中国水稻科学 ›› 2024, Vol. 38 ›› Issue (3): 266-276.DOI: 10.16819/j.1001-7216.2024.230904
朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清*(), 贺记外*()
收稿日期:
2023-09-12
修回日期:
2023-12-29
出版日期:
2024-05-10
发布日期:
2024-05-13
通讯作者:
*email: hunanhongli@aliyun.com;
hejiwai@hunau.edu.cn
基金资助:
ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing*(), HE Jiwai*()
Received:
2023-09-12
Revised:
2023-12-29
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email: hunanhongli@aliyun.com;
hejiwai@hunau.edu.cn
摘要:
【目的】水稻分蘖角度是影响水稻产量的关键农艺性状,挖掘水稻分蘖角度QTL(基因)及其优势单倍型,有助于构建水稻理想株型。【方法】以333份来自水稻3K资源的核心种质为研究材料,于2020年和2022年分别在湖南农业大学耘园基地和春华基地种植,在抽穗期测量分蘖角度,结合基因型,利用TASSEL 5.2的MLM模型进行全基因组关联分析。【结果】共检测到6个分蘖角度QTL位点,分布在水稻2、5、6、9和12号染色体上,分别命名为qTA2、qTA5、qTA6.1、qTA6.2、qTA9和qTA12,这些QTL的表型贡献率为6.23%~16.22%。除了qTA9与分蘖角度主效QTL TAC1共定位外,其余5个QTL均为新的位点。进一步对5个QTL位点进行候选基因分析,初步筛选到qTA2和qTA6.1的候选基因别为Os02g0817900和Os06g0682800,候选基因Os02g0817900编码水稻细胞色素P450家族蛋白,候选基因Os06g0682800编码锌指结构域蛋白。【结论】本研究挖掘到新的水稻分蘖角度相关位点并对候选基因进行了分析,为分蘖角度新QTL(基因)的克隆以及分蘖角度的遗传改良提供参考。
朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276.
ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis[J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276.
年份 Year | QTL | 染色体 Chr | 关联位点 SNP | 位置 Position | P值 P value | 贡献率 R2(%) |
---|---|---|---|---|---|---|
2020 | qTA2 | 2 | 78 251 484 | 34 980 561 | 2.82×10−5 | 13.28 |
qTA9 | 9 | 290 983 508 | 20 510 958 | 2.58×10−5 | 13.66 | |
qTA12 | 12 | 365 807 909 | 20 094 246 | 3.08×10−6 | 16.22 | |
2022 | qTA5 | 5 | 165 535 507 | 14 410 821 | 4.36×10−5 | 6.23 |
qTA6.1 | 6 | 208 648 428 | 27 565 308 | 1.95×10−6 | 8.29 | |
qTA6.2 | 6 | 209 509 442 | 28 426 322 | 7.28×10−6 | 7.54 | |
qTA9 | 9 | 291 032 810 | 20 560 260 | 7.45×10−8 | 10.41 |
表1 全基因组关联分析定位水稻分蘖角度QTL
Table 1. List of QTL for tiller angle by GWAS
年份 Year | QTL | 染色体 Chr | 关联位点 SNP | 位置 Position | P值 P value | 贡献率 R2(%) |
---|---|---|---|---|---|---|
2020 | qTA2 | 2 | 78 251 484 | 34 980 561 | 2.82×10−5 | 13.28 |
qTA9 | 9 | 290 983 508 | 20 510 958 | 2.58×10−5 | 13.66 | |
qTA12 | 12 | 365 807 909 | 20 094 246 | 3.08×10−6 | 16.22 | |
2022 | qTA5 | 5 | 165 535 507 | 14 410 821 | 4.36×10−5 | 6.23 |
qTA6.1 | 6 | 208 648 428 | 27 565 308 | 1.95×10−6 | 8.29 | |
qTA6.2 | 6 | 209 509 442 | 28 426 322 | 7.28×10−6 | 7.54 | |
qTA9 | 9 | 291 032 810 | 20 560 260 | 7.45×10−8 | 10.41 |
QTL位点 QTL | 候选基因 Candidate gene | 功能注释 Description |
---|---|---|
qTA2 | Os02g0817600 | 生长素/吲哚-3-乙酸蛋白 |
Auxin/indole-3-acetic acid protein | ||
Os02g0817900 | 细胞色素P450家族蛋白 | |
Cytochrome P450 family protein | ||
qTA6.1 | Os06g0663800 | 叶绿体前体 |
Chloroplast precursor | ||
Os06g0665400 | F-box结构域蛋白 | |
F-box domain containing protein | ||
Os06g0666500 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os06g0679400 | Myb转录因子 | |
Myb-transcription factor | ||
qTA6.2 | Os06g0680700 | 细胞色素P450家族蛋白 |
Cytochrome P450 family protein. | ||
Os06g0682800 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os06g0683000 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os12g0516900 | F-box结构域蛋白 | |
F-box domain containing protein | ||
qTA12 | Os12g0517000 | F-box结构域蛋白 |
F-box domain containing protein | ||
Os12g0517100 | F-box结构域蛋白 | |
F-box domain containing protein |
表2 水稻分蘖角度候选基因
Table 2. Candidate genes of rice tiller angle
QTL位点 QTL | 候选基因 Candidate gene | 功能注释 Description |
---|---|---|
qTA2 | Os02g0817600 | 生长素/吲哚-3-乙酸蛋白 |
Auxin/indole-3-acetic acid protein | ||
Os02g0817900 | 细胞色素P450家族蛋白 | |
Cytochrome P450 family protein | ||
qTA6.1 | Os06g0663800 | 叶绿体前体 |
Chloroplast precursor | ||
Os06g0665400 | F-box结构域蛋白 | |
F-box domain containing protein | ||
Os06g0666500 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os06g0679400 | Myb转录因子 | |
Myb-transcription factor | ||
qTA6.2 | Os06g0680700 | 细胞色素P450家族蛋白 |
Cytochrome P450 family protein. | ||
Os06g0682800 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os06g0683000 | 锌指结构域蛋白 | |
Zinc finger domain containing protein | ||
Os12g0516900 | F-box结构域蛋白 | |
F-box domain containing protein | ||
qTA12 | Os12g0517000 | F-box结构域蛋白 |
F-box domain containing protein | ||
Os12g0517100 | F-box结构域蛋白 | |
F-box domain containing protein |
基因 Gene | 单倍型1/种质数 Hap1/Accession number | 单倍型2/种质数 Hap2/Accession number | 单倍型3/种质数 Hap3/Accession number | |
---|---|---|---|---|
Os02g0817900 | AACGGACAAT/51 | AACGGGCAAT/33 | TGATGACGGCGC/81 | |
Os06g0682800 | GGGATG/77 | GATACCA/70 | ||
Os06g0663800 | ATGGCCCGC/46 | ATTGCCCGC/41 | GCGAATTAT/74 | |
Os02g0817600 | CGATCC/56 | CGCGTT/25 | GACGTC/50 | |
Os06g0680700 | AATTCAATGAAGCTGAAG/78 | GGGGGGGCAGGCGCTGGT/79 |
表3 候选基因单倍型分组及每种单倍型的SNP组成
Table 3. Candidate gene haplotype group and composition of each haplotype SNP
基因 Gene | 单倍型1/种质数 Hap1/Accession number | 单倍型2/种质数 Hap2/Accession number | 单倍型3/种质数 Hap3/Accession number | |
---|---|---|---|---|
Os02g0817900 | AACGGACAAT/51 | AACGGGCAAT/33 | TGATGACGGCGC/81 | |
Os06g0682800 | GGGATG/77 | GATACCA/70 | ||
Os06g0663800 | ATGGCCCGC/46 | ATTGCCCGC/41 | GCGAATTAT/74 | |
Os02g0817600 | CGATCC/56 | CGCGTT/25 | GACGTC/50 | |
Os06g0680700 | AATTCAATGAAGCTGAAG/78 | GGGGGGGCAGGCGCTGGT/79 |
图4 TAC1单倍型分析 A: qTA9中−lg P>4的SNP连锁不平衡分析; B: TAC1的结构示意图以及单倍型,不同小写字母表示差异显著(P<0.05); C: TAC1不同单倍型的亚群组成; D TAC1不同单倍型种质的地理分布
Fig. 4. TAC1 haplotype analysis A, Linkage disequilibrium plot for SNPs with -lg P> 4 in qTA9; B, TAC1 gene structure and haplotype schematic. Different lowercase letters indicate significant differences (P<0.05); C: The subpopulation composition of TAC1 haplotypes; D, Geographical distribution of different haplotypes of TAC1.
图5 Os02g0817900单倍型分析 A: qTA2中−lg P>4的SNP连锁不平衡分析; B: Os02g0817900的结构示意图以及单倍型,不同小写字母表示差异显著(P<0.05); C: Os02g0817900不同单倍型的亚群组成; D: Os02g0817900不同单倍型种质的地理分布。
Fig. 5. Os02g0817900 haplotype analysis A, Linkage disequilibrium plot for SNPs with -lg P> 4 in qTA2; B, Os02g0817900 structure and haplotype schematic. Different lowercase letters indicate significant differences(P<0.05); C, Subpopulation composition of Os02g0817900 haplotypes; D, Geographical distribution of haplotypes of Os02g0817900.
图6 Os06g0682800单倍型分析 A: qTA6中−lg P>4的SNP连锁不平衡分析; B: Os06g0682800的结构示意图以及单倍型,不同小写字母表示差异显著(P<0.05); C: Os06g0682800不同单倍型的亚群组成; D Os06g0682800不同单倍型种质的地理分布
Fig. 6. Os06g0682800 haplotype analysis A, Linkage disequilibrium plot for SNPs with -lg P> 4 in qTA6; B, Os06g0682800 structure and haplotype Schematic. Different lowercase letters indicate significant differences(P<0.05); C, Subpopulation composition of Os06g0682800 haplotypes; D, Geographical distribution of haplotypes of Os06g0682800.
[1] | 朱亮, 薛蓬勃, 李国强, 黄婧, 金健. 全基因组结合位点分析揭示LAZY1控制水稻分蘖角度的下游调控网络[J]. 基因组学与应用生物学, 2022, 41(7): 1539-1549. |
Zhu L, Xue P B, Li G Q, Huang J, Jin J. Genome-wide binding site analysis of LAZY1 reveals its downstream regulating network in controlling rice tiller angle[J]. Genomics and Applied Biology, 2022, 41(7): 1539-1549. (in Chinese with English abstract) | |
[2] | 黄卫衡, 吕启明, 辛业芸. 水稻分蘖角度的研究进展[J]. 杂交水稻, 2019, 34(3): 1-7. |
Huang W H, Lü Q M, Xin Y Y. Research progress on rice tiller angle[J]. Hybrid Rice, 2019, 34(3): 1-7. (in Chinese with English abstract) | |
[3] | 钱前, 何平, 滕胜, 曾大力, 朱立煌. 水稻分蘖角度的QTLs分析[J]. 遗传学报, 2001(1): 29-32. |
Qian Q, He P, Teng S, Zeng D L, Zhu L H. QTL analysis on rice tiller angle[J]. Journal of Genetics and Genomics, 2001(1): 29-32. (in Chinese with English abstract) | |
[4] | 余传元, 刘裕强, 江玲, 王春明, 翟虎渠, 万建民. 水稻分蘖角度的QTL定位和主效基因的遗传分析[J]. 遗传学报, 2005(9): 948-954. |
Yu C Y, Liu Y Q, Jiang L, Wang C M, Zhai H Q, Wan J M. QTLs mapping and genetic analysis of tiller angle in rice[J]. Journal of Genetics and Genomics, 2005(9): 948-954. (in Chinese with English abstract) | |
[5] | Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice[J]. Plant Journal, 2007, 52(5): 891. |
[6] | Dong H J, Zhao H, Xie W B, Han Z M, Li G W, Yao W, Bai X F, Hu Y, Guo Z L, Lu K, Yang L, Xing Y Z. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genet, 2016, 12(11): e1006412. |
[7] | He J W, Shao G N, Wei X J, Huang F L, Sheng Z H, Tang S Q, Hu P S. Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.)[J]. PLoS One, 2017, 12(5): e0178177. |
[8] | Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008, 40(11): 1360. |
[9] | Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication[J]. Nature Genetics, 2008, 40(11): 1365-1369. |
[10] | Zhang W F, Tan L B, Sun H Y, Zhao X H, Liu F X, Cai H W, Fu Y C, Sun X Y, Gu P, Zhu Z F, Sun C Q. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Molecular Plant, 2019, 12(8): 1075-1089. |
[11] | Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture[J]. Functional Plant Biology, 2013, 40(11): 1137-1146. |
[12] | Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells[J]. New Phytologist, 2021, 231(3): 1073-1087. |
[13] | Sakuraba Y, Piao W, Lim J H, Han S H, Kim Y S, An G, Paek N C. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiology, 2015, 56(12): 2325-2339. |
[14] | Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an indeterminate domain protein involved in shoot gravitropism, regulates plant architecture in rice[J]. Plant Physiology, 2013, 161: 317. |
[15] | Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin[J]. The Plant Cell, 2018, 30(7): 1461-1475. |
[16] | Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li G Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Research, 2007, 17(5): 402-410. |
[17] | Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways[J]. Plant Cell Physiology, 2007, 48(5): 678. |
[18] | Li Z, Liang Y, Yuan Y D, Wang L, Meng X B, Xiong G S, Zhou J, Cai Y Y, Han N P, Hua L K, Liu G F, Li J Y, Wang Y H. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization[J]. Molecular Plant, 2019, 12(8): 1143-1156. |
[19] | Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content[J]. Plant Physiology, 2020, 184(3): 1424-1437. |
[20] | Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice[J]. Plant Biotechnology Journal, 2020, 18(10): 2015-2026. |
[21] | Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1[J]. Plant Biotechnology Journal, 2012, 10(2): 139-149. |
[22] | Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q. PAY1 improves plant architecture and enhances grain yield in rice[J]. Plant Journal, 2015, 83(3): 528-536. |
[23] | Harmoko R, Yoo J Y, Ko K S, Ramasamy N K, Hwang B Y, Lee E J, Kim H S, Lee K J, Oh D B, Kim D Y, Lee S H, Li Y, Lee S Y, Lee K O. N-glycan containing a core α1, 3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa)[J]. New Phytologist, 2016, 212(1): 108-122. |
[24] | Wang W S, Mauleon R, Hu Z Q, Chebotarov D, Tai S S, Wu Z C, Li M, Zheng T Q, Fuentes R R, Zhang F, Mansueto L, Li Z K, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7703): 43-49. |
[25] | 沈圣泉, 庄杰云, 包劲松, 郑康乐, 夏英武, 舒庆尧. 水稻分蘖最大角度的QTL分析[J]. 农业生物技术学报, 2005(1): 16-20. |
Shen S Q, Zhuang J Y, Bao J S, Zheng K L, Xia Y W, Shu Q Y. QTL analysis of maximum tiller angle in rice[J]. Journal of Agricultural Biotechnology, 2005(1): 16-20. (in Chinese with English abstract) | |
[26] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2633-2635. |
[27] | Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2: 467. |
[28] | Bai S H, Hong J, Su S, Li Z K, Wang W S, Shi J X, Liang W Q, Zhang D B. Genetic basis underlying tiller angle in rice by genome-wide association study[J]. Plant Cell Reports, 2022, 41(8): 1707-1720. |
[29] | 梁彦, 王永红. 水稻株型功能基因及其在育种上的应用[J]. 生命科学, 2016, 28(10): 1156-1167. |
Liang Y, Wang Y H. The genes controlling rice architecture and its application in breeding[J]. Chinese Bulletin: Life Science, 2016, 28(10): 1156-1167. (in Chinese with English abstract) | |
[30] | 陈宗祥, 冯志明, 王龙平, 冯凡, 张亚芳, 马玉银, 潘学彪, 左示敏. 水稻分蘖角基因TAC1的育种应用价值分析[J]. 中国水稻科学, 2017, 31(6): 590-598. |
Chen Z X, Feng Z M, Wang L P, Feng F, Zhang Y F, Ma Y Y, Pan X B, Zuo S M. Breeding potential of rice TAC1 gene for tiller angle[J]. Chinese Journal of Rice Science, 2017, 31(6): 590-598. (in Chinese with English abstract) | |
[31] | 李珍珠, 彭清祥, 邱先进, 徐俊英, 李志新, 刘海洋. 水稻分蘖角度基因TIG1功能性分子标记的开发和应用[J]. 植物遗传资源学报, 2023, 24(3): 808-816. |
Li Z Z, Peng Q X, Qiu X J, Xu J Y, Li Z X, Liu H Y, Development and application of functional molecular marker of rice tiller angle gene TIG1[J]. Journal of Plant Genetic Resources, 2023, 24(3): 808-816. (in Chinese with English abstract) | |
[32] | Wang L, Xu Y Y, Zhang C, Ma Q B, Joo S H, Kim S K, Xu Z H, Chong K. OsLIC, a novel CCCH-Type zinc finger protein with transcription activationmediates rice architecture via brassinosteroids signaling[J]. PLoS One, 2008, 3(10): e3521. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[7] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[8] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[12] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[13] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[14] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[15] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||