中国水稻科学 ›› 2024, Vol. 38 ›› Issue (3): 290-302.DOI: 10.16819/j.1001-7216.2024.230910
魏倩倩1, 汪玉磊2, 孔海民2, 徐青山1, 颜玉莲1, 潘林1, 迟春欣1, 孔亚丽1, 田文昊1, 朱练峰1, 曹小闯1, 张均华1,*(), 朱春权1,*()
收稿日期:
2023-09-20
修回日期:
2023-11-22
出版日期:
2024-05-10
发布日期:
2024-05-13
通讯作者:
*email:zhangjunhua@caas.cn;
zhuchunquan@caas.cn
基金资助:
WEI Qianqian1, WANG Yulei2, KONG Haimin2, XU Qingshan1, YAN Yulian1, PAN Lin1, CHI Chunxin1, KONG Yali1, TIAN Wenhao1, ZHU Lianfeng1, CAO Xiaochuang1, ZHANG Junhua1,*(), ZHU Chunqun1,*()
Received:
2023-09-20
Revised:
2023-11-22
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email:zhangjunhua@caas.cn;
zhuchunquan@caas.cn
摘要:
【目的】究基于施硫肥提高水稻体内硫化氢(H2S)生成缓解水稻在酸性土壤中铝(Al)毒害的栽培方式及其内在机制。【方法】以Al敏感品种Kasalath为试验材料,设置CK,CK+S(硫肥),CK+NaHS(H2S供体),Al,Al+S,Al+NaHS六个盆栽处理,通过测定不同时期水稻体内H2S含量、Al含量、抗氧化系统酶活性,分蘖期根系和光合作用相关指标,明确外源施加硫肥通过调控水稻体内H2S生成缓解Al毒的机制。 【结果】 与Al处理相比,Al+S处理显著提高水稻体内H2S含量,叶片中的H2S含量在分蘖期和齐穗期分别增加了19.27%和34.99%;根部H2S含量在分蘖期、齐穗期和成熟期分别增加了39.72%、21.08%和30.73%。相比Al处理,Al+S处理显著促进了分蘖期水稻根系的生长,提高了水稻的光合作用能力,同时降低了不同时期水稻根茎叶中的Al含量,在分蘖期分别下降了40.98%、28.47%和24.18%;齐穗期下降了14.58%、50.30%和13.17%;成熟期下降了14.44%、29.78%和8.70%。进一步研究发现,Al+S处理显著增强了水稻体内抗氧化酶(SOD、CAT、APX、POD)的活性,降低了水稻体内过氧化氢(H2O2)、丙二醛(MDA)、超氧阴离子(O2−·)含量,增加了与细胞质Al在液泡中进行分室相关的基因OsALS1以及与修复被Al破坏的细胞壁相关基因OsSTAR1和OsSTAR2的相对表达量。同时,外源施加硫肥还通过调控土壤pH值降低水稻根际土中交换态Al、无机吸附态Al和水溶态Al的含量,增加Al的水合物和氢氧化物的含量。Al+NaHS处理具有同样的效果。【结论】 外源增施硫肥能够通过提高水稻体内的H2S含量缓解Al对水稻根系生长和光合作用的抑制,提高抗氧化系统酶活性降低Al对水稻的过氧化损伤,同时促进液泡对水稻细胞质Al的区室化作用,降低细胞壁对Al的吸附或改变土壤中Al的形态,最终降低水稻根系内的Al含量来缓解Al对水稻生长的抑制作用。
魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302.
WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer[J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302.
基因Gene | 序列Sequence (5′-3′) |
---|---|
OsHistone-R | AACCGCAAAATCCAAAGAACG |
OsHistone-F | GGTCAACTTGTTGATTCCCCTCT |
OsALS1-F | GGTCGTCAGTCTCTGCCTTCTCO |
OsALS1-R | CCTCCCCATCATTTTCATTTGT |
OsSTAR1-F | TCGCATTGGCTCGCACCCT |
OsSTAR1-R | TCGTCTTCTTCAGCCGCACGAT |
OsSTAR2-F | ACCTCTTCATGGTCACCGTCG |
OsSTAR2-R | CCTCAGCTTCTTCATCGTCACC |
表1 本研究所选的引物及其序列
Table 1. Primers selected for this study and their sequences
基因Gene | 序列Sequence (5′-3′) |
---|---|
OsHistone-R | AACCGCAAAATCCAAAGAACG |
OsHistone-F | GGTCAACTTGTTGATTCCCCTCT |
OsALS1-F | GGTCGTCAGTCTCTGCCTTCTCO |
OsALS1-R | CCTCCCCATCATTTTCATTTGT |
OsSTAR1-F | TCGCATTGGCTCGCACCCT |
OsSTAR1-R | TCGTCTTCTTCAGCCGCACGAT |
OsSTAR2-F | ACCTCTTCATGGTCACCGTCG |
OsSTAR2-R | CCTCAGCTTCTTCATCGTCACC |
图1 不同处理下水稻体内H2S含量的变化图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。TS:分蘖期;HS:齐穗期;MS:成熟期。CK:0.12 g/kg KCl;CK+S: 0.12 g/kg K2SO4代替KCl;CK+NaHS:0.12 g/kg KCl,每周加10 mL 10 μmol/L NaHS;Al:2.5 g/kg AlCl3和0.12 g/kg KCl混在土中;Al+S:2.5 g/kg AlCl3、0.12 g/kg K2SO4代替KCl混在土中;Al+NaHS:2.5 g/kg AlCl3、0.12 g/kg KCl混在土中,每周加10 mL 10 μmol/L NaHS。下同。
Fig. 1. Changes of H2S content in rice under different treatments Different letters in the figure mean significant difference in the results by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage; HS, Full heading stage; MS, Mature stage. CK, 0.12 g/kg KCl; CK+S, KCl was replaced by 0.12 g/kg K2SO4;CK+NaHS, 0.12 g/kg KCl; 10 mL 10 μmol/L NaHS per week, Al, 2.5 g/kg AlCl3 was mixed with soil; 0.12 g/kg KCl, Al+S: 2.5 g/kg AlCl3 was mixed with soil; KCl was replaced by 0.12 g/kg K2SO4; Al+NaHS, 2.5 g/kg AlCl3 + 0.12 g/kg KCl(mixed with soil); 10 mL 10 μmol/L NaHS was applied per week. The same below.
处理 Treatment | 根总长 Total root length(cm) | 根平均直径 Average root diameter(mm) | 根总面积 Total root area(cm²) | 根总体积 Total volume of roots(cm3) | 根尖计数 Total root tip counts |
---|---|---|---|---|---|
CK | 5326.61±67.90 b | 1.48±0.16 a | 1779.40±80.11 b | 49.37±7.015 b | 33449±412 ab |
CK+S | 5363.48±7.31 b | 1.37±0.16 ab | 1775.80±81.29 b | 53.21±3.95 b | 29847±603 b |
CK+NaHS | 5373.04±79.76 b | 1.30±0.04 abc | 1526.82±93.32 c | 43.98±3.56 b | 30219±175 b |
Al | 3356.06±105.96 d | 1.06±0.03 c | 1052.38±7.75 d | 27.03±7.10 c | 20640±448 c |
Al+S | 6107.49±21.07 a | 1.17±0.15 bc | 2480.62±165.94 a | 71.50±7.90 a | 35210±4190 a |
Al+NaHS | 3559.97±139.96 c | 1.43±0.06 ab | 1779.40±80.11 b | 45.27±3.82 b | 23117±881 c |
表2 外源施加硫肥对水稻根系生长的影响
Table 2. Effects of S fertilizer application on rice root growth
处理 Treatment | 根总长 Total root length(cm) | 根平均直径 Average root diameter(mm) | 根总面积 Total root area(cm²) | 根总体积 Total volume of roots(cm3) | 根尖计数 Total root tip counts |
---|---|---|---|---|---|
CK | 5326.61±67.90 b | 1.48±0.16 a | 1779.40±80.11 b | 49.37±7.015 b | 33449±412 ab |
CK+S | 5363.48±7.31 b | 1.37±0.16 ab | 1775.80±81.29 b | 53.21±3.95 b | 29847±603 b |
CK+NaHS | 5373.04±79.76 b | 1.30±0.04 abc | 1526.82±93.32 c | 43.98±3.56 b | 30219±175 b |
Al | 3356.06±105.96 d | 1.06±0.03 c | 1052.38±7.75 d | 27.03±7.10 c | 20640±448 c |
Al+S | 6107.49±21.07 a | 1.17±0.15 bc | 2480.62±165.94 a | 71.50±7.90 a | 35210±4190 a |
Al+NaHS | 3559.97±139.96 c | 1.43±0.06 ab | 1779.40±80.11 b | 45.27±3.82 b | 23117±881 c |
处理 Treatment | 净光合速率 Pn(µmol·m−2s−1) | 胞间CO2浓度 Ci(mmol·mol−1) | 蒸腾速率 Tr(μmol·m−2s−1) | 气孔导度 Gs(μmol·m−2s−1) |
---|---|---|---|---|
CK | 13.51±0.30 a | 325.08±3.55 ab | 9.80±0.42 a | 384.64±21.84 a |
CK+S | 13.19±0.87 a | 315.18±5.36 bc | 9.21±0.70 a | 361.63±14.37 b |
CK+NaHS | 12.98±1.00 a | 313.5±0.02 bc | 9.50±0.53 a | 355.15±6.50 b |
Al | 6.66±0.13 d | 284.75±7.54 c | 3.64±0.31 d | 223.69±2.11 d |
Al+S | 8.44±0.05 c | 304.69±3.24 b | 4.94±0.63 c | 251.93±10.34 c |
Al+NaHS | 12.51±0.06 a | 334.13±6.60 a | 6.73±1.06 b | 356.34±3.11 b |
表3 施加硫肥对水稻光合指标的影响
Table 3. Effects of S fertilizer application on photosynthetic indexes of rice
处理 Treatment | 净光合速率 Pn(µmol·m−2s−1) | 胞间CO2浓度 Ci(mmol·mol−1) | 蒸腾速率 Tr(μmol·m−2s−1) | 气孔导度 Gs(μmol·m−2s−1) |
---|---|---|---|---|
CK | 13.51±0.30 a | 325.08±3.55 ab | 9.80±0.42 a | 384.64±21.84 a |
CK+S | 13.19±0.87 a | 315.18±5.36 bc | 9.21±0.70 a | 361.63±14.37 b |
CK+NaHS | 12.98±1.00 a | 313.5±0.02 bc | 9.50±0.53 a | 355.15±6.50 b |
Al | 6.66±0.13 d | 284.75±7.54 c | 3.64±0.31 d | 223.69±2.11 d |
Al+S | 8.44±0.05 c | 304.69±3.24 b | 4.94±0.63 c | 251.93±10.34 c |
Al+NaHS | 12.51±0.06 a | 334.13±6.60 a | 6.73±1.06 b | 356.34±3.11 b |
图2 外源施加硫肥对水稻体内光合色素含量的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。
Fig. 2. Effects of S fertilizer application on photosynthetic pigment contents in rice Different letters in the figure mean significant difference in the results by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage.
图3 外源施加硫肥对水稻不同生育期根、茎和叶中Al含量的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。
Fig. 3. Effects of S fertilizer application on Al contents in roots, stems and leaves of rice at different growth stages Different letters in the figure mean significant difference in the results by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage; HS, Full heading stage; MS, Mature stage.
图4 外源施加硫肥对根际土中不同Al形态和pH的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。TS:分蘖期,HS:齐穗期,MS:成熟期。
Fig. 4. Effects of S application on the changes of Al form and pH in rhizosphere soil Different letters in the figure mean significant difference in the results by the analysis of variance (p<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage, HS, Full heading stage, MS, Mature stage. Alw,Water soluble aluminum; Alo, Organic combined aluminum; Alh, Humic acid aluminum; Aloh,Aluminum of hydrous oxide and hydroxide; Alino, Inorganic adsorption aluminum; Alex, Exchangeable aluminum.
图5 外源施加硫肥对不同生育期水稻根和叶中O2−·、MDA和H2O2含量的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。
Fig. 5. Effects of S fertilizer application on contents of O2−·, MDA and H2O2 in roots and leaves of rice at different growth stages Different letters in the figure indicate significant difference in the results by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage; HS, Full heading stage; MS, Mature stage.
图6 外源施加硫肥对不同生育期水稻根和叶中抗氧化酶活性的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。
Fig. 6. Effects of S fertilizer on the activities of antioxidant enzymes in root and leaf of rice at different growth stages Different letters in the figure indicate significant difference in the results by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage, HS, Full heading stage, MS, Mature stage.
图7 外源施加硫肥对不同生育期水稻体内OsALS1、OsSTAR1和OsSTAR2相对表达量的影响图中不同的字母表示方差分析下结果差异显著(P<0.05),数值为平均值±标准偏差(n=3)。
Fig. 7. Effects of exogenous application of S fertilizer on the relative expression levels of OsALS1, OsSTAR1 and OsSTAR2 in rice at different growth stages Different letters indicate significant difference by the analysis of variance (P<0.05), and the values are mean ± standard deviation (n=3). TS, Tillering stage; HS, Full heading stage; MS, Mature stage.
[1] | Kochian L V, Hoekenga O A, Piñeros M A. How do crop plants tolerate acid soils: Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annual Review of Plant Biology, 2004, 55: 459-493. |
[2] | Zhu C Q, Zhang J H, Sun LM, Zhu L F, Abliz B, Hu W J, Zhong C, Bai Z G, Sajid H, Cao X C, Jin Q Y. Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice[J]. Frontiers in Plant Science, 2018, 9: 294 |
[3] | Yan L, Riaz M, Liu J Y, Min Y, Jiang C C. The aluminum tolerance and detoxification mechanisms in plants: Recent advances and prospects[J]. Critical Reviews in Environmental Science and Technology, 2021, 6: 1491-1527. |
[4] | Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat: Ⅱ. Oxalic acid detoxifies aluminum internally[J]. Plant Physiology, 1998, 117: 753-759. |
[5] | Wang W, Zhao X Q, Chen R F, Dong X Y, Lan P, Ma J F, Shen R F. Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots[J]. Plant Cell and Environment, 2015, 38: 1382-1390. |
[6] | Huang C F, Yamaji N, Chen Z, Ma J F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. The Plant Journal, 2011, 69(5): 857-867. |
[7] | 魏倩倩, 朱春权, 黄晶, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 项兴佳, 张均华. 硫化氢调控植物重金属胁迫耐性机制研究进展[J]. 植物生理学报, 2022, 58(8): 1412-1422. |
Wei Q Q, Zhu C Q, Huang J, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Xiang X J, Zhang J H. Advances in the mechanism of hydrogen sulfide regulating tolerance for heavy metal stress in plants[J]. Plant Physiology Journal, 2022, 58(8): 1412-1422. (in Chinese with English abstract) | |
[8] | 裴雁曦. 植物中的气体信号分子硫化氢: 无香而立, 其臭如兰[J]. 中国生物化学与分子生物学报, 2016, 32(7): 721-733. |
Pei Y X. Gasotransmitter hydrogen sulfide in plants: Stinking to high heaven, but refreshing to fine life[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016, 32(7): 721-733. (in Chinese with English abstract) | |
[9] | Wang Y, Li L, Cui W, Xu S, Shen W B, Wang R. Hydrogen sulfide enhances alfalfa tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant and Soil, 2012, 351(1-2): 107-119. |
[10] | Zhang H, Tang J, Liu X, Wang Y, Yu W, Peng W Y, Fang F, Ma D F, Wei Z J, Hu L Y. Hydrogen Sulfide Promotes Root Organogenesis inIpomoea batatas, Salix matsudana andGlycine max[J]. Journal of Integrative Plant Biology, 2009, 51(12): 1086-1094. |
[11] | Li Y J, Shi Z Q, Gan L J, Chen J, Li Y J, Shi A Q, Gan L J, Chen J. Hydrogen sulfide is a novel gasotransmitter with pivotal role in regulating lateral root formation in plants[J]. Plant Signaling Behavior, 2014(9): e29127. |
[12] | Chen J, Wu F H, Wang W H, Zheng C J, Lin G H, Dong X J, He J X, Pei Z M, Zheng H L. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings[J]. Journal of Experimental Botany, 2011, 62(13): 4481-4493. |
[13] | Wang H H, Ji F, Zhang Y Y, Hou J J, Liu W W, Huang J J, Liang W H. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity[J]. Plant Cell and Environment, 2019, 42(8): 2340-2356. |
[14] | Kushwaha B K, Singh V P. Mitigation of chromium (VI) toxicity by additional sulfur in some vegetable crops involves glutathione and hydrogen sulfide[J]. Plant Physiology and Biochemistry, 2020, 155: 952-964. |
[15] | 张艳萍, 宗良纲, 史艳芙. 茶园土壤pH变化对土壤中铝特性的影响[J]. 土壤, 2019, 51(4): 746-751. |
Zhang Y P, Zong L G, Shi Y F. Effects of soil pH on characteristics of soil Al in tea plantations[J]. Soils, 2019, 51(4): 746-751. (in Chinese with English abstract) | |
[16] | Asgher M, Khan M I, Anjum N A, Khan N A. Minimising toxicity of cadmium in plants role of plant growth regulators[J]. Protoplasma, 2015, 252(2): 399-413. |
[17] | Jia H, Wang X F, Dou Y H, Liu D, Si W T, Fang H, Zhao C, Chen S L, Xi J J, Li L S. Hydrogen sulfide-cysteine cycle system enhances cadmium tolerance through alleviating cadmium induced oxidative stress and ion toxicity in Arabidopsis roots[J]. Scientific Reports, 2016, 6: 397025. |
[18] | Chen Z J, Liu C Y, Cao B L, Xu K. A hydrogen sulfde application can alleviate the toxic effects of cadmium on ginger (Zingiber ofcinale Roscoe)[J]. Environmental Science and Pollution Research, 2022, 22(1): 68422-68431. |
[19] | Zhang C F, Jiang D, Liu F L, Dai T B, Liu W C, Jing Q, Cao W X. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity[J]. Environmental and Experimental Botany, 2009, 67: 222-227. |
[20] | Yan L, Riaz M, Du C Q, Liu Y L, Zeng Y, Jiang C C. Ameliorative role of boron to toxicity of aluminum in trifoliate orange roots[J]. Ecotoxicology and Environmental Safety, 2019, 179(15): 212-221. |
[21] | Zhu C Q, Wei Q Q, Hu W J, Kong Y L, Xiang X J, Zhang H, Cao X C, Zhu L F, Liu J, Tian W H, Jin Q Y, Zhang J H. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice[J]. Plant Physiology and Biochemistry, 2022, 182: 133-144. |
[22] | 周小华, 谷照虎, 徐慧妮, 陈丽梅, 李昆志. 外源抗坏血酸AsA对铝胁迫下水稻光合特性的影响[J]. 扬州大学学报: 农业与生命科学版, 2015, 36: 73-78. |
Zhou X H, Gu Z H, Xu H N, Chen L M, Li K Z. The effects of exogenous ascorbic acid on photosynthetic characteristics in Oryza sativa L. under aluminum stress[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2015, 36: 73-78. (in Chinese with English abstract) | |
[23] | 李晓科, 武玉珍, 张谨华, 张义贤. H2S 对 Cd 胁迫下大麦幼苗逆境生理及光合作用的影响[J]. 福建农业学报, 2020, 35(10): 1131-1137. |
Li X K, Wu Y Z, Zhang J H, Zhang Y X. Effects of hydrogen sulfide on physiology and photosynthesis of barley seedlings under Cd-stress[J]. Fujian Journal of Agricultural Sciences, 2020, 35(10): 1131-1137. (in Chinese with English abstract) | |
[24] | 赵晶, 冯文强, 秦鱼生, 喻华, 廖明兰, 甲卡拉铁, 程瑜, 王昌全, 涂仕华. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报, 2017, 5(4): 17-19. |
Zhao J, Feng W Q, Qin Y S, Yu H, Liao M L, Jia Ka L T, Cheng Y, Wang C Q, Tu S H. Effects of application of nitrogen phosphorus and potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Sinica, 2017, 5(4): 17-19. | |
[25] | 宋晓培. 不同硫酸钾用量对土壤及烤烟矿质元素积累的影响[D]. 北京: 中国农业科学院: 8-9. |
Song X P. Effects of different potassium sulfate levels on the soil and mineral accumulation of flue-cured tobacco[D]. Beijing: Chinese Academy of Agricultural Science, 8-9. (in Chinese with English abstract) | |
[26] | 陈苏, 孙丽娜, 孙铁珩, 晁雷, 杨春璐. 钾肥对镉的植物有效性的影响[J]. 环境科学, 2007(1): 182-188. |
Chen S, Sun L N, Sun T H, Zhao L, Yang C L. Influence of potassium fertilizer on the phytoavailability of cadmium[J]. Environmental Science, 2007(1): 182-188. (in Chinese with English abstract) | |
[27] | Clarkson D T. Interactions between aluminium and phosphorus on root surfaces and cell wall material[J]. Plant and Soil, 1967, 27(3): 347-356. |
[28] | Shi H T, Ye T T, Chan Z L. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.)[J]. Plant Physiology and Biochemistry, 2014, 74: 99-107. |
[29] | Claudio I B, Zed R, Miren A. Molecular and physiological strategies to increase aluminum resistance in plants[J]. Molecular Biology Reports, 2012, 39(3): 2069-2079. |
[30] | Larsen P B, Cancel J, Rounds M, Ochoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter require for root growth in an aluminum toxic environment[J]. Planta, 2007, 225(6): 1447-1458. |
[31] | Ma H X, Bai G H, Carver B F, Zhou L L. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66[J]. Theoretical and Applied Genetics, 2005, 112(1): 51-57. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[7] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[8] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[13] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[14] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[15] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||