中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 375-385.DOI: 10.16819/j.1001-7216.2024.230603
伏荣桃1,2, 陈诚1,2, 王剑1,2, 赵黎宇1, 陈雪娟1, 卢代华1,2,*()
收稿日期:
2023-06-16
修回日期:
2023-08-20
出版日期:
2024-07-10
发布日期:
2024-07-11
通讯作者:
*email: daihlfrt@126.com
基金资助:
FU Rongtao1,2, CHEN Cheng1,2, WANG Jian1,2, ZHAO Liyu1, CHEN Xuejuan1, LU Daihua1,2,*()
Received:
2023-06-16
Revised:
2023-08-20
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: daihlfrt@126.com
摘要:
【目的】 由稻曲病菌引起的稻曲病是一种世界性水稻真菌病害,该病严重威胁水稻的产量和品质。探明稻曲病菌的致病分子机制,可为制定稻曲病防治策略和抗病分子育种开辟新思路。【方法】 用稻曲病菌接种水稻幼穗,采用转录组和代谢组测序技术对接种后9 d显症的样本(S)和未接种的PXD25菌丝(CK)进行代谢组和转录组测序,以稻曲病菌菌株UV-8b基因组作为参考基因组进行对比,利用FPKM法计算基因表达量,以|log2fold change| ≥ 1且P≤0.05为条件筛选差异表达基因(DEG);以P≤0.05 且 VIP≥1 为标准筛选差异代谢物(DAM)。【结果】 转录组测序分析表明,S vs. CK 有6708个DEG,通过 GO 富集和 KEGG 代谢途经分析,将DEG划分为 GO 功能下的3708个词条、110条代谢途径;DEG中有91个转录因子,分属23个转录因子家族,包括bZIP、C6、C2H2等;分析显著富集代谢途径发现,线粒体自噬、次生代谢和氨基酸代谢等途径显著富集,基因表达量都发生显著变化,其中次生代谢途径中的差异表达基因都显著上调,推测这些基因在稻曲病菌致病中发挥重要作用。非靶代谢组共鉴定出392个差异代谢物(DAM),DAM分析发现丙氨酸、酪氨酸、组氨酸、蛋氨酸、半胱氨酸以及脂肪酸类物质(亚油酸、棕榈酸、月桂酸、肉豆蔻酸)等都显著积累。转录组和代谢组联合分析发现苯丙氨酸、酪氨酸、半胱氨酸和蛋氨酸等氨基酸代谢途径与淀粉和蔗糖等与糖代谢相关途径显著富集,表明这些代谢物和基因可能与稻曲病菌的致病性密切相关。【结论】 线粒体自噬、次生代谢和氨基酸代谢等代谢途径中DEG在稻曲病菌致病中发挥重要作用,丙氨酸、酪氨酸、组氨酸、蛋氨酸、半胱氨酸以及脂肪酸类物质等代谢物与稻曲病菌的致病性密切相关。
伏荣桃, 陈诚, 王剑, 赵黎宇, 陈雪娟, 卢代华. 转录组和代谢组联合分析揭示稻曲病菌的致病因子[J]. 中国水稻科学, 2024, 38(4): 375-385.
FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens[J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385.
Sample | Raw reads | Raw bases(G) | Clean reads | Clean bases(G) | Error rate (%) | Q20 (%) | Q30 (%) | GC content (%) | Total mapped (%) |
---|---|---|---|---|---|---|---|---|---|
S1 | 47 859 198 | 7.21 | 47 509 820 | 7.17 | 0.02 | 97.99 | 94.33 | 57.34 | 45 977 524 (96.77%) |
S2 | 48 693 622 | 7.33 | 48 321 368 | 7.30 | 0.03 | 97.71 | 93.64 | 57.25 | 46 762 014 (96.77%) |
S3 | 48 928 150 | 7.37 | 48 570 976 | 7.33 | 0.03 | 97.77 | 93.79 | 57.28 | 46 907 398 (96.57%) |
CK1 | 47 241 470 | 7.08 | 46 561 454 | 7.03 | 0.03 | 97.49 | 93.31 | 56.62 | 45 375 848 (97.45%) |
CK2 | 46 356 766 | 6.95 | 45 750 132 | 6.91 | 0.03 | 97.76 | 93.96 | 56.55 | 44 648 578 (97.59%) |
CK3 | 47 564 308 | 7.12 | 46 926 056 | 7.09 | 0.03 | 97.91 | 94.21 | 56.13 | 45 579 618 (97.13%) |
Total | 286 643 514 | 43.06 | 283 639 806 | 42.83 |
表1 样本测序数据质量控制数据统计
Table 1. Statistical quality analysis of transcriptome sequencing data
Sample | Raw reads | Raw bases(G) | Clean reads | Clean bases(G) | Error rate (%) | Q20 (%) | Q30 (%) | GC content (%) | Total mapped (%) |
---|---|---|---|---|---|---|---|---|---|
S1 | 47 859 198 | 7.21 | 47 509 820 | 7.17 | 0.02 | 97.99 | 94.33 | 57.34 | 45 977 524 (96.77%) |
S2 | 48 693 622 | 7.33 | 48 321 368 | 7.30 | 0.03 | 97.71 | 93.64 | 57.25 | 46 762 014 (96.77%) |
S3 | 48 928 150 | 7.37 | 48 570 976 | 7.33 | 0.03 | 97.77 | 93.79 | 57.28 | 46 907 398 (96.57%) |
CK1 | 47 241 470 | 7.08 | 46 561 454 | 7.03 | 0.03 | 97.49 | 93.31 | 56.62 | 45 375 848 (97.45%) |
CK2 | 46 356 766 | 6.95 | 45 750 132 | 6.91 | 0.03 | 97.76 | 93.96 | 56.55 | 44 648 578 (97.59%) |
CK3 | 47 564 308 | 7.12 | 46 926 056 | 7.09 | 0.03 | 97.91 | 94.21 | 56.13 | 45 579 618 (97.13%) |
Total | 286 643 514 | 43.06 | 283 639 806 | 42.83 |
图3 差异表达基因的GO和KEGG富集分析 A: GO中显著性富集前20条功能分类;B: KEGG前20条显著性富集代谢通路。
Fig. 3. GO and KEGG enrichment analysis of differentially expressed genes. A, The top 20 functional classes were significantly enriched in GO. B, The top 20 metabolic pathways of KEGG were significantly enriched.
转录因子 Transcription factor family | 上调 Up-regulated | 下周 Down-regulated | 合计 Total |
---|---|---|---|
bZIP transcription factor | 8 | 3 | 11 |
C6 transcription factor | 7 | 16 | 23 |
MADS-box | 1 | 0 | 1 |
C2H2 | 0 | 5 | 5 |
bHLH | 1 | 2 | 3 |
homeobox | 1 | 1 | 2 |
Zinc finger transcription factor | 1 | 1 | 2 |
GATA | 1 | 2 | 3 |
PHD | 0 | 1 | 1 |
Fungal specific transcription factor | 6 | 12 | 18 |
APSES | 1 | 1 | 2 |
binuclear zinc transcription factor | 1 | 1 | 2 |
transcription factor tos4 | 0 | 1 | 1 |
TFIII | 3 | 3 | 6 |
hoxa13 | 1 | 0 | 1 |
SipA3 | 1 | 1 | 2 |
G6G8.4 | 0 | 1 | 1 |
RNA polymerase II | 1 | 0 | 1 |
CCAAT | 0 | 1 | 1 |
activating transcription factor 7a | 1 | 1 | 2 |
atf21 | 1 | 0 | 1 |
Zn2Cys6 | 1 | 0 | 1 |
vib-1 | 1 | 0 | 1 |
Total | 38 | 53 | 91 |
表2 稻曲病菌侵染水稻后的转录因子变化情况
Table 2. Transcription factors change of U. virens after infection
转录因子 Transcription factor family | 上调 Up-regulated | 下周 Down-regulated | 合计 Total |
---|---|---|---|
bZIP transcription factor | 8 | 3 | 11 |
C6 transcription factor | 7 | 16 | 23 |
MADS-box | 1 | 0 | 1 |
C2H2 | 0 | 5 | 5 |
bHLH | 1 | 2 | 3 |
homeobox | 1 | 1 | 2 |
Zinc finger transcription factor | 1 | 1 | 2 |
GATA | 1 | 2 | 3 |
PHD | 0 | 1 | 1 |
Fungal specific transcription factor | 6 | 12 | 18 |
APSES | 1 | 1 | 2 |
binuclear zinc transcription factor | 1 | 1 | 2 |
transcription factor tos4 | 0 | 1 | 1 |
TFIII | 3 | 3 | 6 |
hoxa13 | 1 | 0 | 1 |
SipA3 | 1 | 1 | 2 |
G6G8.4 | 0 | 1 | 1 |
RNA polymerase II | 1 | 0 | 1 |
CCAAT | 0 | 1 | 1 |
activating transcription factor 7a | 1 | 1 | 2 |
atf21 | 1 | 0 | 1 |
Zn2Cys6 | 1 | 0 | 1 |
vib-1 | 1 | 0 | 1 |
Total | 38 | 53 | 91 |
图4 重要代谢途径差异表达基因分析 A: 线粒体自噬途径;B: 次生代谢途径;C: 氨基酸代谢途径。
Fig. 4. Analysis of differentially expressed genes involved in important metabolic pathways A, Mitophagy pathway; B, Secondary metabolic pathway; C, Amino acid metabolic pathway.
图5 差异代谢物分析 A:差异代谢物火山图;B: KEGG前20条显著性富集代谢通路。
Fig. 5. Differential metabolite analysis A, Volcanic map of differential metabolites; B, The top 20 metabolic pathways of KEGG were significantly enriched.
图7 差异表达基因和差异代谢物数据联合分析 A: 韦恩图;B:代谢通路分析。
Fig. 7. Integrated analysis of differentially expressed gene and differentially accumulated metabolite data A, Venn diagram; B, Metabolic pathway analysis.
[1] | 陈旭, 邱结华, 熊萌, 舒亚洲, 黄世文, 寇艳君. 稻曲病研究进展[J]. 中国稻米, 2019, 25(5): 30-36. |
Chen X, Qiu J H, Xiong M, Shu Y Z, Huang S W, Kou Y J. Research progress of rice false smut[J]. China Rice, 2019, 25(5): 30-36. (in Chinese with English abstract) | |
[2] | Sun W X, Fan J, Fang A F, Li Y J, Tariqjaveed M, Li D Y. Ustilaginoidea virens: Insights into an emerging rice pathogen[J]. Annual Review of Phytopathology, 2020, 58: 363-385. |
[3] | Wang X, Wang J, Lai D, Wang W, Dai J, Zhou L. Ustiloxin G, a new cyclopeptide mycotoxin from rice false smut balls[J]. Toxins, 2017, 9: 54. |
[4] | Meng J J, Sun W B, Mao Z L, Dan X, Wang X, Lu S, Yang L, Zhou L, Zhang G. Main ustilaginoidins and their distribution in rice false smut balls[J]. Toxins, 2015, 7(10): 4023-4034. |
[5] | 薛守宇, 朱涛, 李冰冰, 李涛涛. 转录组和代谢组联合分析在植物中的应用研究[J]. 山西农业大学学报, 2022, 42(3): 1-13. |
Xue S Y, Zhu T, Li B B, Li T T. Application research of combined transcriptome with metabolome in plants[J]. Journal of Shanxi Agricultural University, 2022, 42(3): 1-13. (in Chinese with English abstract) | |
[6] | Cai X Z, Chen M Y, Lu Y P, Guo Z J, Zeng Z H, Liao J, Zeng H. Metabolomics and transcriptomics unravel the mechanism of browning resistance in Agaricus bisporus[J]. PLoS ONE, 2022, 17(3): e0255765. |
[7] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
Wang Y N, Chen J J, Bian Q Q, Hu L L, Zhang L, Yin Y M, Qiao S C, Cao G Z, Kang Z H, Yang Y F. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweet potato under shade stress[J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. (in Chinese with English abstract) | |
[8] | Zhang Y, Xiao J L, Yang K, Wang Y Q, Tian Y, Liang Z Z. Transcriptomic and metabonomic insights into the biocontrol mechanism of Trichoderma asperellum M45a against watermelon Fusarium wilt[J]. PLoS One, 2022, 17(8): e0272702. |
[9] | Chao J, Jin J, Wang D, Han Y, Zhu R S, Zhu Y G. Cytological and transcriptional dynamics analysis of host plant revealed stage specific biological processes related to compatible rice Ustilaginoidea virens interaction[J]. PLoS One, 2014, 9: e91391. |
[10] | Fu R T, Chen C, Wang J, Liu Y, Zhao LY, Lu D H. Transcription profiling of rice panicle in response to crude toxin extract of Ustilaginoidea virens[J]. Frontiers in Microbiology, 2022, 13: 701489. |
[11] | Fu RT, Chen C, Wang J, Liu Y, Zhao L Y, Lu D H. Diversity analysis of the rice false smut pathogen Ustilaginoidea virens in Southwest China[J]. Journal of Fungi, 2022, 8: 1204. |
[12] | Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency[J]. Annals of Statistics, 2001, 29: 1165-1188. |
[13] | Goldman S J, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria[J]. Mitochondrion, 2010, 10: 309-315. |
[14] | Cairns G, Thumiah-Mootoo M, Burelle Y, Khacho M. Mitophagy: A new player in stem cell biology[J]. Biology (Basel), 2020, 9: 481. |
[15] | Zhong K, Li X, Le X, Kong X, Zhang H, Zheng X, Wang P, Zhang Z. Mo Dnm1 dynamin mediating peroxisomal and mitochondrial fission in complex with MoFis1 and MoMdv1 is important for development of functional appressorium in Magnaporthe oryzae[J]. PLoS Pathology, 2016, 12: e1005823. |
[16] | Chen Y, Zuo R F, Zhu Q, Sun Y, Li M Y, Dong Y H. MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae[J]. Fungal Genetics and Biology, 2014, 67: 51-57. |
[17] | 李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H、4CL研究新进展[J]. 生物信息学, 2007(4): 187-189. |
Li L, Zhao Y, Ma J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway[J]. Chinese Journal of Bioinformatics, 2007(4): 187-189. (in Chinese with English abstract) | |
[18] | Goodwin S, McPherson J D, McCombie W R. Coming of age: Ten years of next-generation sequencing technology[J]. Nature Reviews Genetics, 2016, 17(6): 333-351. |
[19] | Pirih N, Kunej T. Toward a taxonomy for multi-omics science terminology development for whole genome study approaches by omics technology and hierarchy[J]. Omics, 2017, 21(1): 1-16. |
[20] | 屈劲松, 王毓富, 王睿, 刘月冉, 谷丽凡, 周鹏, 阴伟晓, 罗朝喜. 稻曲病菌bZIP转录因子UvbZIP12的功能研究[J]. 植物病理学报, 2022, 52(4): 555-564. |
Qu J S, Wang Y F, Wang R, Liu Y R, Gu L F, Zhou P, Yin W X, Luo C X. Functional study on bZIP transcription factor UvbZIP12 in Ustilaginoidea virens[J]. Acta Phytopathologica Sinica, 2022, 52(4): 555-564. (in Chinese with English abstract) | |
[21] | 曹健, 刘沙玉, 王地广, 柳志强. 胶孢炭疽菌C6型转录因子Cgctf1的功能分析[J]. 生物学杂志, 2022, 39(6): 41-46. |
Cao J, Liu S Y, Wang D G, Liu Z Q. Functional analysis of C6-type transcription factor Cgctf1 in Colletotrichum gloeosporioides[J]. Journal of Biology, 2022, 39(6): 41-46. (in Chinese with English abstract) | |
[22] | Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V. Oxidative stress-induced autophagy in plants: The role of mitochondria[J]. Plant Physiology and Biochemistry, 2012, 59: 11-19. |
[23] | Rohde J, Heitman J, Cardenas M E. The TOR kinases link nutrient sensing to cell growth[J]. Journal of Biological Chemistry, 2001, 276(13): 9583-9586. |
[24] | Ding J L, Peng Y J, Chu X L, Feng M G, Ying S H. Autophagy-related gene Bb ATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana[J]. Environmental Microbiology, 2018, 20: 3309-3324. |
[25] | Kou Y, He Y, Qiu J, Shu Y, Yang F, Deng Y, Naqvi N I. Mitochondrial dynamics and mitophagy are necessary for proper invasive growth in rice blast[J]. Molecular Plant Pathology, 2019, 20: 1147-1162. |
[26] | Meng S, Jagernath J S, Luo C X, Shi H B, Kou Y J. MoWhi2 mediates mitophagy to regulate conidiation and pathogenesis in Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(10): 5311. |
[27] | Donofrio N M, Oh Y, Lundy R, Pan H, Brown D E, Jeong J S, Coughlan S J, Mitchell T K, Dean R A. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea[J]. Fungal Genetics and Biology, 2006, 43(9): 605-617. |
[28] | Chen Y, Zuo R, Zhu Q, Liu X, Chen X, Wang Y, Zhang X, Li L, Zhang Y, Han J, Xu J, Li H, Li M, Li S, Wang J, Liang G, Xu X, Zhang Z. Mo Lys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae[J]. Fungal Genetics and Biology, 2014, 67: 51-57. |
[29] | Du Y, Zhang H, Hong L, Wang Y, Chen X, Li S, Zhang Z. Acetolactate synthases MoIlv2 and MoIlv6 are required for infection related morphogenesis in Magnaporthe oryzae[J]. Molecular Plant Pathology, 2013, 14(9): 870-884. |
[1] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[2] | 伏荣桃, 王剑, 陈诚, 赵黎宇, 陈雪娟, 卢代华. 水稻幼穗响应稻曲病菌毒素胁迫早期的转录组分析[J]. 中国水稻科学, 2022, 36(5): 447-458. |
[3] | 崔欢, 高巧丽, 罗立新, 杨靖, 陈淳, 郭涛, 刘永柱, 黄永相, 王慧, 陈志强, 肖武名. 水稻萌发期激素信号转导和谷胱甘肽代谢转录分析[J]. 中国水稻科学, 2021, 35(6): 554-564. |
[4] | 刘维, 陆展华, 卢东柏, 王晓飞, 王石光, 薛皦, 何秀英. 水稻小穗簇生基因OsCL6的定位及候选基因分析[J]. 中国水稻科学, 2021, 35(3): 238-248. |
[5] | 潘阳阳, 陈宜波, 王重荣, 李宏, 黄道强, 周德贵, 王志东, 赵雷, 龚蓉, 周少川. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2): 121-129. |
[6] | 沈枫, 蒋洪波, 刘博, 张秀茹, 刘军, 解文孝, 姚继攀, 马亮. 优质食味粳稻辽粳433和越光糙米代谢产物差异分析[J]. 中国水稻科学, 2020, 34(4): 359-367. |
[7] | 许赵蒙, 李利华, 高晓庆, 袁正杰, 李莘, 田旭丹, 王岚岚, 瞿绍洪. 转Pi9抗稻瘟病基因水稻株系的比较转录组分析[J]. 中国水稻科学, 2020, 34(3): 245-255. |
[8] | 傅友强, 于晓莉, 杨旭健, 沈宏. 干湿交替诱导水稻根表铁膜形成的基因表达谱分析[J]. 中国水稻科学, 2017, 31(2): 133-148. |
[9] | 丁慧, 俞咪娜, 王亚会, 于俊杰, 尹小乐, 薄惠文, 黄星, 刘永锋. 稻曲病菌T-DNA插入突变体B2510的插入位点分析[J]. 中国水稻科学, 2016, 30(5): 541-551. |
[10] | 王亚会, 刘永锋, 陆凡, 俞咪娜, 黄磊, 郑梦婷, 于俊杰, 尹小乐. 稻曲病菌T-DNA插入突变体B1464插入位点分析[J]. 中国水稻科学, 2015, 29(3): 311-318. |
[11] | 高阳, 薛大伟, 钱前, 高振宇. 二代测序技术在水稻基因组学和转录组学研究中的应用[J]. 中国水稻科学, 2015, 29(2): 208-214. |
[12] | 饶玉春1,2,#,丁正中1,3,#,陈析丰1,曾大力2,马伯军1,顾志敏1,* . 稻曲病菌UvHog1基因的克隆及表达分析[J]. 中国水稻科学, 2014, 28(1): 9-14. |
[13] | 杨阳1,刘金华1,高其康1,2,* . 水稻CYP81A6基因干扰对其他基因表达的影响[J]. 中国水稻科学, 2013, 27(5): 447-456. |
[14] | 顾志敏1,2,丁正中1,陈析丰1,郭龙彪2 ,曾大力2 ,钱前2,* ,马伯军1,* . 实时荧光定量PCR筛选稻曲病菌内参基因[J]. 中国水稻科学, 2012, 26(5): 615-618. |
[15] | 郑静1,2 ,张震2,* ,姜华2 ,王艳丽2 ,柴荣耀2 ,邱海萍2 ,毛雪琴2 ,王教瑜2 ,杜新法2 ,赖朝晖3 ,孙国昌2,*. 稻曲病菌分生孢子实时PCR定量检测方法的建立及初步应用[J]. 中国水稻科学, 2012, 26(4): 500-505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||