中国水稻科学 ›› 2024, Vol. 38 ›› Issue (4): 335-349.DOI: 10.16819/j.1001-7216.2024.230410
• 综述与专论 • 下一篇
收稿日期:
2023-07-27
修回日期:
2023-10-27
出版日期:
2024-07-10
发布日期:
2024-07-11
通讯作者:
*email: yzhang@yangtzeu.edu.cn
基金资助:
Received:
2023-07-27
Revised:
2023-10-27
Online:
2024-07-10
Published:
2024-07-11
Contact:
*email: yzhang@yangtzeu.edu.cn
摘要:
水稻是全球最重要的粮食作物之一,其生长过程需要大量水分。随着全球气候变暖,干旱成为其产量的重要限制因素。因此,本文结合近些年的研究成果从形态(根系和地上部)、生理(气孔、蒸腾作用、光合作用和水分利用率)、生化(植物激素、脯氨酸等渗透调节剂和抗氧化剂)及分子水平(抗旱基因的表达水平)综述了水稻在干旱胁迫下的自我保护机制,可为全面了解水稻抗旱机制和选育抗旱品种提供参考。
郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349.
GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation[J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349.
基因 Gene | 组织特异性表达 Tissue-specific expression | 编码蛋白 Coding protein | 调控影响 Effect | 作用方式 Function | 文献 Ref. | |
---|---|---|---|---|---|---|
OsbZIP42 | 小穗 Spikelet | bZIP转录因子 bZIP transcription factor | 正向调控 Positive regulation | 正调控ABA信号传导 Regulate ABA signaling positively | [ | |
OsbZIP62 | 根 Root | bZIP转录因子 bZIP transcription factor | 正向调控 Positive regulation | 正调控ABA信号传导和氧化应激反应 Regulate ABA signaling and oxidative stress responses positively | [ | |
OsNAC2d | 成熟籽粒、叶片、花药 Grain, leaf and anther | NAC转录因子 NAC transcription factor | 正向调控 Positive regulation | 受干旱胁迫诱导 Induced by drought stress | [ | |
OsNAC006 | 叶、茎、叶鞘 Leaves, stem and sheath | NAC转录因子 NAC transcription factor | 正向调控 Positive regulation | 抗旱性增强 Enhance drought resistance | [ | |
OsMYBR57 | — | MYB转录因子 MYB transcription factor | 正向调控 Positive regulation | 调控干旱相关bZIP家族基因表达 Regulate drought related bZIP family genes | [ | |
OsS1Fa1 | 叶、茎和根 Leaves, stem, root | S1Fa转录因子 S1Fa transcription factor | 正向调控 Positive regulation | 受干旱胁迫显著诱导 Significantly induced by drought stress | [ | |
OsDi19 | — | 锌指转录因子 Zinc finger transcription factor | 正向调控 Positive regulation | 调控气孔关闭 Regulate stomatal closure | [ | |
OsTF1L | 芽的外表皮细胞和维管 系统Epidermal cell layer and vascular of buds | HD-Zip转录因子 HD-Zip transcription factor | 正向调控 Positive regulation | 正调控木质素合成和气孔关闭 Regulate lignin synthesis and stomatal closure | [ | |
OsWRKY11 | — | WRKY转录因子 WRKY transcription factor | 正向调控 Positive regulation | 提高了防御相关基因和抗旱基因的表达 Improve expression of defense related and drought resistance genes | [ | |
OsSPL3 | 根、茎 Root, stem | SPL转录因子 SPL transcription factor | 正向调控 Positive regulation | 受干旱胁迫诱导 Induced by drought stress | [ | |
OsDUF6 | 叶 Leaves | 细胞壁相关蛋白 Cell wall proteins | 正向调控 Positive regulation | 可能通过减少根曲率角,提高深根比 Perhaps by reducing the root curvature angle and increasing the deep root ratio | [ | |
BCAT4 | — | 支链氨基酸转氨酶 Branched-chain amino acid transaminase | 负向调控 Negative regulation | 抑制地上部渗透调节剂和抗氧化剂的积累 Inhibit the accumulation of aboveground osmotic regulators and antioxidants | [ | |
OsRK2 | — | 类受体蛋白激酶 Receptor-like protein kinase | 正向调控 Positive regulation | 被干旱胁迫显著诱导,提高ABA水平 Significantly induced by drought stress, improve ABA level | [ | |
OsMFT1 | — | 成花素样蛋白 Anthocyanin-like protein | 正向调控 Positive regulation | OsMFT1与干旱相关转录因子互作 OsMFT1 interacts with drought related transcription factors | [ | |
OsRab7 | — | 小分子GTP结合蛋白 Small GTP binding protein | 正向调控 Positive regulation | 调节渗透压物质、抗氧化剂和干旱响应基因的表达Regulate drought stress-responsive genes expression, osmolytes and antioxidants | [ | |
OsNAR2.1 | 根Root | 硝酸盐转运蛋白伴侣 Partner protein for high-affinity nitrate transport | 负向调控 Negative regulation | 被干旱胁迫显著诱导 Significantly induced by drought stress | [ | |
OsDIS1 | — | SINA型E3泛素连接酶 SINA E3 ubiquitin ligase | 负向调控 Negative regulation | 降低抗氧化系统活性 Reduce antioxidant system activity | [ | |
OsPYL6 | 生殖期的根与剑叶 Root and flag leaf at reproductive stage | ABA受体蛋白 ABA receptor protein | 正向调控 Positive regulation | 提高ABA含量 Increase ABA content | [ | |
OsFTL4 | 节、叶鞘 Node, sheath | 磷脂酰乙醇胺结合蛋白 Phosphatidylethanolamine- binding protein | 负向调控 Negative regulation | 调节气孔导度 Adjust stomatal conductance | [ | |
DWA1 | 微管组织与表皮层 Vascular tissues and epidermal layers | 角质层蜡质累积蛋白 Wax accumulation protein | 正向调控 Positive regulation | 被干旱胁迫显著诱导 Significantly induced by drought stress | [ |
表1 抗旱相关基因及其作用方式
Table 1. Drought resistance related genes and their modes of action
基因 Gene | 组织特异性表达 Tissue-specific expression | 编码蛋白 Coding protein | 调控影响 Effect | 作用方式 Function | 文献 Ref. | |
---|---|---|---|---|---|---|
OsbZIP42 | 小穗 Spikelet | bZIP转录因子 bZIP transcription factor | 正向调控 Positive regulation | 正调控ABA信号传导 Regulate ABA signaling positively | [ | |
OsbZIP62 | 根 Root | bZIP转录因子 bZIP transcription factor | 正向调控 Positive regulation | 正调控ABA信号传导和氧化应激反应 Regulate ABA signaling and oxidative stress responses positively | [ | |
OsNAC2d | 成熟籽粒、叶片、花药 Grain, leaf and anther | NAC转录因子 NAC transcription factor | 正向调控 Positive regulation | 受干旱胁迫诱导 Induced by drought stress | [ | |
OsNAC006 | 叶、茎、叶鞘 Leaves, stem and sheath | NAC转录因子 NAC transcription factor | 正向调控 Positive regulation | 抗旱性增强 Enhance drought resistance | [ | |
OsMYBR57 | — | MYB转录因子 MYB transcription factor | 正向调控 Positive regulation | 调控干旱相关bZIP家族基因表达 Regulate drought related bZIP family genes | [ | |
OsS1Fa1 | 叶、茎和根 Leaves, stem, root | S1Fa转录因子 S1Fa transcription factor | 正向调控 Positive regulation | 受干旱胁迫显著诱导 Significantly induced by drought stress | [ | |
OsDi19 | — | 锌指转录因子 Zinc finger transcription factor | 正向调控 Positive regulation | 调控气孔关闭 Regulate stomatal closure | [ | |
OsTF1L | 芽的外表皮细胞和维管 系统Epidermal cell layer and vascular of buds | HD-Zip转录因子 HD-Zip transcription factor | 正向调控 Positive regulation | 正调控木质素合成和气孔关闭 Regulate lignin synthesis and stomatal closure | [ | |
OsWRKY11 | — | WRKY转录因子 WRKY transcription factor | 正向调控 Positive regulation | 提高了防御相关基因和抗旱基因的表达 Improve expression of defense related and drought resistance genes | [ | |
OsSPL3 | 根、茎 Root, stem | SPL转录因子 SPL transcription factor | 正向调控 Positive regulation | 受干旱胁迫诱导 Induced by drought stress | [ | |
OsDUF6 | 叶 Leaves | 细胞壁相关蛋白 Cell wall proteins | 正向调控 Positive regulation | 可能通过减少根曲率角,提高深根比 Perhaps by reducing the root curvature angle and increasing the deep root ratio | [ | |
BCAT4 | — | 支链氨基酸转氨酶 Branched-chain amino acid transaminase | 负向调控 Negative regulation | 抑制地上部渗透调节剂和抗氧化剂的积累 Inhibit the accumulation of aboveground osmotic regulators and antioxidants | [ | |
OsRK2 | — | 类受体蛋白激酶 Receptor-like protein kinase | 正向调控 Positive regulation | 被干旱胁迫显著诱导,提高ABA水平 Significantly induced by drought stress, improve ABA level | [ | |
OsMFT1 | — | 成花素样蛋白 Anthocyanin-like protein | 正向调控 Positive regulation | OsMFT1与干旱相关转录因子互作 OsMFT1 interacts with drought related transcription factors | [ | |
OsRab7 | — | 小分子GTP结合蛋白 Small GTP binding protein | 正向调控 Positive regulation | 调节渗透压物质、抗氧化剂和干旱响应基因的表达Regulate drought stress-responsive genes expression, osmolytes and antioxidants | [ | |
OsNAR2.1 | 根Root | 硝酸盐转运蛋白伴侣 Partner protein for high-affinity nitrate transport | 负向调控 Negative regulation | 被干旱胁迫显著诱导 Significantly induced by drought stress | [ | |
OsDIS1 | — | SINA型E3泛素连接酶 SINA E3 ubiquitin ligase | 负向调控 Negative regulation | 降低抗氧化系统活性 Reduce antioxidant system activity | [ | |
OsPYL6 | 生殖期的根与剑叶 Root and flag leaf at reproductive stage | ABA受体蛋白 ABA receptor protein | 正向调控 Positive regulation | 提高ABA含量 Increase ABA content | [ | |
OsFTL4 | 节、叶鞘 Node, sheath | 磷脂酰乙醇胺结合蛋白 Phosphatidylethanolamine- binding protein | 负向调控 Negative regulation | 调节气孔导度 Adjust stomatal conductance | [ | |
DWA1 | 微管组织与表皮层 Vascular tissues and epidermal layers | 角质层蜡质累积蛋白 Wax accumulation protein | 正向调控 Positive regulation | 被干旱胁迫显著诱导 Significantly induced by drought stress | [ |
[1] | Sahebi M, Hanafi M M, Rafii M Y, Mahmud T M M, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family[J]. BioMed Research International, 2018(1): 3158474. |
[2] | Ge Y, Bai G, Stoerger V, Schnable J C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2016, 127: 625-632. |
[3] | Bouman B A M, Humphreys E, Tuong T P, Barker R. Rice and water[J]. Advances in Agronomy, 2007, 92: 187-237. |
[4] | Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. |
[5] | 谢建坤, 胡标林, 万勇, 张弢, 李霞, 刘如龙, 黄运红, 戴亮芳, 罗向东. 东乡普通野生稻与栽培稻苗期抗旱性的比较[J]. 生态学报, 2010, 30(6): 1665-1674. |
Xie J K, Hu B L, Wan Y, Zhang T, Li X, Liu R L, Huang Y H, Dai L F, Luo X D. Comparison of the drought resistance characters at seedling stage between Dongxiang common wild rice and cultivars[J]. Acta Ecologica Sinica, 2010, 30(6): 1665-1674. (in Chinese with English abstract) | |
[6] | 罗利军, 梅捍卫, 余新桥, 刘鸿艳, 冯芳君. 节水抗旱稻及其发展策略[J]. 科学通报, 2011, 56(11): 804-811. |
Luo L J, Mei H W, Yu X Q, Liu H Y, Feng F J. Water-saving and drought-resistance rice and its development strategy[J]. Chinese Science Bulletin, 2011, 56(11): 804-811. (in Chinese with English abstract) | |
[7] | 罗利军. 节水抗旱稻的培育与产业发展[J]. 中国稻米, 2022, 28(5): 1-6. |
Luo L J. Breeding and industrial development of water-saving and drought-resistance rice[J]. China Rice, 2022, 28(5): 1-6. (in Chinese with English abstract) | |
[8] | Yan X Y, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23: GB2002. |
[9] | Aspinall D, Paleg L G. The Physiology and Biochemistry of Drought Resistance in Plants[M]. New York: Academic Press, 1981: 205-240. |
[10] | Pandey V, Shukla A. Acclimation and tolerance strategies of rice under drought stress[J]. Rice Science, 2015, 22(4): 147-161. |
[11] | 杜云峰. 不同根系类型水稻对干旱胁迫的响应差异及其生理基础研究[D]. 武汉: 华中农业大学, 2022. |
Du Y F. Study on the differential responses of rice with different root types to drought stress and their physiological basis[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[12] | Hazman M, Brown K M. Progressive drought alters architectural and anatomical traits of rice roots[J]. Rice, 2018, 11: 1-16. |
[13] | Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: Decades’efforts and roads ahead[J]. Science China Life Sciences, 2022: 1-60. |
[14] | Schneider H M, Lor V S N, Hanlon M T, Perkins A, Kaeppler S M, Borkar A N, Bhosale R, Zhang X, Rodriguez J, Bucksch A, Bennett M J, Brown K M, Lynch J P. Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15[J]. Plant, Cell & Environment, 2022, 45(3): 837-853. |
[15] | Blum A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress[J]. Field Crops Research, 2009, 112(2-3): 119-123. |
[16] | Nahar S, Kalita J, Sahoo L, Tanti B. Morphophysiological and molecular effects of drought stress in rice[J]. Annual Plant Science, 2016, 5(9): 1409-1416. |
[17] | Dinneny J R. Developmental responses to water and salinity in root systems[J]. Annual Review of Cell and Developmental Biology, 2019, 35: 239-257. |
[18] | Kawai T, Shibata K, Akahoshi R, Nishiuchi S, Takahashi H, Nakazono M, Kojima T, Nosaka-Takahashi M, Sato Y, Toyoda A, Lucob-Agustin N, Kano-Nakata M, Suralta R R, Niones J M, Chen Y, Siddique K H M, Yamauchi A, Inukai Y. WUSCHEL-related homeobox family genes in rice control lateral root primordium size[J]. Proceedings of the National Academy of Sciences, 2022, 119(1): e2101846119. |
[19] | Reynoso M A, Borowsky A T, Pauluzzi G C, Yeung E, Zhang J, Formentin E, Velasco J, Cabanlit S, Duvenjian C, Prior M J, Akmakjian G Z, Deal R B, Sinha N R, Brady S M, Girke T, Bailey-Serres J. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice[J]. Developmental Cell, 2022, 57(9): 1177-1192. |
[20] | Kumar A, Sengar R S, Pathak R K, Singh A K. Integrated approaches to develop drought-tolerant rice: Demand of era for global food security[J]. Journal of Plant Growth Regulation, 2023, 42(1): 96-120. |
[21] | Wang L, Yu C, Chen C, He C, Zhu Y, Huang W. Identification of rice Di19 family reveals OsDi19-4 involved in drought resistance[J]. Plant Cell Reports, 2014, 33: 2047-2062. |
[22] | Fukai S, Cooper M. Development of drought-resistant cultivars using physiomorphological traits in rice[J]. Field Crops Research, 1995, 40(2): 67-86. |
[23] | Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps[J]. Molecular Breeding, 2013, 31: 749-766. |
[24] | Singh C M, Binod K, Suhel Mehandi S M, Kunj Chandra K C. Effect of drought stress in rice: A review on morphological and physiological characteristics[J]. Trends in Biosciences, 2012, 5(4): 261-265. |
[25] | Okami M, Kato Y, Kobayashi N, Yamagishi J. Morphological traits associated with vegetative growth of rice (Oryza sativa L.) during the recovery phase after early-season drought[J]. European Journal of Agronomy, 2015, 64: 58-66. |
[26] | Farooq M, Wahid A, Lee D J, Ito O, Siddique K H. Advances in drought resistance of rice[J]. Critical Reviews in Plant Sciences, 2009, 28(4): 199-217. |
[27] | Lafitte H R, Courtois B, Arraudeau M. Genetic improvement of rice in aerobic systems: Progress from yield to genes[J]. Field Crops Research, 2002, 75(2-3): 171-190. |
[28] | Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress[J]. F1000Research, 2016, 5: 1554. |
[29] | Sánchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: A review[J]. Global Change Biology, 2014, 20(2): 408-417. |
[30] | Caine R S, Yin X, Sloan J, Harrison E L, Mohammed U, Fulton T, Fulton T, Biswal A K, Dionora J, Chater C C, Coe R A, Bandyopadhyay A, Murchie E H, Swarup R, Quick W P, Gray J E. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. New Phytologist, 2019, 221(1): 371-384. |
[31] | Pitaloka M K, Caine R S, Hepworth C, Harrison E L, Sloan J, Chutteang C, Phunthong C, Nongngok R, Toojinda T, Ruengphayak S, Arikit S, Gray J E, Vanavichit A. Induced genetic variations in stomatal density and size of rice strongly affects water use efficiency and responses to drought stresses[J]. Frontiers in Plant Science, 2022: 13. |
[32] | Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie J M, Blatt M R. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth[J]. Science, 2019, 363(6434): 1456-1459. |
[33] | Lawson T, Vialet-Chabrand S. Speedy stomata, photosynthesis and plant water use efficiency[J]. New Phytologist, 2019, 221(1): 93-98. |
[34] | Zhu G, Gu L, Shi Y, Chen H, Liu Y, Lu F, Ren Z, Wang Y, Lu H, Tabassum A, Zhou G. Plant hydraulic conductivity determines photosynthesis in rice under PEG-induced drought stress[J]. Pakistan Journal of Botany, 2021, 53(2): 409-417. |
[35] | Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, Hayashi H, Nishiyama Y. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II[J]. Molecular Microbiology, 2007, 65(4): 936-947. |
[36] | Pieters A J, El Souki S. Effects of drought during grain filling on PSII activity in rice[J]. Journal of Plant Physiology, 2005, 162(8): 903-911. |
[37] | 陈伟, 蔡昆争, 陈基宁. 硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响[J]. 生态学报, 2012, 32(8): 2620-2628. |
Chen W, Cai K Z, Chen J N. Effects of silicon application and drought stress on photosynthetic traits and mineral nutrient absorption of rice leaves[J]. Acta Ecologica Sinica, 2012, 32(8): 2620-2628. (in Chinese with English abstract) | |
[38] | Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage[J]. Journal of Plant Physiology, 2012, 169(4): 336-344. |
[39] | Niu X, Zhai N, Yang X, Su M, Liu C, Wang L, Yuan Q, Pei X. Identification of drought-resistant genes in Shanlan upland rice[J]. Agriculture, 2022, 12(2): 150. |
[40] | Nahakpam S. Chlorophyll stability: a better trait for grain yield in rice under drought[J]. Indian Journal of Ecology, 2017, 44(4): 77-82. |
[41] | 李瑾瑾, 张强, 方炎明. 植物叶黄素循环及其光保护作用的研究进展[J]. 安徽农业科学, 2016, 44(5): 1-3+17. |
Li J J, Zhang Q, Fang Y M. Research progress of xanthophy II cycle and its function in light protection[J]. Journal of Anhui Agricultural Sciences, 2016, 44(5): 1-3+17. (in Chinese with English abstract) | |
[42] | 王仁雷, 华春, 刘友良. 叶绿体中的水-水循环[J]. 植物生理学通讯, 2001(5): 468-470. |
Wang R L, Hua C, Liu Y L. The water-water cycle in chloroplasts[J]. Plant Physiology Communications, 2001(5): 468-470. (in Chinese with English abstract) | |
[43] | 董桃杏, 蔡昆争, 曾任森. 茉莉酸甲酯(MeJA)对干旱胁迫下水稻幼苗光合作用特性的影响[J]. 生态环境学报, 2009, 18(5): 1872-1876. |
Dong T X, Cai K Z, Zeng R S. Effects of methyl jasmonate(MeJA) on photosynthetic traits of rice seedlings under drought stress[J]. Ecology and Environmental Sciences, 2009, 18(5): 1872-1876. (in Chinese with English abstract) | |
[44] | 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用[J]. 作物学报, 2011, 37(1): 112-118. |
Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice[J]. Acta Agronomica Sinica, 2011, 37(1): 112-118. (in Chinese with English abstract) | |
[45] | Blum A, Arkin G F. Sorghum root growth and water-use as affected by water supply and growth duration[J]. Field Crops Research, 1984, 9: 131-142. |
[46] | Acevedo-Siaca L G, Coe R, Quick W P, Long S P. Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms[J]. Journal of Experimental Botany, 2021, 72(4): 1282-1294. |
[47] | 马丙菊, 常雨晴, 景文疆, 邵士梅, 侯丹平, 袁莹, 刘梦, 竹张耗. 水稻水分高效利用的机理研究进展[J]. 中国稻米, 2019, 25(3): 15-20. |
Ma B J, Chang Y Q, Jing W J, Shao S M, Hou D P, Yuan Y, Liu M, Zhu Z H. Research progress on the mechanism of high water use efficiency in rice[J]. China Rice, 2019, 25(3): 15-20. (in Chinese with English abstract) | |
[48] | Ibrahim A, Abaidoo R C, Fatondji D, Opoku A. Integrated use of fertilizer micro-dosing and Acacia tumida mulching increases millet yield and water use efficiency in Sahelian semi-arid environment[J]. Nutrient Cycling in Agroecosystems, 2015, 103: 375-388. |
[49] | Martin B, Tauer C G, Lin R K. Carbon isotope discrimination as a tool to improve water-use efficiency in tomato[J]. Crop Science, 1999, 39(6): 1775-1783. |
[50] | Flexas J, Díaz-Espejo A, Conesa M A, Coopman R E, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants[J]. Plant, Cell & Environment, 2016, 39(5): 965-982. |
[51] | Sack L, John G P, Buckley T N. ABA accumulation in dehydrating leaves is associated with decline in cell volume, not turgor pressure[J]. Plant Physiology, 2018, 176(1): 489-495. |
[52] | Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling[J]. Trends in plant Science, 2010, 15(7): 395-401. |
[53] | Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B. ABA transport and transporters[J]. Trends in Plant Science, 2013, 18(6): 325-333. |
[54] | Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23(10): 680-694. |
[55] | Teng K, Li J, Liu L, Han Y, Du Y, Zhang J, Sun H, Zhao Q. Exogenous ABA induces drought tolerance in upland rice: The role of chloroplast and ABA biosynthesis -related gene expression on photosystem Ⅱ during PEG stress[J]. Acta Physiologiae Plantarum, 2014, 36: 2219-2227. |
[56] | Westgate M E, Passioura J B, Munns R. Water status and ABA content of floral organs in drought-stressed wheat[J]. Functional Plant Biology, 1996, 23(6): 763-772. |
[57] | Jaleel C A, Manivannan P, Wahid A, Farooq M, Al-Juburi H J, Somasundaram R, Panneerselvam R. Drought stress in plants: a review on morphological characteristics and pigments composition[J]. International Journal of Agriculture and Biology, 2009, 11(1): 100-105. |
[58] | Sellin A. Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress[J]. Tree Physiology, 2001, 21(12-13): 879-888. |
[59] | Chimenti C A, Marcantonio M, Hall A J. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases[J]. Field Crops Research, 2006, 95(2-3): 305-315. |
[60] | Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant, Cell & Environment, 2017, 40(1): 4-10. |
[61] | Kishor P B K, Sangam S, Amrutha R N, Laxmi P S, Naidu K R, Rao K S, Rao S, Reddy K J, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance[J]. Current Science, 2005: 424-438. |
[62] | Hayat S, Hayat Q, Alyemeni M N, Wani A S, Pichtel J, Ahmad A. Role of proline under changing environments: A review[J]. Plant Signaling & Behavior, 2012, 7(11): 1456-1466. |
[63] | 蒋明义, 郭绍川, 张学明. 氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J]. 植物生理学报, 1997(4):347-352. |
Jiang M Y, Guo S C, Zhang X M. Proline accumulation in rice seedlings exposed to oxidative stress in relation to antioxidation[J]. Acta Phytophysiologica Sinica, 1997(4): 347-352. (in Chinese with English abstract) | |
[64] | Fahramand M, Mahmoody M, Keykha A, Noori M, Rigi K. Influence of abiotic stress on proline, photosynthetic enzymes and growth[J]. International Research Journal of Applied and Basic Sciences, 2014, 8(3): 257-265. |
[65] | Wang X S, Zhu H B, Jin G L, Liu H L, Wu W R, Zhu J. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.)[J]. Plant Science, 2007, 172(2): 414-420. |
[66] | 何宝坤, 李德全. 植物渗调蛋白的研究进展[J]. 生物技术通报, 2002(2): 6-10. |
He B K, Li D Q. Research progress in plant osmotins[J]. Biotechnology Bulletin, 2002(2): 6-10. (in Chinese with English abstract) | |
[67] | 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2): 7-13. |
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Research progress on plant heat shock protein[J]. Biotechnology Bulletin, 2016, 32(2): 7-13. (in Chinese with English abstract) | |
[68] | Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324. |
[69] | 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J]. 植物生态学报, 2008(2): 491-500. |
Cai K Z, Wu X Z, Luo S M. Effect of water stress on osmolytes at different growth stages in rice leaves and roots[J]. Journal of Plant Ecology, 2008(2): 491-500. (in Chinese with English abstract) | |
[70] | Bouchereau A, Aziz A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: recent development[J]. Plant Science, 1999, 140(2): 103-125. |
[71] | 杨建昌, 张亚洁, 张建华, 王志琴, 朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004(11): 1069-1075. |
Yang J C, Zhang Y J, Zhang J H, Wang Z Q, Zhu Q S. Changes in contents of polyamines in the flag leaf and their relationship with drought resistance of rice cultivars under water deficit stress[J]. Acta Agronomica Sinica, 2004(11): 1069-1075. (in Chinese with English abstract) | |
[72] | Hanfrey C, Sommer S, Mayer M J, Burtin D, Michael A J. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity[J]. The Plant Journal, 2001, 27(6): 551-560. |
[73] | Takahashi T, Kakehi J I. Polyamines: ubiquitous polycations with unique roles in growth and stress responses[J]. Annals of Botany, 2010, 105(1): 1-6. |
[74] | Martin-Tanguy J. Metabolism and function of polyamines in plants: Recent development (new approaches)[J]. Plant Growth Regulation, 2001, 34: 135-148. |
[75] | Zhu M D, Zhang M, Gao D J, Zhou K, Tang S J, Zhou B, Lv Y M. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels[J]. International Journal of Molecular Sciences, 2020, 21(5): 1857. |
[76] | 徐云姬, 唐树鹏, 简超群, 蔡文璐, 张伟杨, 王志琴, 杨建昌. 多胺与乙烯对水稻籽粒灌浆、粒重和品质的调控作用[J]. 中国水稻科学, 2022, 36(4): 327-335. |
Xu Y J, Tang S P, Jian C Q, Cai W L, Zhang W Y, Wang Z Q, Yang J C. Roles of polyamines and ethylene in grain filling, grain weight and quality of rice[J]. Chinese Journal of Rice Science, 2022, 36(4): 327-335. (in Chinese with English abstract) | |
[77] | Møller I M, Jensen P E, Hansson A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58: 459-481. |
[78] | Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2016, 170(1): 429-443. |
[79] | Shehab G G, Ahmed O K, El-Beltagi H S. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.)[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2010, 38(1): 139-148. |
[80] | 杨喆, 唐才宝, 钱婧雅, 周伟江, 陈光辉, 王悦. 外源6-BA和BR对干旱胁迫下水稻分蘖期光合色素含量及抗氧化系统的影响[J]. 分子植物育种, 2021, 19(8): 2733-2739. |
Yang Z, Tang C B, Qian J Y, Zhou W J, Chen G H, Wang Y. Effects of exogenous 6-BA and BR on photosynthetic pigment content and antioxidant system of rice at the tillering stage under drought stress[J]. Molecular Plant Breeding, 2021, 19(8): 2733-2739. (in Chinese with English abstract) | |
[81] | 赵宏伟, 王新鹏, 于美芳, 沙汉景, 贾琰, 于天聪, 邹德堂. 分蘖期干旱胁迫及复水对水稻抗氧化系统及脯氨酸影响[J]. 东北农业大学学报, 2016, 47(2): 1-7. |
Zhao H W, Wang X P, Yu M F, Sha H J, Jia Y, Yu T C, Zou D T. Effect of drought stress and rewatering on antioxidant system and proline in rice during tillering stage[J]. Journal of Northeast Agricultural University, 2016, 47(2): 1-7. (in Chinese with English abstract) | |
[82] | Yu B, Liu J, Wu D, Liu Y, Cen W, Wang S, Li R, Luo J. Weighted gene coexpression network analysis-based identification of key modules and hub genes associated with drought sensitivity in rice[J]. BMC Plant Biology, 2020, 20(1): 1-21. |
[83] | Hasanuzzaman M, Bhuyan M H M B, Anee T I, Anee T I, Parvin K, Nahar K, Mahmud J A, Fujita M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress[J]. Antioxidants, 2019, 8(9): 384. |
[84] | Jacobs M, Angenon G, Hermans C, Thu T, Roosens N H. Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance[J]. Plant Science, 2003, 165(5): 1059-1068. |
[85] | Lou D, Lu S, Chen Z, Lin Y, Yu D, Yang X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice[J]. BMC Plant Biology, 2023, 23(1): 53. |
[86] | Ouyang S Q, Liu Y F, Liu P, Lei G, He S, Ma B, Zhang W, Zhang J, Chen S. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants[J]. The Plant Journal, 2010, 62(2): 316-329. |
[87] | Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PloS One, 2013, 8(2): e57472. |
[88] | Yin X, Huang L, Wang M, Cui Y, Xia X. OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Molecular Breeding, 2017, 37: 1-13. |
[89] | Hu T, Zeng H, He S, Wu Y, Wang G, Huang X. Molecular analysis of OsLEA4 and its contributions to improve E. coli viability[J]. Applied Biochemistry and Biotechnology, 2012, 166: 222-233. |
[90] | He S, Tan L, Hu Z, Chen G, Wang G, Hu T. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L[J]. Molecular Genetics and Genomics, 2012, 287: 39-54. |
[91] | Kusumi K, Hirotsuka S, Kumamaru T, Iba K. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein[J]. Journal of Experimental Botany, 2012, 63(15): 5635-5644. |
[92] | Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis F J. Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice[J]. New Phytologist, 2016, 209(3): 1040-1048. |
[93] | Wu F, Sheng P, Tan J, Chen X, Lu G, Ma W, Heng Y, Lin Q, Zhu S, Wang J, Wang J, Guo X, Zhang X, Lei C, Wan J. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice[J]. Journal of Experimental Botany, 2015, 66(1): 271-281. |
[94] | Hou Y J, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan C, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu J. Type one protein phosphatase 1 and its regulatory protein inhibitor 2 negatively regulate ABA signaling[J]. PLoS Genetics, 2016, 12(3): e1005835. |
[95] | Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice[J]. The Plant Cell, 2016, 28(9): 2161-2177. |
[96] | Zhu G, Ye N, Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis[J]. Plant and Cell Physiology, 2009, 50(3): 644-651. |
[97] | Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8’-hydroxylase in rice[J]. Plant and Cell Physiology, 2007, 48(2): 287-298. |
[98] | 崔喜艳, 张莹莹, 周莹. 植物响应干旱胁迫转录因子研究进展[J]. 吉林农业大学学报, 2022, 44(5): 505-511. |
Cui X Y, Zhang Y Y, Zhou Y. Research progress of plant transcription factors in response to drought stress[J]. Journal of Jilin Agricultural University, 2022, 44(5): 505-511. (in Chinese with English abstract) | |
[99] | Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333. |
[100] | Guo J L, Chen X G, Xing N Z, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615. |
[101] | Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. |
[102] | Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66: 675-683. |
[103] | Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103(35): 12987-12992. |
[104] | Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6803-6817. |
[105] | Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Do Choi Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiology, 2010, 153(1): 185-197. |
[106] | Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice[J]. PloS One, 2014, 9(3): e92913. |
[107] | Gao J, Zhao Y, Zhao Z, Liu W, Jiang C, Li J, Zhang Z, Zhang H, Zhang Y, Wang X, Sun X, Li Z. RRS1 shapes robust root system to enhance drought resistance in rice[J]. New Phytologist, 2023, 238(3): 1146-1162. |
[108] | Peng Y, Tang N, Zou J, Ran J, Chen X. Rice MYB transcription factor OsMYB1R1 negatively regulates drought resistance[J]. Plant Growth Regulation, 2023, 99(3): 515-525. |
[109] | Tang Y, Bao X, Liu K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice[J]. Frontiers in Plant Science, 2019, 10: 168. |
[110] | Jian L, Kang K, Choi Y, Suh M C, Paek N C. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis[J]. The Plant Journal, 2022, 112(2): 339-351. |
[111] | Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
[112] | Lim C, Kang K, Shim Y, Yoo S C, Paek N C. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J]. Plant Physiology, 2022, 188(4): 1900-1916. |
[113] | Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements[J]. Plant Physiology, 2013, 163(4): 1868-1882. |
[114] | Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice[J]. Plant Molecular Biology, 2012, 80: 241-253. |
[115] | Franco-Zorrilla J M, López-Vidriero I, Carrasco J L, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes[J]. Proceedings of the National Academy of Sciences, 2014, 111(6): 2367-2372. |
[116] | 赵慧. 水稻耐旱性调控网络关键调节基因的克隆及OsERF65的功能研究[D]. 武汉: 华中农业大学, 2020. |
Zhao H. Cloning of key regulatory genes in the drought tolerance regulatory network of rice and functional study of OsERF65[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[117] | Jin Y, Pan W, Zheng X, Cheng X, Liu M, Ma H, Ge X. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 2018, 98: 51-65. |
[118] | Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Do Choi Y, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 2016, 172(1): 575-588. |
[119] | Hou X, Xie K, Yao J, Qi Z, Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance[J]. Proceedings of the National Academy of Sciences, 2009, 106: 6410-6415. |
[120] | Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice[J]. Scientific Reports, 2016, 6(1): 30264. |
[121] | Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]. Planta, 2007, 226: 1007-1016. |
[122] | Joo J, Lee Y H, Song S I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice[J]. Planta, 2019, 249: 1521-1533. |
[123] | Yang S, Xu K, Chen S, Li T, Xia H, Chen L, Liu H, Luo L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19: 1-15. |
[124] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
Li Z W, Mo Z Y, Sun C Y, Shi Y, Shang P, Lin W W, Fan K, Lin W X. Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress[J]. Acta Agronomica Sinica, 2023, 49(2): 365-376. (in Chinese with English abstract) | |
[125] | Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y. Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice[J]. International Journal of Molecular Sciences, 2020, 21(7): 2288. |
[126] | Yang L, Chen Y, Xu L, Wang J, Qi H, Guo J, Zhang L, Shen J, Wang H, Zhang F, Xie L, Zhu W, Lü P, Qian Q, Yu H, Song S. The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice[J]. Molecular Plant, 2022, 15(7): 1227-1242. |
[127] | Kim S I, Lee K H, Kwak J S, Kwon D H, Song J T, Seo H S. Overexpression of rice OsS1Fa1 gene confers drought tolerance in Arabidopsis[J]. Plants, 2021, 10(10): 2181. |
[128] | 穆天骄. OsDi19调控水稻耐旱的功能研究[D]. 山东大学, 2022. |
Mu T J. Functional study on OsDi19 regulation of rice drought tolerance[D]. Jinan: Shandong University, 2022. | |
[129] | Bang S W, Lee D K, Jung H, Chung P J, Kim Y S, Choi Y D, Suh J W, Kim J K. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance[J]. Plant Biotechnology Journal, 2019, 17(1): 118-131. |
[130] | Pandit E, Panda R K, Sahoo A, Pani D R, Pradhan S K. Genetic relationship and structure analysis of root growth angle for improvement of drought avoidance in early and mid-early maturing rice genotypes[J]. Rice Science, 2020, 27(2): 124-132. |
[131] | 杨诗勤, 敖雁, 张晔, 冒小妹, 彭运鹏, 张婷婷, 任胜杰. 水稻干旱响应基因OsSPL3的克隆及功能初步分析[J]. 分子植物育种: 1-10. |
Yang S Q, Ao Y, Zhang Y, Mao X M, Peng Y P, Zhang T T, Ren S J. Cloning and functional analysis of rice drought response gene OsSPL3[J]. Molecular Plant Breeding: 1-10. (in Chinese with English abstract) | |
[132] | 李朝阳. 水-陆稻分化基因OsDUF6抗旱分子机制研究[D]. 武汉: 华中农业大学, 2022. |
Li C Y. Molecular mechanism study on the drought resistance of the water-land rice differentiation gene OsDUF6[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[133] | 陶宝杰, 李思崎, 景凝浩, 沈月, 吕冰, 刘立军, 陈云. 水稻BCAT4基因突变株幼苗对PEG模拟干旱胁迫的响应[J]. 西北植物学报, 2022, 42(10): 1691-1699. |
Tao B J, Li S Q, Jing N H, Shen Y, Lü B, Liu L J, Chen Y. Response of BCAT4 mutant seedlings to PEG simulated drought stress in rice[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(10): 1691-1699. (in Chinese with English abstract) | |
[134] | 刘芳菲. 水稻LRR-RLK基因OsRK2耐受干旱及盐胁迫的功能研究[D]. 济南: 山东大学, 2020. |
Liu F F. Functional study on the tolerance of the rice LRR-RLK gene OsRK2 to drought and salt stress[D]. Jinan: Shandong University, 2020. (in Chinese with English abstract) | |
[135] | Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice[J]. Molecular Plant, 2021, 14(8): 1297-1311. |
[136] | El-Esawi M A, Alayafi A A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice[J]. Genes, 2019, 10(1): 56. |
[137] | Chen J, Qi T, Hu Z, Zhu L, Iqbal M F, Xu G, Fan X. OsNAR2.1 positively regulates drought tolerance and grain yield under drought stress conditions in rice[J]. Frontiers in Plant Science, 2019, 10: 197. |
[138] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
Yang M, Lin Y F, Dai Y S, Pan S J, Peng W Y, Yan M X, Li W, Wang B, Dai L Y. OsDIS1 negatively regulates rice drought tolerance through antioxidant pathways[J]. Biotechnology Bulletin, 2023, 39(2): 88-95. (in Chinese with English abstract) | |
[139] | Santosh Kumar V V, Yadav S K, Verma R K, Shrivastava S, Ghimire O, Pushkar S, Rao M, Kumar T, Chinnusamy V. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms[J]. Journal of Experimental Botany, 2021, 72(4): 1411-1431. |
[140] | Gu H, Zhang K, Chen J, Gull S, Chen C, Hou Y, Li X, Miao J, Zhou Y, Liang G. OsFTL4, an FT-like gene, regulates flowering time and drought tolerance in rice (Oryza sativa L.)[J]. Rice, 2022, 15(1): 47. |
[141] | Zhu X, Xiong L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J]. Proceedings of the National Academy of Sciences, 2013, 110(44): 17790-17795. |
[142] | Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Kazuko Ono, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9): 1097-1102. |
[143] | Zheng B S, Yang L, Mao C Z, Huang Y J, Wu P. Mapping QTLs for morphological traits under two water supply conditions at the young seedling stage in rice[J]. Plant Science, 2008, 175(6): 767-776. |
[144] | Ali M L, Pathan M S, Zhang J, Bai G, Sarkarung S, Nguyen H T. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice[J]. Theoretical and Applied Genetics, 2000, 101: 756-766. |
[145] | 姜雪, 马孝松, 罗利军, 刘鸿艳. 水稻苗期模拟干旱胁迫条件下表型性状QTL定位[J]. 作物杂志, 2016(5): 31-37. |
Jiang X, Ma X S, Luo L J, Liu H Y. QTL Mapping of phenotypic traits in rice seedlings under simulated drought stress conditions[J]. Crops, 2016(5): 31-37. (in Chinese) | |
[146] | 张宛阳. 关联分析挖掘水稻产量及抗旱性状相关QTL和基因[D]. 合肥: 安徽农业大学, 2019. |
Zhang W Y. Association analysis for mining QTLs and genes related to rice yield and drought resistance traits[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese with English abstract) | |
[147] | Zhao Y, Zhang H, Xu J, Jiang C, Yin Z, Xiong H, Xie J, Wang X, Zhu X, Li Y, Zhao W, Rashid M, Li J, Wang W, Fu B, Ye G, Guo Y, Hu Z, Li Z, Li Z. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions[J]. PLoS Genetics, 2018, 14(8): e1007521. |
[148] | Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J]. Genes & Development, 2009, 23(15): 1805-1817. |
[149] | Huang L, Chen L, Wang L, Rao Y, Ren D, Dai L, Gao Y, Zou W, Lu X, Zhang G, Zhu L, Hu J, Chen G, Shen L, Dong G, Gao Z, Guo L, Qian Q, Zeng D. A Nck-associated protein 1-like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice[J]. The Plant Journal, 2019, 98(5): 884-897. |
[150] | Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, Peng Y, Li Z. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, 13(1): 4265. |
[151] | Arab M M, Marrano A, Abdollahi-Arpanahi R, Leslie C A, Cheng H, Neale D B, Vahdati K. Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut[J]. Journal of Experimental Botany, 2020, 71(3): 1107-1127. |
[152] | Guan Y S, Serraj R, Liu S H, Xu J L, Ali J, Wang W S, Venus E, Zhu L H, Li Z K. Simultaneously improving yield under drought stress and non-stress conditions: A case study of rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2010, 61(15): 4145-4156. |
[153] | 杨波, 陈亮, 楼巧君, 李铁梅, 徐小艳, 罗利军. 栽培稻种质资源的深根比鉴定评价[J]. 植物遗传资源学报, 2022, 23(6): 1626-1635. |
Yang B, Chen L, Lou Q J, Li T M, Xu X Y, Luo L J. Evaluation of cultivated rice germplasm resources for deep rooting[J]. Journal of Plant Genetic Resources, 2022, 23(6): 1626-1635. (in Chinese with English abstract) | |
[154] | 罗维钢, 黄忠华, 李春力, 吴家法. “薄、浅、湿、晒”与节水控灌两种灌溉模式对水稻耗水量和产量的影响[J]. 广西水利水电, 2020(5): 1-4. |
Luo W G, Huang Z H, Li C L, Wu J F. The impact of two irrigation modes, namely "thin, shallow, wet, and sunlight" and water-saving controlled irrigation on water consumption and yield of rice[J]. Guangxi Water Resources and Hydropower, 2020(5): 1-4. (in Chinese) |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点 [J]. 中国水稻科学, 2024, 38(5): 544-554. |
[7] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[8] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[13] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[14] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[15] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||