram N A, Arteca R N, Foolad M R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance[J]. Critical Reviews in Plant Sciences, 2010, 29(3): 162-190. |
[39] | Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291. |
[40] | 熊静, 高杰云, 刘伟, 谭钧, 邢文军, 陈清. 腐植酸钾对设施番茄苗期高盐和低温胁迫的缓解作用[J]. 腐植酸, 2015(4): 9-14. |
Xiong J, Gao J Y, Liu W, Tan J, Xing W J, Chen Q. Alleviation of potassium humate on protected cultivated tomato at seedling stage under high salinity and low temperature stress[J]. Humic Acid, 2015(4): 9-14. (in Chinese with English abstract) | |
[41] | 张梅, 李泽剑, 唐诚, 褚贵新. 硅、硒、黄腐酸、氯甲基吡啶组合对棉花生长及抗盐生理特性的影响[J]. 生态环境学报, 2016, 25(10): 1671-1677. |
Zhang M, Li Z J, Tang C, Chu X G. Influences of the combination using of silicon, selenium, fulvic acid, nitrapyrin on cotton growth and cotton plant salt-resistant physiological characteristics[J]. Ecology and Environmental Sciences, 2016, 25(10): 1671-1677. (in Chinese with English abstract) | |
[42] | Nowicka B, Ciura J, Szymańska R, Kruk J. Improving photosynthesis, plant productivity and abiotic stress tolerance: Current trends and future perspectives[J]. Journal of Plant Physiology, 2018, 231: 415-433. |
[43] | 赵永长, 宋文静, 邱春丽, 董建新, 李磊磊, 管恩娜, 陈向东, 宋科. 黄腐酸钾对渗透胁迫下烤烟幼苗生长和光合荧光特性的影响[J]. 中国烟草学报, 2016, 22(4): 98-106. |
Zhao Y C, Song W J, Qiu C L, Dong J X, Li L L, Guan E N, Chen X D, Song K. Effects of fulvic acid potassium on growth and photosynthetic fluorescence characteristics of flue-cured tobacco seedlings under osmotic stress[J]. Acta Tabacaria Sinica, 2016, 22(4): 98-106. (in Chinese with English abstract) | |
[44] | 沈伟, 岑湘涛, 李玥莹. 黄腐酸钾对高温胁迫下田七生理特性的影响[J]. 农业与技术, 2022, 42(6): 10-13. |
Shen W, Cen X T, Li Y Y. Effects of potassium fulvic acid on physiological characteristics of Panax notoginseng under high temperature stress[J]. Agriculture and Technology, 2022, 42(6): 10-13. (in Chinese with English abstract) | |
[45] | Chen T T, Ma J Y, Xu C M, Jiang N, Li G Y, Fu W M, Feng B H, Wang D Y, Wu Z H, Tao L X, Fu G F. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status[J]. Frontiers in Plant Science, 2022, 13: 1035027. |
[46] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
Wang W T, Ma J Y, Li G Y, Fu W M, Li H B, Lin J, Chen T T, Fen B H, Tao L X, Fu G F, Qin Y B. Effect of different fertilizer application rates on rice yield and quality formation and its relationship with energy metabolism at high temperature[J]. Chinese Journal of Rice Science, 2023, 37(3): 253-264. (in Chinese with English abstract) | |
[47] | Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Bose J, Byrt C S, Chen Z H, Foster K J, Gilliham M, Henderson S W, Jenkins C L D, Kronzucker H J, Miklavcic S J, Plett D, Roy S J, Shabala S, Shelden M C, Soole K L, Taylor N L, Tester M, Wege S, Wegner L H, Tyerman S D. Energy costs of salt tolerance in crop plants[J]. New Phytologist, 2020, 225(3): 1072-1090. |
[48] | Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil[J]. New Phytologist, 2020, 225(3): 1091-1096. |
[49] | De Block M, van Lijsebettens M. Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity[J]. Current Opinion in Plant Biology, 2011, 14(3): 275-282. |
[50] | Li G Y, Chen T T, Feng B H, Peng S B, Tao L X, Fu G F. Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions[J]. Frontiers in Plant Science, 2021, 12: 678653. |
[51] | Kimbembe R E, Li G Y, Fu G F, Feng B H, Fu W M, Tao L X, Chen T T. Proteomic analysis of salicylic acid regulation of grain filling of two near-isogenic rice (Oryza sativa L.) varieties under soil drying condition[J]. Plant Physiology and Biochemistry, 2020, 51: 659-672. |
[52] | Li G Y, Zhang C X, Zhang G H, Fu W M, Feng B H, Chen T T, Peng S B, Tao L X, Fu G F. Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis[J]. Rice, 2020, 13(1): 18. |
[53] | Shabala S, Chen G, Chen Z H, Pottosin I. The energy cost of the tonoplast futile sodium leak[J]. New Phytologist, 2020, 225(3): 1105-1110. |
[1] | 夏杨, 李传明, 刘琴, 韩光杰, 徐彬, 黄立鑫, 祁建杭, 陆玉荣, 徐健. 印度梨形孢对盐胁迫下水稻幼苗生长及抗氧化系统的影响[J]. 中国水稻科学, 2023, 37(5): 543-552. |
[2] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
[3] | 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾骏飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J]. 中国水稻科学, 2023, 37(2): 153-165. |
[4] | 刘淑丽, 张瑞, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学, 2023, 37(1): 1-15. |
[5] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. |
[6] | 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. |
[7] | 李玉祥, 林海荣, 梁倩, 王国栋. 多巴胺引发对盐胁迫下水稻种子萌发及幼苗生长的影响[J]. 中国水稻科学, 2021, 35(5): 487-494. |
[8] | 路凯, 陈涛, 姚姝, 梁文化, 魏晓东, 张亚东, 王才林. 盐胁迫下四个水稻类受体蛋白激酶的功能分析[J]. 中国水稻科学, 2021, 35(2): 103-111. |
[9] | 崔立新, 和亚男, 李亚萍, 谢先芝. 水稻OsHKT基因表达模式分析[J]. 中国水稻科学, 2017, 31(6): 559-567. |
[10] | 徐晨1 ,凌风楼2 ,徐克章2 ,武志海2 ,刘晓龙2 ,安久海2 ,赵兰坡3,*. 盐胁迫对不同水稻品种光合特性和生理生化特性的影响[J]. 中国水稻科学, 2013, 27(3): 280-286. |
[11] | 沈 波, 蒋靓, 於卫东, 樊叶杨, 庄杰云,. 水稻苗期盐胁迫下叶绿素荧光参数的QTL分析 [J]. 中国水稻科学, 2009, 23(3): 319-322 . |
[12] | 汪斌, 兰涛, , 吴为人. 盐胁迫下水稻苗期Na+含量的QTL定位[J]. 中国水稻科学, 2007, 21(6): 585-590 . |
[13] | 邱生平, 周国安, 陆驹飞, 黄骥, 潘丽娟, 王建飞, 杨清, 张红生,. 一个新的水稻液泡膜Na+/H+逆向转运蛋白基因的克隆及表达特征[J]. 中国水稻科学, 2006, 20(2): 119-124 . |
[14] | 刘开力,韩航如,徐颖洁,凌腾芳,刘志兵,孙永刚,花榕,沈文飚 ,. 外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J]. 中国水稻科学, 2005, 19(4): 333-337 . |
[15] | 杨艳华,陈国祥, 刘少华, 周泉澄, 陈 利, 王贵民, 吕川根. 外源山梨醇对盐胁迫下两优培九和武运粳7号光合特性及类囊体膜多肽组分的影响[J]. 中国水稻科学, 2004, 18(3): 234-238 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||