中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 397-408.DOI: 10.16819/j.1001-7216.2024.231216
收稿日期:
2023-12-27
修回日期:
2024-04-02
出版日期:
2024-07-10
发布日期:
2024-07-11
通讯作者:
*email: 772122427@qq.com;jiahe218@live.cn
基金资助:
DING Zhengquan*(), PAN Yueyun, SHI Yang, HUANG Haixiang*()
Received:
2023-12-27
Revised:
2024-04-02
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: 772122427@qq.com;jiahe218@live.cn
摘要:
【目的】 嘉禾系列长粒粳稻粒型(细)长,外观品质突出,食味优良,丰产性与主栽品种相近,抗病性较好。本研究旨在明确嘉禾系列长粒粳稻品种的特点与存在问题,解析嘉禾系列长粒粳稻品种优质性状形成的遗传基础,为长粒粳稻品种创新利用提供依据。【方法】 以5份嘉禾系列长粒粳稻品种(系)为材料,利用GSR40K水稻高密度芯片分析品种籼粳属性、相似度,鉴定育种相关功能基因,同时比较嘉禾系列长粒粳稻品种(系)与东北长粒粳稻稻花香2号遗传基础差异。【结果】 嘉禾系列长粒粳稻品种(系)和稻花香2号基因组中,粳稻区段数占比84.20%~88.38%,均为典型粳稻类型;嘉禾系列长粒粳稻品种(系)间遗传相似度超过92%,基因组相似度为77.59%~91.73%,与稻花香2号遗传相似度为84.55%,基因组相似度为49.52%~53.68%;嘉禾系列长粒粳稻含有长粒优势功能基因gs3和GW7,嘉禾香1号还含有大粒型基因qSW5/GW5和多穗粒数基因LAX1;嘉禾系列品种的品质性状形成主要是ALKc/Wxb/OsAAP6等优势功能基因组合所致,嘉禾香1号香味是由Badh2第2外显子突变所致;嘉禾系列长粒粳稻品种(系)含有较多的抗稻瘟病基因,如抗病基因组合Pizt+Pii/HIT7/pi5-1、Pizt+Pi-ta、Pizt+Pii/HIT7/pi5-1+Pi-d2/Pid2+Pid3+Pi-ta,抗白叶枯基因只有Xa26/Xa3。【结论】 嘉禾系列长粒粳稻食味优、丰产稳产、抗病抗逆的突出优点,是品种含有较多的产量、品质、抗性、株型、生育期等优势等位基因变异综合影响的结果,但也存在品种相似度较高、白叶枯抗性基因单一的不足。本研究结果也为后续嘉禾系列长粒粳稻品种遗传改良提供了依据。
丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408.
DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology[J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408.
图1 几个长粒粳稻品种性状与系谱来源 A: 嘉禾系列长粒粳稻和稻花香2号的植株形态。标尺=10 cm; B: 嘉禾系列长粒粳稻和稻花香2号的稻米外观; C: 嘉禾系列的遗传系谱。 JH212: 嘉禾212; JH276: 嘉禾276; JH549: 嘉禾549; JH6426: 嘉禾 6426; JHX 1: 嘉禾香1号; DHX 2: 稻花香2号。下文图表中的品种名缩写与此处一致。
Fig. 1. Phenotypic characteristics and breeding process of several long-grain japonica rice varieties A, Plant architecture of Jiahe series long-grain japonica rice and Daohuaxiang 2. Scale bar=10 cm. B, Rice appearance quality of Jiahe series long- grain japonica rice and Daohuaxiang 2. C, Genetic pedigree of Jiahe series long-grain japonica rice. JH212, Jiahe 212; JH276, Jiahe 276; JH549, Jiahe 549; JH6426, Jiahe 6426; JHX 1, Jiahexiang 1; DHX 2, Daohuaxiang 2. The same blow.
类别 Category | 基因 Gene | 数量 Number | 功能 Function |
---|---|---|---|
产量 Yield component | Gn1a/OsCKX2, NOG1, LAX1, GNP1, APO1; GW2, GS3, qLGY3/OsMADS1/GW3p6/OsLG3b, GL3.1/qGL3, GL3.3/qTGW3, OsCYP704A3, qSW5/GW5, GW6a/OsglHAT1, OsSNB, OsSPL13/GLW7, GW7, GW8/OsSPL16, GE/CYP78A13/BG2, GL3.2/CYP78A5, GS5, qNGR2/GRF4; PTB1; OsSPL14(IPA1); LSCHL4/NAL1 | 24 | 增加穗粒数; 粒型; 提高结实率; 理想株型和高产; 减产 |
品质 Taste quality | OsAAP6; LOX-3; OsACS6/SSG6; Wx; ALK; Badh2 | 6 | 提高种子蛋白质含量; 降低陈化气味的产生; 提高L-天冬酰胺含量; 直链淀粉含量; 糊化温度; 香味 |
抽穗期 Heading date | OsCOL4, Hd16, Hd3a, Hd1, Ghd7/Hd4, Ghd8, DTH8, OsPRR37/Hd2/Ghd7.1; DTH2/Hd7, OsMADS51, OsMADS50/Hd9/OsSOC1/DTH3, Hd17/Hd3b, RFT1, Ehd1, RCN1 | 15 | 抽穗期提前; 抽穗期延迟 |
株型 Plant architecture | D2/CYP90D2/SMG11, TAC3, TAC1; TIG1; SCM3/OsTB1; OsOTUB1/WTG1; OsTb2; D61/OsBRI1, OsbHLH174, ILI3/OsbHLH153; sd1; SLR1/OsGAI/Slr1-d; OsSPY; OsLG1; OsGSK2 | 15 | 分蘖角度增大; 分蘖角度减小; 少蘖抗倒伏; 少蘖增加穗粒数; 多蘖; 剑叶角度增大; 半矮秆; 高秆; 增加株高; 散穗型; 中胚轴长度增大 |
非生物逆境抗性Abiotic Stress resistance | NRAT1; BET1; OsHMA4; Os-MOT1;1; OsHKT1;1; OsHMA3, qGMN7.1/OsNRAMP5; qSE3/OsHAK21, Os-HKT1;5/SKC1; OsALS; bZIP73, HAN1, qLTG3-1; OsPP15, OsLG3, DROT1, Nced; TT1; OsNPF6.1, NRT1.1B; OsHKT2;1; DRO1; OsJAZ1; qUVR-10; psr1 | 25 | 铝敏感; 耐硼; 铜敏感; 减少钼积累; 根部钠含量增加; 高镉积累; 耐盐; 抗除草剂; 冷敏感; 抗旱; 耐热; 氮高效; 降低钾利用率; 浅根; 根部长度与重量减小; 光修复; 提高再生能力 |
生物逆境抗性Biological stress resistance | Bph3, Bph14, Bph15, Bph18, Bph26, Bph6, Bph9; bsr-d1, Pi9, Pi50, Pi-d2/Pid2, Pizt, Pii/HIT7/pi5-1, Pi56, Pi-CO39/RGA4, LHCB5, Pi54/Pi-kh, Pi-ta, Ptr, Pi1, Pi2, Pi5, Pia, Pid3, Pigm, pikh; Xa1, Xa13, Xa21, Xa23, Xa26/Xa3, xa5, Xa7; Rymv1; OsSAP16 | 35 | 增强褐飞虱的抗性; 增强稻瘟病抗性; 增强白叶枯病抗性; 抗黄色斑驳病毒病; 抗水稻东格鲁病毒 |
育性与恢复性Fertility and restoration | Rf3/OsMADS3, Rf2; HSA1b, ESA1, DPL2, S5-3/ORF3, S5-4/ORF4; S5-5/ORF5, S7; Pms1/PMS1T, tms5 | 11 | 育性恢复; 籼粳杂种不育; 杂交亲和; 光敏雄性不育; 温敏雄性不育 |
其他 Others | BOC1; sh4, qSH1; OsPME1, OsTSD2, OsUGT706D1, OsUGT707A2, OsUGT707A2, OsAT4c; Rd/DFR/OsDfr, Rc, An-2/OsLOGL6/LABA1, OsC1, Hairy Leaf 6/HL6 | 14 | 愈伤组织褐化; 非落粒; 次生代谢物; 种子形态 |
表1 GSR40K芯片可检测的功能基因
Table 1. Functional genes identified by GSR40K gene chip
类别 Category | 基因 Gene | 数量 Number | 功能 Function |
---|---|---|---|
产量 Yield component | Gn1a/OsCKX2, NOG1, LAX1, GNP1, APO1; GW2, GS3, qLGY3/OsMADS1/GW3p6/OsLG3b, GL3.1/qGL3, GL3.3/qTGW3, OsCYP704A3, qSW5/GW5, GW6a/OsglHAT1, OsSNB, OsSPL13/GLW7, GW7, GW8/OsSPL16, GE/CYP78A13/BG2, GL3.2/CYP78A5, GS5, qNGR2/GRF4; PTB1; OsSPL14(IPA1); LSCHL4/NAL1 | 24 | 增加穗粒数; 粒型; 提高结实率; 理想株型和高产; 减产 |
品质 Taste quality | OsAAP6; LOX-3; OsACS6/SSG6; Wx; ALK; Badh2 | 6 | 提高种子蛋白质含量; 降低陈化气味的产生; 提高L-天冬酰胺含量; 直链淀粉含量; 糊化温度; 香味 |
抽穗期 Heading date | OsCOL4, Hd16, Hd3a, Hd1, Ghd7/Hd4, Ghd8, DTH8, OsPRR37/Hd2/Ghd7.1; DTH2/Hd7, OsMADS51, OsMADS50/Hd9/OsSOC1/DTH3, Hd17/Hd3b, RFT1, Ehd1, RCN1 | 15 | 抽穗期提前; 抽穗期延迟 |
株型 Plant architecture | D2/CYP90D2/SMG11, TAC3, TAC1; TIG1; SCM3/OsTB1; OsOTUB1/WTG1; OsTb2; D61/OsBRI1, OsbHLH174, ILI3/OsbHLH153; sd1; SLR1/OsGAI/Slr1-d; OsSPY; OsLG1; OsGSK2 | 15 | 分蘖角度增大; 分蘖角度减小; 少蘖抗倒伏; 少蘖增加穗粒数; 多蘖; 剑叶角度增大; 半矮秆; 高秆; 增加株高; 散穗型; 中胚轴长度增大 |
非生物逆境抗性Abiotic Stress resistance | NRAT1; BET1; OsHMA4; Os-MOT1;1; OsHKT1;1; OsHMA3, qGMN7.1/OsNRAMP5; qSE3/OsHAK21, Os-HKT1;5/SKC1; OsALS; bZIP73, HAN1, qLTG3-1; OsPP15, OsLG3, DROT1, Nced; TT1; OsNPF6.1, NRT1.1B; OsHKT2;1; DRO1; OsJAZ1; qUVR-10; psr1 | 25 | 铝敏感; 耐硼; 铜敏感; 减少钼积累; 根部钠含量增加; 高镉积累; 耐盐; 抗除草剂; 冷敏感; 抗旱; 耐热; 氮高效; 降低钾利用率; 浅根; 根部长度与重量减小; 光修复; 提高再生能力 |
生物逆境抗性Biological stress resistance | Bph3, Bph14, Bph15, Bph18, Bph26, Bph6, Bph9; bsr-d1, Pi9, Pi50, Pi-d2/Pid2, Pizt, Pii/HIT7/pi5-1, Pi56, Pi-CO39/RGA4, LHCB5, Pi54/Pi-kh, Pi-ta, Ptr, Pi1, Pi2, Pi5, Pia, Pid3, Pigm, pikh; Xa1, Xa13, Xa21, Xa23, Xa26/Xa3, xa5, Xa7; Rymv1; OsSAP16 | 35 | 增强褐飞虱的抗性; 增强稻瘟病抗性; 增强白叶枯病抗性; 抗黄色斑驳病毒病; 抗水稻东格鲁病毒 |
育性与恢复性Fertility and restoration | Rf3/OsMADS3, Rf2; HSA1b, ESA1, DPL2, S5-3/ORF3, S5-4/ORF4; S5-5/ORF5, S7; Pms1/PMS1T, tms5 | 11 | 育性恢复; 籼粳杂种不育; 杂交亲和; 光敏雄性不育; 温敏雄性不育 |
其他 Others | BOC1; sh4, qSH1; OsPME1, OsTSD2, OsUGT706D1, OsUGT707A2, OsUGT707A2, OsAT4c; Rd/DFR/OsDfr, Rc, An-2/OsLOGL6/LABA1, OsC1, Hairy Leaf 6/HL6 | 14 | 愈伤组织褐化; 非落粒; 次生代谢物; 种子形态 |
品种 Cultivar | 株高 PH (cm) | 生育期 GD(d) | 有效穗数 PPN (×104/hm2) | 每穗粒数GNP | 结实率 SSR (%) | 千粒重 KGW (g) | 长宽比 LR | 产量 Yield (kg/hm2) | 增幅 Increase rate (%) |
---|---|---|---|---|---|---|---|---|---|
JH212 | 95.0 | 151.5 | 20.0 | 103.3 | 93.3 | 27.9 | 2.9 | 7524.00 | 1.8 |
JHX 1 | 103.5 | 157.5 | 19.0 | 120.7 | 91.4 | 30.7 | 2.7 | 9808.50 | 2.4 |
JH549 | 86.3 | 155.0 | 23.4 | 126.8 | 96.1 | 21.1 | 2.7 | 9051.00 | −0.6 |
JH276 | 89.6 | 129.5 | 20.0 | 121.3 | 88.7 | 27.6 | 3.0 | 8253.00 | −3.9 |
JH6426 | 99.8 | 152.0 | 22.1 | 136.6 | 96.1 | 23.5 | 2.7 | 9927.00 | −1.0 |
秀水134 Xiushui 134 | 91.6 | 153.0 | 20.9 | 135.5 | 89.0 | 27.0 | 1.8 | 9456.75 | — |
表2 嘉禾系列长粒粳稻品种产量性状表现
Table 2. Yield components of Jiahe series long-grain japonica rice varieties
品种 Cultivar | 株高 PH (cm) | 生育期 GD(d) | 有效穗数 PPN (×104/hm2) | 每穗粒数GNP | 结实率 SSR (%) | 千粒重 KGW (g) | 长宽比 LR | 产量 Yield (kg/hm2) | 增幅 Increase rate (%) |
---|---|---|---|---|---|---|---|---|---|
JH212 | 95.0 | 151.5 | 20.0 | 103.3 | 93.3 | 27.9 | 2.9 | 7524.00 | 1.8 |
JHX 1 | 103.5 | 157.5 | 19.0 | 120.7 | 91.4 | 30.7 | 2.7 | 9808.50 | 2.4 |
JH549 | 86.3 | 155.0 | 23.4 | 126.8 | 96.1 | 21.1 | 2.7 | 9051.00 | −0.6 |
JH276 | 89.6 | 129.5 | 20.0 | 121.3 | 88.7 | 27.6 | 3.0 | 8253.00 | −3.9 |
JH6426 | 99.8 | 152.0 | 22.1 | 136.6 | 96.1 | 23.5 | 2.7 | 9927.00 | −1.0 |
秀水134 Xiushui 134 | 91.6 | 153.0 | 20.9 | 135.5 | 89.0 | 27.0 | 1.8 | 9456.75 | — |
品种Cultivar | 整精米率HMR(%) | 垩白 粒率CR(%) | 垩白度CD(%) | 透明度Transparency | 碱消值ASV | 胶稠度GC(mm) | 直链淀粉 含量AAC (%) | 稻瘟病抗性BR | 白叶枯病抗性BBR | 褐飞虱抗性BphR |
---|---|---|---|---|---|---|---|---|---|---|
JH212 | 71.6 | 10.0 | 1.0 | 1.0 | 7.0 | 78.0 | 16.6 | 中抗MR | 感S | — |
JHX 1 | 57.8 | 16.5 | 2.4 | 1.5 | 6.6 | 70.5 | 17.5 | 中感MS | 中感MS | 高感HS |
JH276 | 66.2 | 8.0 | 1.3 | 1.0 | 7.0 | 68.0 | 17.7 | 中抗MR | 感S | 高感HS |
JH549 | 68.1 | 2.0 | 0.3 | 1.0 | 7.0 | 60.0 | 14.5 | 抗R | 感S | — |
Ⅰ* | 69.0 | 1.0 | 1.0 | 7.0 | 70.0 | 13.0~18.0 | ||||
Ⅱ* | 66.0 | 3.0 | 2.0 | 7.0 | 60.0 | 13.0~19.0 | ||||
Ⅲ* | 63.0 | 5.0 | 2.0 | 6.0 | 60.0 | 13.0~20.0 |
表3 部分嘉禾系列长粒粳稻品种米质与抗性表现
Table 3. Rice quality and resistance of several Jiahe series long-grain japonica rice varieties
品种Cultivar | 整精米率HMR(%) | 垩白 粒率CR(%) | 垩白度CD(%) | 透明度Transparency | 碱消值ASV | 胶稠度GC(mm) | 直链淀粉 含量AAC (%) | 稻瘟病抗性BR | 白叶枯病抗性BBR | 褐飞虱抗性BphR |
---|---|---|---|---|---|---|---|---|---|---|
JH212 | 71.6 | 10.0 | 1.0 | 1.0 | 7.0 | 78.0 | 16.6 | 中抗MR | 感S | — |
JHX 1 | 57.8 | 16.5 | 2.4 | 1.5 | 6.6 | 70.5 | 17.5 | 中感MS | 中感MS | 高感HS |
JH276 | 66.2 | 8.0 | 1.3 | 1.0 | 7.0 | 68.0 | 17.7 | 中抗MR | 感S | 高感HS |
JH549 | 68.1 | 2.0 | 0.3 | 1.0 | 7.0 | 60.0 | 14.5 | 抗R | 感S | — |
Ⅰ* | 69.0 | 1.0 | 1.0 | 7.0 | 70.0 | 13.0~18.0 | ||||
Ⅱ* | 66.0 | 3.0 | 2.0 | 7.0 | 60.0 | 13.0~19.0 | ||||
Ⅲ* | 63.0 | 5.0 | 2.0 | 6.0 | 60.0 | 13.0~20.0 |
图3 嘉禾系列长粒粳稻之间差异标记与差异区段基因组分布和品种相似度分析
Fig. 3. Different genome tags and bins distribution and variety similarity analysis of Jiahe series long-grain japonica rice
品种比较 Variety comparison | 总标记数 Total number of tags | 差异标记数 Number of differential tags | 总bin数 Total number of bins | 差异bin数 Number of differential bins | 遗传相似度GS (%) | 基因组相似度GI (%) |
---|---|---|---|---|---|---|
JH212 vs DHX 2 | 31704 | 4744 | 1874 | 868 | 85.04 | 53.68 |
JH276 vs DHX 2 | 31704 | 4719 | 1874 | 884 | 85.12 | 52.83 |
JHX 1 vs DHX 2 | 31704 | 4638 | 1874 | 870 | 85.37 | 53.63 |
JH549 vs DHX 2 | 31704 | 5101 | 1874 | 918 | 83.91 | 51.01 |
JH6426 vs DHX 2 | 31704 | 5298 | 1874 | 946 | 83.29 | 49.52 |
表4 嘉禾系列长粒粳稻与稻花香2号品种相似度
Table 4. Variety similarity of Jiahe series long-grain japonica rice and DHX 2
品种比较 Variety comparison | 总标记数 Total number of tags | 差异标记数 Number of differential tags | 总bin数 Total number of bins | 差异bin数 Number of differential bins | 遗传相似度GS (%) | 基因组相似度GI (%) |
---|---|---|---|---|---|---|
JH212 vs DHX 2 | 31704 | 4744 | 1874 | 868 | 85.04 | 53.68 |
JH276 vs DHX 2 | 31704 | 4719 | 1874 | 884 | 85.12 | 52.83 |
JHX 1 vs DHX 2 | 31704 | 4638 | 1874 | 870 | 85.37 | 53.63 |
JH549 vs DHX 2 | 31704 | 5101 | 1874 | 918 | 83.91 | 51.01 |
JH6426 vs DHX 2 | 31704 | 5298 | 1874 | 946 | 83.29 | 49.52 |
性状 Trait | 基因 Gene | 染色体 Chr | 位置 Position | 基因功能 Gene function | 基因型Alt_ allele | JH212 | JH276 | JH549 | JH6426 | JHX1 | DHX2 |
---|---|---|---|---|---|---|---|---|---|---|---|
产量 Yield component | LAX1 | 1 | 35555900 | 穗粒数增加Increasing grain number | C | √ | |||||
gs3 | 3 | 16733441 | 增加粒长Increasing grain length | T | √ | √ | √ | √ | √ | √ | |
qSW5/GW5 | 5 | 5365256 | 增加粒宽Increasing grain width | A | √ | ||||||
GW7 | 7 | 24669233 | 增加粒长Increasing grain length | C | √ | √ | √ | √ | √ | ||
食味品质 Eating quality | ALK | 6 | 6752756 | 糊化温度升高Increasing gelatinization temperature | G | √ | √ | √ | √ | √ | √ |
Wx | 6 | 1765761 | 降低直链淀粉含量Decreasing apparent amylose content | T | √ | √ | √ | √ | √ | √ | |
OsAAP6 | 1 | 38137703 | 提高种子蛋白质含量Increasing seed protein content | C | √ | √ | √ | √ | √ | √ | |
Badh2 | 8 | 20382858 | 香味Fragrance | A | √ | ||||||
Badh2 | 8 | 20380275 | 香味Fragrance | C | √ | ||||||
抽穗期Heading date | Hd17/Hd3b | 6 | 2235191 | 抽穗期延迟Delaying heading | G | √ | √ | ||||
Hd3a | 6 | 2942292 | 短日照促进抽穗Promoting heading under short day conditions | A | √ | √ | √ | √ | √ | √ | |
株型 Plant architecture | OsGSK2 | 5 | 6658027 | 中胚轴长度增大Increasing mesocotyl length | T | √ | √ | ||||
OsOTUB1 | 8 | 26887943 | 减少分蘖,增加穗粒数Decreasing tiller number and increasing grain number | T | √ | ||||||
OsSPY | 8 | 27998573 | 株高增加Increasing plant height | T | √ | ||||||
OsTb2 | 9 | 14568100 | 分蘖数增多Increasing tiller number | C | √ | ||||||
OsbHLH174 | 10 | 13723265 | 剑叶角度增大Larger flag leaf angle | G | √ | √ | √ | √ | √ | √ | |
生物逆境 抗性 Biological stress resistance | Pizt | 6 | 10389855 | 抗稻瘟病Increasing blast resistance | T | √ | √ | √ | √ | √ | |
Pi9 | 6 | 10389270 | 抗稻瘟病Increasing blast resistance | T | √ | ||||||
Pi-d2/Pid2 | 6 | 17161791 | 抗稻瘟病Increasing blast resistance | T | √ | √ | |||||
Pid3 | 6 | 13055819 | 抗稻瘟病Increasing blast resistance | G | √ | √ | |||||
Pii/HIT7/pi5-1 | 9 | 9672381 | 抗稻瘟病Increasing blast resistance | G | √ | √ | √ | √ | |||
Pi1 | 11 | 27981150 | 抗稻瘟病Increasing blast resistance | C | √ | ||||||
Pi-ta | 12 | 20805203 | 抗稻瘟病Increasing blast resistance | C | √ | √ | √ | √ | |||
Xa21 | 11 | 28399720 | 抗白叶枯病Increasing bacterial blight resistance | C | PC | ||||||
Xa26/Xa3 | 11 | 10607554 | 抗白叶枯病Increasing bacterial blight resistance | G | √ | √ | √ | √ |
表5 长粒粳稻中含有的育种利用相关基因
Table 5. Breeding related genes identified in Jiahe series long-grain japonica rice
性状 Trait | 基因 Gene | 染色体 Chr | 位置 Position | 基因功能 Gene function | 基因型Alt_ allele | JH212 | JH276 | JH549 | JH6426 | JHX1 | DHX2 |
---|---|---|---|---|---|---|---|---|---|---|---|
产量 Yield component | LAX1 | 1 | 35555900 | 穗粒数增加Increasing grain number | C | √ | |||||
gs3 | 3 | 16733441 | 增加粒长Increasing grain length | T | √ | √ | √ | √ | √ | √ | |
qSW5/GW5 | 5 | 5365256 | 增加粒宽Increasing grain width | A | √ | ||||||
GW7 | 7 | 24669233 | 增加粒长Increasing grain length | C | √ | √ | √ | √ | √ | ||
食味品质 Eating quality | ALK | 6 | 6752756 | 糊化温度升高Increasing gelatinization temperature | G | √ | √ | √ | √ | √ | √ |
Wx | 6 | 1765761 | 降低直链淀粉含量Decreasing apparent amylose content | T | √ | √ | √ | √ | √ | √ | |
OsAAP6 | 1 | 38137703 | 提高种子蛋白质含量Increasing seed protein content | C | √ | √ | √ | √ | √ | √ | |
Badh2 | 8 | 20382858 | 香味Fragrance | A | √ | ||||||
Badh2 | 8 | 20380275 | 香味Fragrance | C | √ | ||||||
抽穗期Heading date | Hd17/Hd3b | 6 | 2235191 | 抽穗期延迟Delaying heading | G | √ | √ | ||||
Hd3a | 6 | 2942292 | 短日照促进抽穗Promoting heading under short day conditions | A | √ | √ | √ | √ | √ | √ | |
株型 Plant architecture | OsGSK2 | 5 | 6658027 | 中胚轴长度增大Increasing mesocotyl length | T | √ | √ | ||||
OsOTUB1 | 8 | 26887943 | 减少分蘖,增加穗粒数Decreasing tiller number and increasing grain number | T | √ | ||||||
OsSPY | 8 | 27998573 | 株高增加Increasing plant height | T | √ | ||||||
OsTb2 | 9 | 14568100 | 分蘖数增多Increasing tiller number | C | √ | ||||||
OsbHLH174 | 10 | 13723265 | 剑叶角度增大Larger flag leaf angle | G | √ | √ | √ | √ | √ | √ | |
生物逆境 抗性 Biological stress resistance | Pizt | 6 | 10389855 | 抗稻瘟病Increasing blast resistance | T | √ | √ | √ | √ | √ | |
Pi9 | 6 | 10389270 | 抗稻瘟病Increasing blast resistance | T | √ | ||||||
Pi-d2/Pid2 | 6 | 17161791 | 抗稻瘟病Increasing blast resistance | T | √ | √ | |||||
Pid3 | 6 | 13055819 | 抗稻瘟病Increasing blast resistance | G | √ | √ | |||||
Pii/HIT7/pi5-1 | 9 | 9672381 | 抗稻瘟病Increasing blast resistance | G | √ | √ | √ | √ | |||
Pi1 | 11 | 27981150 | 抗稻瘟病Increasing blast resistance | C | √ | ||||||
Pi-ta | 12 | 20805203 | 抗稻瘟病Increasing blast resistance | C | √ | √ | √ | √ | |||
Xa21 | 11 | 28399720 | 抗白叶枯病Increasing bacterial blight resistance | C | PC | ||||||
Xa26/Xa3 | 11 | 10607554 | 抗白叶枯病Increasing bacterial blight resistance | G | √ | √ | √ | √ |
[1] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672. |
Huang H X, Qian Q. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality japonica rice[J]. China Journal of Rice Science, 2017, 31(6): 665-672. (in Chinese with English abstract) | |
[2] | 侯学然, 王荣升. 五常市特色水稻品种的历史与现状研究——从松93-8到稻花香2号[J]. 中国种业, 2021(3): 16-18. |
Hou X R, Wang R S. Study on the history and present situation of characteristic rice varieties in Wuchang City: From Song 93-8 to Daohuaxiang 2[J]. China Seed Industry, 2021 (3): 16-18. (in Chinese) | |
[3] | 黄海祥. 嘉禾212[J]. 作物研究, 2004(4): 226. |
Huang H X. Jiahe 212[J]. Crop Research, 2004(4): 226. (in Chinese) | |
[4] | 丁正权, 来乐春, 王士磊, 潘月云, 施杨, 黄海祥. 优质食味长粒粳稻嘉禾香1号[J]. 中国种业, 2023(2): 126-127. |
Ding Z Q, Lai L C, Wang S L, Pan Y Y, Shi Y, Huang H X. Jiahexiang 1, a long-grain japonica rice variety with fine-eating quality[J]. China Seed Industry, 2023(2): 126-127. (in Chinese) | |
[5] | 沈希宏, 程式华, 曹立勇, 傅秀民, 占小登. 长粒型优质抗病粳稻不育系长粳1A的选育[J]. 杂交水稻, 2013, 28(4): 15-17. |
Shen X H, Chen S H, Cao L Y, Fu X M, Zhan X D. Breeding of long-grain japonica CMS line Changjing 1A with fine grain quality and good disease resistance[J]. Hybrid Rice, 2013, 28(4): 15-17. (in Chinese with English abstract) | |
[6] | 王小虎, 钟卫国, 王雪刚, 赵品恒, 苏月红, 俞良, 季向东, 李标, 端木银熙, 孙菊英, 梁国华. BT型长粒粳稻不育系常01-11A的选育及应用[J]. 杂交水稻, 2014, 29(1): 10-14. |
Wang X H, Zhong W G, Wang X G, Zhao P H, Su Y H, Yu L, Ji X D, Li B, Duan M Y X, Sun J Y, Liang G H. Breeding and utilization of long-grain BT-type japonica CMS line Chang 01-11A in rice[J]. Hybrid Rice, 2014, 29(1): 10-14. (in Chinese with English abstract) | |
[7] | 王林友, 俞斌, 葛常青, 李新敏, 洪晓富, 祁永斌, 王建军, 沈建勋, 蒋根水. 长粒籼粳杂交稻浙杭优K202的选育与应用[J]. 浙江农业科学, 2023, 64(9): 2148-2151. |
Wang L Y, Yu B, Ge C Q, Li X M, Hong X F, Qu Y B, Wang J J, Shen J X, Jiang G S. Breeding and utilization of long-grain indica-japonica hybrid rice Zhehangyou K202[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(9): 2148-2151. (in Chinese with English abstract) | |
[8] | 张宏根, 王睿璇, 许作鹏, 刘巧泉, 严长杰, 梁国华, 周勇, 汤述翥, 顾铭洪. 长粒型中熟中粳稻新品种扬农粳1030的选育[J]. 江苏农业科学, 2021, 49 (4): 62-65 |
Zhang H G, Wang R X, Xu Z P, Liu Q Q, Yan C J, Liang G H, Zhou Y, Tang S Z, Gu M H. Breeding of Yangnongjing 1030, a long-grain middle-ripening middle-japonica rice variety[J]. Jiangsu Agricultural Sciences, 2021, 49(4): 62-65. (in Chinese with English abstract) | |
[9] | 朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55 (7): 1271-1283. |
Zhu D W, Zhang L P, Chen M X, Fang C Y, Yu Y H, Zhengx L, Shao Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China[J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. (in Chinese with English abstract) | |
[10] | 马会珍, 陈心怡, 王志杰, 朱盈, 蒋伟勤, 任高磊, 马中涛, 魏海燕, 张洪程, 刘国栋. 中国部分优质粳稻外观及蒸煮食味品质特征比较[J]. 中国农业科学, 2021, 54 (7): 1338-1353. |
Ma H Z, Chen X Y, Wang Z J, Zhu Y, Jiang W Q, Ren G L, Ma Z T, Wai H Y, Zhang H C, Liu G D. Analysis on appearance and cooking taste quality characteristics of some high quality japonica rice in China[J]. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353. (in Chinese with English abstract) | |
[11] | 周雷, 李二敬, 徐华山, 刘凯, 李培德, 游艾青. 利用分子标记鉴定长粒粳稻品种粒形相关基因的基因型[J]. 中国稻米, 2020, 26(6): 49-54. |
Zhou L, Li E J, Xu H S, Liu K, Li D P, You A Q. genotyping of 10 grain shape genes in seven long-grain japonica rice varieties by molecular marker[J]. China Rice, 2020, 26(6): 49-54. (in Chinese with English abstract) | |
[12] | Zhou Y, Miao J, Gu H Y, Peng X R, Leburu M, Yuan F H, Gu H W, Gao Y, Tao Y J, Zhu J Y, Gong Z Y, Yi C D, Gu M H, Yang Z F, Liang G H. Natural variations in SLG7 regulate grain shape in rice[J]. Genetics, 2015, 201(4): 1591-1599. |
[13] | Wang Y X, Xiong G S, Hu J, Yu H, Xu J, Fang Y X, Zeng L J, Xu E N, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[14] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[15] | 孟帅, 徐鹏, 张迎信, 王宏, 曹立勇, 程式华, 沈希宏. 利用CRISPR/Cas9技术编辑粒长基因GS3改善粳稻花时[J]. 中国水稻科学, 2018, 32 (2): 119-127. |
Meng S, Xu P, Zhang Y X, Wang H, Cao L Y, Cheng S H, Shen X H. CRISPR/Cas9-mediated editing of GS3 to improve flowering time in japonica rice[J]. Chinese Journal of Rice Science, 2018, 32 (2): 119-127. (in Chinese with English abstract) | |
[16] | 毛艇, 李鑫, 刘研, 张战, 钟顺成, 王诗宇, 赵一洲, 倪善君, 李旭. 聚合gs3、Pita及Pib基因创制长粒高抗稻瘟病核心粳稻种质[J]. 分子植物育种, 2023, 21(6): 1990-1998. |
Mao T, Li X, Liu Y, Zhang Z, Zhong S C, Wang S Y, Zhao Y Z, Ni S J, Li X. Pyramiding gs3, Pita and Pib genes to create core japonica rice germplasm with long grain shape and high blast resistance[J]. Molecular Plant Breeding, 2023, 21(6): 1990-1998. (in Chinese with English abstract) | |
[17] | Mao T, Zhu M D, Sheng Z H, Shao G N, Hu P S. Effects of grain shape genes editing on appearance quality of erect-panicle geng/japonica rice[J]. Rice, 2021, 14: 74. |
[18] | Dong H J, Zhao H, Li S L, Han Z M, Hu G, Liu C, Yang G Y, Wang G W, Xie W B, Xing Y Z. Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa)[J]. PLoS Genetics, 2018, 14(4): e1007323. |
[19] | Sun S Y, Wang T, Wang L L, Li X M, Jia Y C, Liu C, Huang X H, Xie W B, Wang X L. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9: 2523. |
[20] | 孟帅, 徐鹏, 王宏, 傅秀民, 曹立勇, 程式华, 沈希宏. 育成长粒杂交粳稻亲本的籼粳属性鉴别[J]. 分子植物育种, 2018, 16 (7): 2249-2254. |
Meng S, Xu P, Wang H, Fu X, Cao L Y, Cheng S H, Shen X H. Identification of subspecies for parents of developed long-grain hybrid japonica rice[J]. Molecular Plant Breeding, 2018, 16(7): 2249-2254. (in Chinese with English abstract) | |
[21] | Ren D Y, Ding C Q, Qian Q. Molecular bases of rice grain size and quality for optimized productivity[J]. Science Bulletin, 2023, 68(3): 314-350 |
[22] | Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K, Zhang X, Guo X P, Wang J L, Wang H Y, Wang J M. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3: 17043. |
[23] | Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication[D]. Nature Genetics, 2008, 40(8): 1023-1028 |
[24] | 郑义. 水稻稀穗突变体lax1抑制子的鉴定及功能分析[D]. 武汉: 华中农业大学, 2023. |
Zheng Y. Map-based cloning and functional analysis of SUPPRESSOR of lax1 in rice[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese with English abstract) | |
[25] | 陈专专. 水稻ALK和Wx不同等位基因组合的品质效应及其对高温的响应[D]. 扬州: 扬州大学, 2020. |
Chen Z Z. the quality effect of combination of different allele of rice ALK and Wx and its response to high temperature[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract) | |
[26] | Zhu M D, Liu Y Q, Jiao G A, Yu J M, Zhao R M, Lu A, Zhou W, Cao N, Wu J M, Hu S K, Sheng Z H, Wei X J, Zhao F L, Xie L H, Ahmad S, Lin Y J, Shao G N, Tang S H, Hu P S. The elite eating quality alleles Wxb and ALKb are regulated by OsDOF18 and coordinately improve head rice yield[J]. Plant Biotechnology Journal, 2024, 22(6): 1582-1595. |
[27] | 潘阳阳, 黄道强, 王重荣, 李宏, 周德贵, 王志东, 陈宜波, 赵雷, 龚蓉, 周少川. 香稻Badh2基因单倍型及香气成分 2-乙酰-1-吡咯啉代谢通路的研究进展[J]. 广东农业科学, 2021, 48(7): 9-16. |
Pan Y Y, Huang D Q, Wang C R, Li H, Zhou D G, Wang Z D, Chen Y B, Zhao L, Gong R, Zhou S C. Research advances of haplotype variation at Badh2 gene and 2-acetyl-1-pyrroline biosynthetic pathway in aromatic rice[J]. Guangdong Agricultural Sciences, 2021, 48(7): 9-16. (in Chinese with English abstract) | |
[28] | Shi W W, Yang Y, Chen S J, Xu M L. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties[J]. Molecular Breeding, 2008, 22: 185-192. |
[29] | 陈析丰, 梅乐, 冀占东, 张萍华, 顾志敏, 马伯军. 中国稻种资源中新抗白叶枯病基因的发掘. 浙江师范大学学报: 自然科版, 2020, 43(1): 8-12. |
Chen X F, Mei L, Ji Z D, Zhang P H, Gu Z M, Ma B J. Exploration of new bacterial-blight resistance genes from rice landrace resources in China[J]. Journal of Zhejiang Normal University: Natural Sciences, 2020, 43(1): 8-12. (in Chinese with English abstract) | |
[30] | Shi Y Q, Zhao G C, Xu X L, Li J Y. Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice[J]. Molecular Breeding, 2014, 33: 701-708. |
[31] | 高清, 张亚玲, 周弋力, 于连鹏, 聂强, 靳学慧. 黑龙江省粳稻品种稻瘟病主效抗性基因鉴定与抗性评价. 作物杂志, 2021(4): 59-66. |
Gao Q, Zhang Y L, Zhou Y L, Yu L P, Nie Q, Jin X H. Identification of major resistance genes and resistance evaluation to rice blast in japonica rice varieties in Heilongjiang Province[J]. Crops, 2021(4): 59-66. (in Chinese with English abstract) |
[1] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[2] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[3] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[4] | 刘慧敏, 周杰强, 胡远艺, 田妍, 雷斌, 李建武, 魏中伟, 唐文帮. 水稻小粒不育系新组合卓两优1126的高产特征[J]. 中国水稻科学, 2024, 38(2): 160-171. |
[5] | 兰金松, 庄慧. 水稻株型的分子机理研究进展[J]. 中国水稻科学, 2023, 37(5): 449-458. |
[6] | 黄涛, 王燕宁, 钟奇, 程琴, 杨朦朦, 王鹏, 吴光亮, 黄诗颖, 李才敬, 余剑峰, 贺浩华, 边建民. 利用染色体片段置换系群体定位和分析水稻粒重和粒型QTL[J]. 中国水稻科学, 2022, 36(2): 159-170. |
[7] | 朱玉君, 左紫薇, 张振华, 樊叶杨. 一种水稻微效QTL精细定位和克隆新途径[J]. 中国水稻科学, 2021, 35(4): 407-414. |
[8] | 康艺维, 陈玉宇, 张迎信. 水稻粒型基因克隆研究进展及育种应用展望[J]. 中国水稻科学, 2020, 34(6): 479-490. |
[9] | 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻[J]. 中国水稻科学, 2020, 34(5): 406-412. |
[10] | 唐文帮, 张桂莲, 邓化冰. 杂交水稻机械化制种的技术探索与实践[J]. 中国水稻科学, 2020, 34(2): 95-103. |
[11] | 刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民. 水稻粒型基因克隆和调控机制研究进展[J]. 中国水稻科学, 2018, 32(1): 1-11. |
[12] | 裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒宽基因GS5的功能标记开发和单倍型鉴定[J]. 中国水稻科学, 2016, 30(5): 487-492. |
[13] | 杨贤莉,王嘉宇*,刘丹,张玲,李晓楠,吕国依 . 沈农系列水稻高产品种及其衍生系的遗传结构分析[J]. 中国水稻科学, 2014, 28(5): 496-502. |
[14] | 李潇艳,强胜,宋小玲,蔡堃,戴伟民*. 江苏省杂草稻Rc基因的单体型分析[J]. 中国水稻科学, 2014, 28(3): 304-313. |
[15] | 张亚东1,2,张颖慧1,2,董少玲1,2 ,陈涛2 ,赵庆勇2 ,朱镇2 ,周丽慧2 ,姚姝2 ,赵凌2 ,于新2 ,王才林2,*. 特大粒水稻材料粒型性状的QTL检测[J]. 中国水稻科学, 2013, 27(2): 122-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||