中国水稻科学 ›› 2024, Vol. 38 ›› Issue (3): 223-232.DOI: 10.16819/j.1001-7216.2024.230308
• 综述与专论 • 下一篇
收稿日期:
2023-03-30
修回日期:
2023-05-17
出版日期:
2024-05-10
发布日期:
2024-05-13
通讯作者:
*email: 18780183308@163.com
基金资助:
HU Li1,*(), YANG Fanmin2, CHEN Weilan2, YUAN Hua2
Received:
2023-03-30
Revised:
2023-05-17
Online:
2024-05-10
Published:
2024-05-13
Contact:
*email: 18780183308@163.com
摘要:
SPL (SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE)家族蛋白是植物特有的一类多功能转录因子。水稻中有19个OsSPL基因,所编码蛋白均含有一个高度保守的SBP结构域,该结构域负责与下游靶基因的核心基序GTAC结合,调控靶基因表达。OsSPL的表达会受到OsmiR156/529/535和多种因子调控。研究表明OsSPL在水稻根系发育、叶舌叶耳发育、株型和穗型形成、籽粒发育和胁迫响应等多个生物学过程中发挥重要作用,是水稻生长发育的调控枢纽。本文综述了水稻OsSPL家族的系统进化与结构特征、表达调控及生物学功能研究进展,并对其研究前景进行了展望。
胡丽, 杨范敏, 陈薇兰, 袁华. 水稻SPL家族转录因子的生物学功能研究进展[J]. 中国水稻科学, 2024, 38(3): 223-232.
HU Li, YANG Fanmin, CHEN Weilan, YUAN Hua. Research Progress in Biological Functions of SPL Family Transcription Factors in Rice[J]. Chinese Journal OF Rice Science, 2024, 38(3): 223-232.
基因名称 Gene name | 基因号 Gene ID | 染色体 Chr. | miRNA靶位点 miRNA target | 生物学功能 Biological function | 参考文献 Reference | |
---|---|---|---|---|---|---|
OsSPL1 | LOC_Os01g18850 | 1 | / | 未知 | ||
OsSPL2 | LOC_Os01g69830 | 1 | miRNA156/529 | 调控分蘖和穗分枝;负调控水稻氧化胁迫耐性 | [ | |
OsSPL3 | LOC_Os02g04680 | 2 | miRNA156 | 抑制不定根发育;负调控水稻低温耐性 | [ | |
OsSPL4 | LOC_Os02g07780 | 2 | miRNA156/535 | 调控穗粒数和粒型;正调控稻瘟病抗性 | [ | |
OsSPL5 | LOC_Os02g08070 | 2 | / | 未知 | ||
OsSPL6 | LOC_Os03g61760 | 3 | / | 控制穗顶端细胞死亡 | [ | |
OsSPL7 | LOC_Os04g46580 | 4 | miRNA156/529/535 | 调控株高、分蘖、穗粒数、根系发育;抑制穗部苞片生长 | [ | |
OsSPL8 | LOC_Os04g56170 | 4 | / | 调控叶舌叶耳发育,正调控穗分枝角度 | [ | |
OsSPL9 | LOC_Os05g33810 | 5 | / | 正调控穗粒数、铜吸收;负调控水稻条纹病毒抗性; | [ | |
OsSPL10 | LOC_Os06g44860 | 6 | / | 负调控水稻耐盐性和耐旱性;正调控毛状体形成 | [ | |
OsSPL11 | LOC_Os06g45310 | 6 | miRNA156 | 未知 | ||
OsSPL12 | LOC_Os06g49010 | 6 | miRNA156/535 | 抑制不定根发育,增强种子休眠;负调控粒宽 | [ | |
OsSPL13 | LOC_Os07g32170 | 7 | miRNA156 | 正调控穗粒数,粒长和粒厚 | [ | |
OsSPL14 | LOC_Os08g39890 | 8 | miRNA156/529/535 | 调控分蘖和穗粒数、稻瘟病抗性,响应氮供应、种子休眠;抑制穗部苞片生长;负调控水稻耐盐性,正调控耐冷性和耐旱性 | [ | |
OsSPL15 | LOC_Os08g40260 | 8 | / | 未知 | ||
OsSPL16 | LOC_Os08g41940 | 8 | miRNA156/529/535 | 正调控粒宽和灌浆;负调控穗分枝和稻米外观品质 | [ | |
OsSPL17 | LOC_Os09g31438 | 9 | miRNA156/529 | 调控分蘖和穗粒数;抑制穗部苞片生长;响应氮供应;调控水稻雄性育性 | [ | |
OsSPL18 | LOC_Os09g32944 | 9 | miRNA156/529 | 负调控分蘖,正调控穗粒数、粒宽和粒厚 | [ | |
OsSPL19 | LOC_Os11g30370 | 11 | miRNA156 | 未知 |
表1 水稻OsSPL基因的生物学功能研究概况
Table 1. Overview of biological functions of OsSPL genes in rice.
基因名称 Gene name | 基因号 Gene ID | 染色体 Chr. | miRNA靶位点 miRNA target | 生物学功能 Biological function | 参考文献 Reference | |
---|---|---|---|---|---|---|
OsSPL1 | LOC_Os01g18850 | 1 | / | 未知 | ||
OsSPL2 | LOC_Os01g69830 | 1 | miRNA156/529 | 调控分蘖和穗分枝;负调控水稻氧化胁迫耐性 | [ | |
OsSPL3 | LOC_Os02g04680 | 2 | miRNA156 | 抑制不定根发育;负调控水稻低温耐性 | [ | |
OsSPL4 | LOC_Os02g07780 | 2 | miRNA156/535 | 调控穗粒数和粒型;正调控稻瘟病抗性 | [ | |
OsSPL5 | LOC_Os02g08070 | 2 | / | 未知 | ||
OsSPL6 | LOC_Os03g61760 | 3 | / | 控制穗顶端细胞死亡 | [ | |
OsSPL7 | LOC_Os04g46580 | 4 | miRNA156/529/535 | 调控株高、分蘖、穗粒数、根系发育;抑制穗部苞片生长 | [ | |
OsSPL8 | LOC_Os04g56170 | 4 | / | 调控叶舌叶耳发育,正调控穗分枝角度 | [ | |
OsSPL9 | LOC_Os05g33810 | 5 | / | 正调控穗粒数、铜吸收;负调控水稻条纹病毒抗性; | [ | |
OsSPL10 | LOC_Os06g44860 | 6 | / | 负调控水稻耐盐性和耐旱性;正调控毛状体形成 | [ | |
OsSPL11 | LOC_Os06g45310 | 6 | miRNA156 | 未知 | ||
OsSPL12 | LOC_Os06g49010 | 6 | miRNA156/535 | 抑制不定根发育,增强种子休眠;负调控粒宽 | [ | |
OsSPL13 | LOC_Os07g32170 | 7 | miRNA156 | 正调控穗粒数,粒长和粒厚 | [ | |
OsSPL14 | LOC_Os08g39890 | 8 | miRNA156/529/535 | 调控分蘖和穗粒数、稻瘟病抗性,响应氮供应、种子休眠;抑制穗部苞片生长;负调控水稻耐盐性,正调控耐冷性和耐旱性 | [ | |
OsSPL15 | LOC_Os08g40260 | 8 | / | 未知 | ||
OsSPL16 | LOC_Os08g41940 | 8 | miRNA156/529/535 | 正调控粒宽和灌浆;负调控穗分枝和稻米外观品质 | [ | |
OsSPL17 | LOC_Os09g31438 | 9 | miRNA156/529 | 调控分蘖和穗粒数;抑制穗部苞片生长;响应氮供应;调控水稻雄性育性 | [ | |
OsSPL18 | LOC_Os09g32944 | 9 | miRNA156/529 | 负调控分蘖,正调控穗粒数、粒宽和粒厚 | [ | |
OsSPL19 | LOC_Os11g30370 | 11 | miRNA156 | 未知 |
图2 水稻中OsSPL蛋白的SBP结构域序列比对利用PRALINE网站(http://www.ibi.vu.nl/programs/pralinewww/)分析蛋白序列保守性,0表示该位点最不保守,10表示该位点最保守。“*”表示该位点在所有序列中完全一致。锌指结构(Zn-1和Zn-2)和核定位信号(NLS)序列如图所示。
Fig. 2. Sequence alignment of SBP domain of OsSPL proteins in rice. PRALINE website was used to analyze protein sequence conservation (http://www.ibi.vu.nl/programs/pralinewww/). In this analysis, a scoring system ranging from 0(the least conserved alignment position) to 10(the most conserved alignment position) was utilized. “*” represents identical bases. Zinc finger motifs (Zn-1 and Zn-2) and nuclear localization signal (NLS) were shown.
[1] | Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular and General Genetics, 1996, 250(1): 7-16. |
[2] | 陈婉冰, 周波. SPL调控因子在植物生长调控的研究进展[J]. 分子植物育种, 2020, 18(5): 1505-1512. |
Chen W B, Zhou B. Research progress on SPL regulatory factor in plant growth regulation[J]. Molecular Plant Breeding, 2020, 18(5): 1505-1512. (in Chinese with English abstract) | |
[3] | Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiology, 2006, 142(1): 280-293. |
[4] | Jiang M, He Y, Chen X, Zhang X, Guo Y, Yang S, Huang J, Traw M B. CRISPR-based assessment of genomic structure in the conserved SQUAMOSA promoter-binding-like gene clusters in rice[J]. Plant Journal, 2020, 104(5): 1301-1314. |
[5] | 陈广龙. 水稻PPR和SPL基因家族及OsSPL4基因的功能分析[D]. 武汉: 武汉大学, 2019. |
Chen G L. Function analyses of the PPR and SPL gene family and OsSPL4 gene in rice[D]. Wuhan: Wuhan University, 2019. (in Chinese with English abstract) | |
[6] | Wang H, Wang H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular plant, 2015, 8(5): 677-688. |
[7] | Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology, 2004, 337(1): 49-63. |
[8] | 李明, 李长生, 赵传志, 李爱芹, 王兴军. 植物SPL转录因子研究进展[J]. 植物学报, 2013, 48(1): 107-116. |
Li M, Li C S, Zhao C Z, Li A Q, Wang X J. Research advances in plant SPL transcription factors[J]. Chinese Bulletin of Botany, 2013, 48(1): 107-116. (in Chinese with English abstract) | |
[9] | Birkenbihl R P, Jach G, Saedler H, Huijser P. Functional dissection of the plant-specific SBP-domain: Overlap of the DNA-binding and nuclear localization domains[J]. Journal of Molecular Biology, 2005, 352(3): 585-596. |
[10] | Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C. Comparative study of SBP-box gene family in Arabidopsis and rice[J]. Gene, 2008, 407(1-2): 1-11. |
[11] | Tang M, Zhou C, Meng L, Mao D, Peng C, Zhu Y, Huang D, Tan Z, Chen C, Liu C, Zhang D. Overexpression of OsSPL9 enhances accumulation of Cu in rice grain and improves its digestibility and metabolism[J]. Journal of Genetics and Genomics, 2016, 43(11): 673-676. |
[12] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[13] | Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. Plant Cell, 2013, 25(10): 3743-3759. |
[14] | Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, Li J, Jin M, Xu Z, Gao Q, Du A, Tu B, Chen W, Ma B, Wang Y, Li S. OsSPL18 controls grain weight and grain number in rice[J]. Journal of Genetics and Genomics, 2019, 46(1): 41-51. |
[15] | Zhang X F, Yang C Y, Lin H X, Wang J W, Xue H W. Rice SPL12 coevolved with GW5 to determine grain shape[J]. Science Bulletin, 2021, 66(23): 2353-2357. |
[16] | Yue E, Li C, Li Y, Liu Z, Xu J H. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa)[J]. Plant Molecular Biology, 2017, 94(4-5): 469-480. |
[17] | Zhang L L, Huang Y Y, Zheng Y P, Liu X X, Zhou S X, Yang X M, Liu S L, Li Y, Li J L, Zhao S L, Wang H, Ji Y P, Zhang J W, Pu M, Zhao Z X, Fan J, Wang W M. Osa-miR535 targets SQUAMOSA promoter binding protein-like 4 to regulate blast disease resistance in rice[J]. Plant Journal, 2022, 110(1): 166-178. |
[18] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[19] | Wang H, Li Y, Chern M, Zhu Y, Zhang L L, Lu J H, Li X P, Dang W Q, Ma X C, Yang Z R, Yao S Z, Zhao Z X, Fan J, Huang Y Y, Zhang J W, Pu M, Wang J, He M, Li W T, Chen X W, Wu X J, Li S G, Li P, Li Y, Ronald P C, Wang W M. Suppression of rice miR168 improves yield, flowering time and immunity[J]. Nature Plants, 2021, 7(2): 129-136. |
[20] | Yan Y, Wei M, Li Y, Tao H, Wu H, Chen Z, Li C, Xu J H. MiR529a controls plant height, tiller number, panicle architecture and grain size by regulating SPL target genes in rice (Oryza sativa L.)[J]. Plant Science, 2021, 302(110728. |
[21] | Sun M, Shen Y, Li H, Yang J, Cai X, Zheng G, Zhu Y, Jia B, Sun X. The multiple roles of OsmiR535 in modulating plant height, panicle branching and grain shape[J]. Plant Science, 2019, 283(60-69. |
[22] | Duan E, Wang Y, Li X, Lin Q, Zhang T, Wang Y, Zhou C, Zhang H, Jiang L, Wang J, Lei C, Zhang X, Guo X, Wang H, Wan J. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J]. Plant Cell, 2019, 31(5): 1026-1042. |
[23] | Song X, Lu Z, Yu H, Shao G, Xiong J, Meng X, Jing Y, Liu G, Xiong G, Duan J, Yao X F, Liu C M, Li H, Wang Y, Li J. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell Research, 2017, 27(9): 1128-1141. |
[24] | Zhang L, Yu H, Ma B, Liu G, Wang J, Wang J, Gao R, Li J, Liu J, Xu J, Zhang Y, Li Q, Huang X, Xu J, Li J, Qian Q, Han B, He Z, Li J. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nature Communications, 2017, 8: 14789. |
[25] | Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice[J]. Plant Cell, 2017, 29(4): 697-707. |
[26] | Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, Ye Y, Liu X, Wang J, Zhang J, Li S, Wu Y, Fu X. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017, 27(9): 1142-1156. |
[27] | Jia M, Luo N, Meng X, Song X, Jing Y, Kou L, Liu G, Huang X, Wang Y, Li J, Wang B, Yu H. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice[J]. Journal of Genetics and Genomics, 2022, 49(8): 766-775. |
[28] | Jia M, Meng X, Song X, Zhang D, Kou L, Zhang J, Jing Y, Liu G, Liu H, Huang X, Wang Y, Yu H, Li J. Chilling-induced phosphorylation of IPA1 by OsSAPK6 activates chilling tolerance responses in rice[J]. Cell Discovery, 2022, 8(1): 71. |
[29] | Yue E, Liu Z, Li C, Li Y, Liu Q, Xu J H. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.)[J]. Plant Cell Reports, 2017, 36(7): 1171-1182. |
[30] | Shao Y, Zhou H Z, Wu Y, Zhang H, Lin J, Jiang X, He Q, Zhu J, Li Y, Yu H, Mao C. OsSPL3, an SBP-domain protein, regulates crown root development in rice[J]. Plant Cell, 2019, 31(6): 1257-1275. |
[31] | Zhou M, Tang W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Molecular Genetics and Genomics, 2019, 294(2): 379-393. |
[32] | Hu J, Zeng T, Xia Q, Huang L, Zhang Y, Zhang C, Zeng Y, Liu H, Zhang S, Huang G, Wan W, Ding Y, Hu F, Yang C, Chen L, Wang W. Identification of key genes for the ultrahigh yield of rice using dynamic cross-tissue network analysis[J]. Genomics Proteomics Bioinformatics, 2020, 18(3): 256-270. |
[33] | Hu J, Huang L, Chen G, Liu H, Zhang Y, Zhang R, Zhang S, Liu J, Hu Q, Hu F, Wang W, Ding Y. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice[J]. Rice, 2021, 14(1): 90. |
[34] | Wang Q L, Sun A Z, Chen S T, Chen L S, Guo F Q. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice[J]. Nature Plants, 2018, 4(5): 280-288. |
[35] | Dai Z, Wang J, Yang X, Lu H, Miao X, Shi Z. Modulation of plant architecture by the miR156f- OsSPL7-OsGH3.8 pathway in rice[J]. Journal of Experimental Botany, 2018, 69(21): 5117-5130. |
[36] | Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q. Coordinated regulation of vegetative and reproductive branching in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): 15504-15509. |
[37] | Wang L, Ming L, Liao K, Xia C, Sun S, Chang Y, Wang H, Fu D, Xu C, Wang Z, Li X, Xie W, Ouyang Y, Zhang Q, Li X, Zhang Q, Xiao J, Zhang Q. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice[J]. Molecular Plant, 2021, 14(7): 1168-1184. |
[38] | Lee J, Park J J, Kim S L, Yim J, An G. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant Molecular Biology, 2007, 65(4): 487-499. |
[39] | Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh P T, Htun T M, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M. OsLG1 regulates a closed panicle trait in domesticated rice[J]. Nature Genetics, 2013, 45(4): 462-465, 465e461-462. |
[40] | Zhu Z, Tan L, Fu Y, Liu F, Cai H, Xie D, Wu F, Wu J, Matsumoto T, Sun C. Genetic control of inflorescence architecture during rice domestication[J]. Nature Communications, 2013, 4(1): 2200. |
[41] | Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice[J]. Molecular Plant, 2019, 12(8): 1114-1122. |
[42] | Yao S, Kang J, Guo G, Yang Z, Huang Y, Lan Y, Zhou T, Wang L, Wei C, Xu Z, Li Y. The key micronutrient copper orchestrates broad-spectrum virus resistance in rice[J]. Science Advances, 2022, 8(26): eabm0660. |
[43] | Hu L, Chen W, Yang W, Li X, Zhang C, Zhang X, Zheng L, Zhu X, Yin J, Qin P, Wang Y, Ma B, Li S, Yuan H, Tu B. OsSPL9 regulates grain number and grain yield in rice[J]. Frontiers in Plant Science, 2021, 12: 682018. |
[44] | Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X, Lin G, Wu W. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. G3 (Bethesda), 2019, 9(12): 4107-4114. |
[45] | Li J, Tang B, Li Y, Li C, Guo M, Chen H, Han S, Li J, Lou Q, Sun W, Wang P, Guo H, Ye W, Zhang Z, Zhang H, Yu S, Zhang L, Li Z. Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes[J]. Journal of Integrative Plant Biology, 2021, 63(8): 1521-1537. |
[46] | Li Y, Han S, Sun X, Khan N U, Zhong Q, Zhang Z, Zhang H, Ming F, Li Z, Li J. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice[J]. Journal of Integrative Plant Biology, 2022, 65(4): 918-933. |
[47] | Qin M, Zhang Y, Yang Y, Miao C, Liu S. Seed-specific overexpression of SPL12 and IPA1 improves seed dormancy and grain size in rice[J]. Frontiers in Plant Science, 2020, 11: 532771. |
[48] | Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4): 447-456. |
[49] | Sun H, Guo X, Qi X, Feng F, Xie X, Zhang Y, Zhao Q. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply[J]. Plant Journal, 2021, 106(3): 649-660. |
[50] | Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. |
[51] | Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545-549. |
[52] | Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu G, Wang W, Li P, Wu X, Zhu L, Zhou J M, Ronald P C, Li S, Li J, Chen X. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028. |
[53] | Chen F, Zhang H, Li H, Lian L, Wei Y, Lin Y, Wang L, He W, Cai Q, Xie H, Zhang H, Zhang J. IPA1 improves drought tolerance by activating SNAC1 in rice[J]. BMC Plant Biology, 2023, 23(1): 55. |
[54] | Sun Y, Fu M, Wang L, Bai Y, Fang X, Wang Q, He Y, Zeng H. OsSPLs regulate male fertility in response to different temperatures by flavonoid biosynthesis and tapetum PCD in PTGMS rice[J]. International Journal of Molecular Sciences, 2022, 23(7): 3744. |
[55] | Moreno M A, Harper L C, Krueger R W, Dellaporta S L, Freeling M. Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes & Development, 1997, 11(5): 616-628. |
[56] | Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C. Candidate genes for barley mutants involved in plant architecture: an in silico approach[J]. Theoretical and Applied Genetics, 2006, 112(6): 1073-1085. |
[57] | Li Y, He Y, Liu Z, Qin T, Wang L, Chen Z, Zhang B, Zhang H, Li H, Liu L, Zhang J, Yuan W. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice[J]. Plant Journal, 2022, 111(4): 1167-1182. |
[58] | Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y. Natural Variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[59] | 秦苗苗. 水稻SPL家族基因SPL12调控种子休眠及作用机理研究[D]. 杭州: 浙江农林大学, 2020. |
Qin M M. Study on a member SPL12 of SQUAMOSA promoter binding protein-like gene family in regulating seed dormancy in rice[D]. Hangzhou: Zhejiang A&F University, 2020. (in Chinese with English abstract) | |
[60] | 宋海冰. 水稻OsSPL10基因的功能分析[D]. 福州: 福建农林大学, 2017. |
Song H B. Functional analysis of OsSPL10 in rice[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese with English abstract) | |
[61] | Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X, Cao X. Fine-tuning of MiR528 accumulation modulates flowering time in rice[J]. Molecular Plant, 2019, 12(8): 1103-1113. |
[62] | Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Genomic architecture of heterosis for yield traits in rice[J]. Nature, 2016, 537(7622): 629-633. |
[63] | Takatsuji H. Regulating tradeoffs to improve rice production[J]. Frontiers in Plant Science, 2017, 8: 171. |
[64] | Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity[J]. Science China-Life Sciences, 2021, 64(2): 234-241. |
[65] | Wang L, Wang D, Yang Z, Jiang S, Qu J, He W, Liu Z, Xing J, Ma Y, Lin Q, Yu F. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice[J]. Science China-Life Sciences, 2021, 64(2): 294-310. |
[66] | Wang L, Zhang Q. Boosting rice yield by fine-tuning SPL gene expression[J]. Trends in Plant Science, 2017, 22(8): 643-646. |
[67] | Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 2022, 40(9): 1403-1411. |
[1] | 韩聪, 何禹畅, 吴丽娟, 郏丽丽, 王磊, 鄂志国. 水稻碱性亮氨酸拉链(bZIP)蛋白家族功能研究进展[J]. 中国水稻科学, 2023, 37(4): 436-448. |
[2] | 吴先美, 李三峰, 胡萍, 何瑞, 焦然, 毛一剑, 鲁草林, 胡娟, 林晗, 吴荣梁, 朱旭东, 饶玉春, 王跃星. 水稻分蘖调控基因HTD3的克隆与功能研究[J]. 中国水稻科学, 2021, 35(6): 535-542. |
[3] | 彭喜旭, 白宁宁, 王海华. 响应镉胁迫的水稻WRKY15转录因子基因的分离与表达特征[J]. 中国水稻科学, 2018, 32(2): 103-110. |
[4] | 孟姣, 王海华, 向建华, 蒋丹, 彭喜旭, 贺欢欢. 水稻WRKY转录因子基因家族响应外源一氧化氮的表达谱分析[J]. 中国水稻科学, 2016, 30(2): 111-120. |
[5] | 赵明辉,马殿荣,王嘉宇,徐海,唐亮,陈温福. 低氮胁迫下水稻剑叶转录因子表达变化[J]. 中国水稻科学, 2012, 26(3): 275-282. |
[6] | 李南羿,郭泽建,. 转录因子OPBP1和OsiWRKY基因的超表达提高水稻的耐盐及抗病能力[J]. 中国水稻科学, 2006, 20(1): 13-18 . |
[7] | 邬亚文,谢科,李靖,于永红,胡国成,傅亚萍,斯华敏,窦彩虹. 利用dsRNA干涉方法研究水稻WRKY转录因子的抗病性[J]. 中国水稻科学, 2005, 19(6): 489-494 . |
[8] | 郑康乐. 水稻抽穗期基因的精细定位、克隆和生物学功能分析[J]. 中国水稻科学, 2005, 19(1): 85-90 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||