中国水稻科学 ›› 2024, Vol. 38 ›› Issue (2): 211-222.DOI: 10.16819/j.1001-7216.2024.231005
• 研究报告 • 上一篇
唐志伟1, 朱相成2, 张俊1,*(), 邓艾兴1, 张卫建1
收稿日期:
2023-10-16
修回日期:
2023-11-29
出版日期:
2024-03-10
发布日期:
2024-03-14
通讯作者:
* email: zhangjun@caas.cn
基金资助:
TANG Zhiwei1, ZHU Xiangcheng2, ZHANG Jun1,*(), DENG Aixing1, ZHANG Weijian1
Received:
2023-10-16
Revised:
2023-11-29
Online:
2024-03-10
Published:
2024-03-14
Contact:
* email: zhangjun@caas.cn
摘要:
【目的】农田镉(Cd)污染是当前我国水稻产业高质量发展面临的主要环境问题之一,严重影响稻米商品价值和人民健康。本研究采用田间大区试验,探究水分调控下绿肥种植、石灰施用对稻米Cd含量及水稻产量的影响,以期为水稻安全生产提供技术参考。【方法】试验用早、晚稻品种分别为湘早籼24号和华润2号,试验地在湖南省益阳市,设置常规栽培(CK)、水分调控(W)、绿肥+水分调控(GW)、石灰+水分调控(LW)、绿肥+石灰+水分调控(GLW)共5个处理。【结果】与CK处理相比,W、GW和LW处理早晚稻平均糙米镉含量分别显著降低34.5%、83.5%和83.3%,稻谷镉含量分别显著降低26.3%、82.5%和83.4%;GLW处理仅晚稻的糙米镉含量显著降低43.7%,稻谷镉含量显著降低40.8%。相比CK处理,GW和LW处理早晚稻平均稻壳镉含量分别显著降低71.3%和74.2%,茎叶镉含量显著下降85.3%和79.1%;GLW处理仅晚稻的稻壳镉含量显著降低38.5%,茎叶镉含量显著降低51.9%。相比CK处理,W、GW和LW处理早晚稻平均灌浆期土壤pH值分别显著提高6.2%、23.7%和20.0%,GW处理早晚稻灌浆期土壤有效镉含量显著降低20.0%~22.6%。相比CK处理,GW和LW处理可显著降低早稻稻壳中的Cd向糙米转运;除W处理早稻稻壳和晚稻茎叶较CK处理差异不显著外,其余各处理均可显著降低土壤中的Cd向茎叶、糙米和稻壳富集。各处理间水稻产量差异不显著。【结论】在水稻孕穗后淹水灌溉基础上,配套冬季豆科绿肥种植或春季石灰施用,可实现轻度镉污染稻田水稻安全生产,不影响水稻丰产。
唐志伟, 朱相成, 张俊, 邓艾兴, 张卫建. 水分调控下绿肥种植和石灰施用对双季稻稻米镉含量的影响[J]. 中国水稻科学, 2024, 38(2): 211-222.
TANG Zhiwei, ZHU Xiangcheng, ZHANG Jun, DENG Aixing, ZHANG Weijian. Effects of Green Manure Planting and Lime Application on Cadmium Content in Double-cropping Rice Under Controlled Irrigation[J]. Chinese Journal OF Rice Science, 2024, 38(2): 211-222.
处理 Treatment | pH值 pH value | 有机质Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Available nitrogen (mg/kg) | 速效钾Available potassium (mg/kg) | 总镉 Total cadmium (mg/kg) | 有效镉 Available cadmium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
CK | 5.0±0.0 b | 41.7±1.0 a | 1.4±0.1 ab | 0.5±0.0 b | 0.3±0.0 a | 183.0±3.0 a | 84.8±0.0 a | 0.4±0.0 a | 0.2±0.0 a |
W | 5.1±0.0 a | 42.5±1.5 a | 1.4±0.1 ab | 0.6±0.0 a | 0.3±0.1 a | 163.0±3.0 b | 78.1±5.8 b | 0.4±0.0 b | 0.2±0.0 c |
LW | 5.0±0.0 b | 41.3±1.0 a | 1.5±0.0 a | 0.6±0.0 a | 0.3±0.0 a | 145.0±3.0 c | 76.4±2.9 b | 0.4±0.0 b | 0.2±0.0 b |
GW, GLW | 5.1±0.1 ab | 39.3±2.8 a | 1.3±0.0 b | 0.5±0.1 b | 0.3±0.0 a | 143.5±1.5 c | 74.7±0.0 b | 0.3±0.0 b | 0.2±0.0 c |
表1 试验地土壤基本理化性质
Table 1. Basic physical and chemical properties of soil in the experimental site
处理 Treatment | pH值 pH value | 有机质Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Available nitrogen (mg/kg) | 速效钾Available potassium (mg/kg) | 总镉 Total cadmium (mg/kg) | 有效镉 Available cadmium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
CK | 5.0±0.0 b | 41.7±1.0 a | 1.4±0.1 ab | 0.5±0.0 b | 0.3±0.0 a | 183.0±3.0 a | 84.8±0.0 a | 0.4±0.0 a | 0.2±0.0 a |
W | 5.1±0.0 a | 42.5±1.5 a | 1.4±0.1 ab | 0.6±0.0 a | 0.3±0.1 a | 163.0±3.0 b | 78.1±5.8 b | 0.4±0.0 b | 0.2±0.0 c |
LW | 5.0±0.0 b | 41.3±1.0 a | 1.5±0.0 a | 0.6±0.0 a | 0.3±0.0 a | 145.0±3.0 c | 76.4±2.9 b | 0.4±0.0 b | 0.2±0.0 b |
GW, GLW | 5.1±0.1 ab | 39.3±2.8 a | 1.3±0.0 b | 0.5±0.1 b | 0.3±0.0 a | 143.5±1.5 c | 74.7±0.0 b | 0.3±0.0 b | 0.2±0.0 c |
图2 不同处理对水稻乳熟期土壤pH值的影响 同一生长季不同小写字母表示处理间存在显著性差异(P<0.05)。下同。
Fig. 2. Effect of different treatments on soil pH value at the milk-maturing stage of rice Different lowercase letters in the same growing season indicate significant differences at 0.05 level (P<0.05). The same below.
季别 Growing season | 处理 Treatment | 茎叶 Stem and leaf | 籽粒 Grain | 糙米 Brown rice | 稻壳 Rice husk |
---|---|---|---|---|---|
早稻 Early rice | CK | 1.09±0.32 a | 0.54±0.06 a | 0.63±0.09 a | 0.22±0.06 a |
W | 0.75±0.19 b | 0.40±0.16 b | 0.39±0.15 b | 0.16±0.02 a | |
GW | 0.17±0.08 c | 0.09±0.06 c | 0.11±0.06 c | 0.07±0.03 b | |
LW | 0.14±0.04 c | 0.05±0.01 c | 0.06±0.01 c | 0.04±0.01 b | |
GLW | 0.98±0.17 ab | 0.46±0.14 ab | 0.52±0.15 ab | 0.21±0.08 a | |
晚稻 Late rice | CK | 4.18±0.84 a | 0.71±0.08 a | 0.71±0.05 a | 0.39±0.06 a |
W | 3.31±0.44 a | 0.52±0.03 b | 0.49±0.02 b | 0.28±0.02 b | |
GW | 0.58±0.35 c | 0.13±0.08 c | 0.11±0.06 c | 0.10±0.02 c | |
LW | 1.21±0.56 bc | 0.17±0.04 c | 0.17±0.03 c | 0.13±0.02 c | |
GLW | 2.01±1.42 b | 0.42±0.24 b | 0.40±0.23 b | 0.24±0.09 b |
表2 不同处理对水稻成熟期植株镉含量的影响
Table 2. Effects of different treatments on cadmium content of rice plants at the mature stage mg/kg
季别 Growing season | 处理 Treatment | 茎叶 Stem and leaf | 籽粒 Grain | 糙米 Brown rice | 稻壳 Rice husk |
---|---|---|---|---|---|
早稻 Early rice | CK | 1.09±0.32 a | 0.54±0.06 a | 0.63±0.09 a | 0.22±0.06 a |
W | 0.75±0.19 b | 0.40±0.16 b | 0.39±0.15 b | 0.16±0.02 a | |
GW | 0.17±0.08 c | 0.09±0.06 c | 0.11±0.06 c | 0.07±0.03 b | |
LW | 0.14±0.04 c | 0.05±0.01 c | 0.06±0.01 c | 0.04±0.01 b | |
GLW | 0.98±0.17 ab | 0.46±0.14 ab | 0.52±0.15 ab | 0.21±0.08 a | |
晚稻 Late rice | CK | 4.18±0.84 a | 0.71±0.08 a | 0.71±0.05 a | 0.39±0.06 a |
W | 3.31±0.44 a | 0.52±0.03 b | 0.49±0.02 b | 0.28±0.02 b | |
GW | 0.58±0.35 c | 0.13±0.08 c | 0.11±0.06 c | 0.10±0.02 c | |
LW | 1.21±0.56 bc | 0.17±0.04 c | 0.17±0.03 c | 0.13±0.02 c | |
GLW | 2.01±1.42 b | 0.42±0.24 b | 0.40±0.23 b | 0.24±0.09 b |
季别 Growing season | 处理 Treatment | Cd由茎叶到糙米转运系数(TF糙米/茎叶) TF of Cd from stem and leaves to brown rice | Cd由茎叶到稻壳转运系数(TF稻壳/茎叶) TF of Cd from stem and leaves to rice husk | Cd由稻壳到糙米转运系数(TF糙米/稻壳) TF of Cd from rice husk to brown rice |
---|---|---|---|---|
早稻 Early rice | CK | 0.61±0.16 a | 0.21±0.04 b | 2.94±0.55 a |
W | 0.56±0.22 a | 0.23±0.10 b | 2.43±0.64 a | |
GW | 0.80±0.49 a | 0.50±0.30 a | 1.61±0.65 b | |
LW | 0.47±0.14 a | 0.35±0.10 ab | 1.36±0.26 b | |
GLW | 0.56±0.24 a | 0.22±0.11 b | 2.58±0.47 a | |
晚稻 Late rice | CK | 0.17±0.03 a | 0.10±0.02 a | 1.87±0.40 a |
W | 0.15±0.03 a | 0.09±0.01 a | 1.74±0.16 a | |
GW | 0.26±0.23 a | 0.21±0.12 a | 1.18±0.87 a | |
LW | 0.18±0.10 a | 0.12±0.04 a | 1.41±0.43 a | |
GLW | 0.47±0.50 a | 0.27±0.33 a | 1.84±1.02 a |
表3 不同调控措施对水稻镉转运系数的影响
Table 3. Effect of different treatments on cadmium transfer factor of rice
季别 Growing season | 处理 Treatment | Cd由茎叶到糙米转运系数(TF糙米/茎叶) TF of Cd from stem and leaves to brown rice | Cd由茎叶到稻壳转运系数(TF稻壳/茎叶) TF of Cd from stem and leaves to rice husk | Cd由稻壳到糙米转运系数(TF糙米/稻壳) TF of Cd from rice husk to brown rice |
---|---|---|---|---|
早稻 Early rice | CK | 0.61±0.16 a | 0.21±0.04 b | 2.94±0.55 a |
W | 0.56±0.22 a | 0.23±0.10 b | 2.43±0.64 a | |
GW | 0.80±0.49 a | 0.50±0.30 a | 1.61±0.65 b | |
LW | 0.47±0.14 a | 0.35±0.10 ab | 1.36±0.26 b | |
GLW | 0.56±0.24 a | 0.22±0.11 b | 2.58±0.47 a | |
晚稻 Late rice | CK | 0.17±0.03 a | 0.10±0.02 a | 1.87±0.40 a |
W | 0.15±0.03 a | 0.09±0.01 a | 1.74±0.16 a | |
GW | 0.26±0.23 a | 0.21±0.12 a | 1.18±0.87 a | |
LW | 0.18±0.10 a | 0.12±0.04 a | 1.41±0.43 a | |
GLW | 0.47±0.50 a | 0.27±0.33 a | 1.84±1.02 a |
季别 Growing season | 处理 Treatment | 茎叶Cd富集系数(BF茎叶) BF of Cd in stem and leaves | 糙米Cd富集系数(BF糙米) BF of Cd in brown rice | 稻壳Cd富集系数(BF稻壳) BF of Cd in rice husk |
---|---|---|---|---|
早稻 Early rice | CK | 3.03±0.88 a | 1.74±0.24 a | 0.61±0.17 a |
W | 2.07±0.52 b | 1.10±0.41 b | 0.44±0.06 a | |
GW | 0.47±0.23 c | 0.30±0.17 c | 0.19±0.09 b | |
LW | 0.38±0.12 c | 0.17±0.02 c | 0.12±0.02 b | |
GLW | 2.72±0.48 ab | 1.45±0.43 ab | 0.58±0.23 a | |
晚稻 Late rice | CK | 11.6±2.33 a | 1.96±0.13 a | 1.08±0.18 a |
W | 9.20±1.21 a | 1.35±0.06 b | 0.78±0.04 b | |
GW | 1.62±0.97 c | 0.29±0.16 c | 0.27±0.05 c | |
LW | 3.35±1.55 bc | 0.49±0.09 c | 0.35±0.06 c | |
GLW | 5.58±3.94 b | 1.12±0.64 b | 0.67±0.24 b |
表4 不同调控措施对水稻镉富集系数的影响
Table 4. Effect of different treatments on cadmium bioconcentration factor of rice
季别 Growing season | 处理 Treatment | 茎叶Cd富集系数(BF茎叶) BF of Cd in stem and leaves | 糙米Cd富集系数(BF糙米) BF of Cd in brown rice | 稻壳Cd富集系数(BF稻壳) BF of Cd in rice husk |
---|---|---|---|---|
早稻 Early rice | CK | 3.03±0.88 a | 1.74±0.24 a | 0.61±0.17 a |
W | 2.07±0.52 b | 1.10±0.41 b | 0.44±0.06 a | |
GW | 0.47±0.23 c | 0.30±0.17 c | 0.19±0.09 b | |
LW | 0.38±0.12 c | 0.17±0.02 c | 0.12±0.02 b | |
GLW | 2.72±0.48 ab | 1.45±0.43 ab | 0.58±0.23 a | |
晚稻 Late rice | CK | 11.6±2.33 a | 1.96±0.13 a | 1.08±0.18 a |
W | 9.20±1.21 a | 1.35±0.06 b | 0.78±0.04 b | |
GW | 1.62±0.97 c | 0.29±0.16 c | 0.27±0.05 c | |
LW | 3.35±1.55 bc | 0.49±0.09 c | 0.35±0.06 c | |
GLW | 5.58±3.94 b | 1.12±0.64 b | 0.67±0.24 b |
季别 Growing season | 处理 Treatment | 实际产量 Actual yield (t/hm2) | 有效穗数 Effective panicle number(×104/hm2) | 每穗总粒数(粒) Spikelets per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight (g) | 理论产量 Theoretical yield(t/hm2) |
---|---|---|---|---|---|---|---|
早稻 Early rice | CK | 4.75±0.71 a | 315.6±46.1 c | 82.21±14.95 a | 82.3±3.4 ab | 21.91±0.73 a | 4.65±0.71 a |
W | 5.08±0.11 a | 392.2±25.1 ab | 71.72±10.32 a | 85.7±2.0 a | 22.94±1.10 a | 5.54±0.95 a | |
GW | 4.72±0.82 a | 361.0±50.6 bc | 82.49±11.17 a | 81.6±3.6 ab | 22.50±0.19 a | 5.49±0.95 a | |
LW | 4.40±0.49 a | 437.4±46.7 a | 65.22±13.72 a | 81.3±4.2 ab | 22.52±1.66 a | 5.14±0.57 a | |
GLW | 4.48±0.78 a | 393.2±49.6 ab | 81.01±16.09 a | 79.5±7.6 b | 21.76±0.49 a | 5.46±0.86 a | |
晚稻 Late rice | CK | 6.97±1.12 a | 307.0±31.8 b | 114.18±04.39 a | 83.7±6.6 b | 26.34±1.01 bc | 7.74±0.94 a |
W | 7.63±0.92 a | 339.2±46.2 ab | 89.73±17.15 b | 91.0±3.1 a | 27.95±0.79 a | 7.73±1.42 a | |
GW | 6.88±0.94 a | 359.4±62.1 ab | 89.80±10.11 b | 92.1±2.9 a | 27.67±0.98 ab | 8.21±0.90 a | |
LW | 7.55±0.94 a | 377.8±51.1 a | 102.75±9.77 ab | 82.6±6.8 b | 26.11±1.48 c | 8.32±0.55 a | |
GLW | 6.85±0.97 a | 307.8±32.0 b | 95.41±10.17 b | 93.6±2.5 a | 28.47±0.85 a | 7.83±0.86 a |
表5 不同处理对水稻产量及产量构成因素的影响
Table 5. Effects of different treatments on rice yield and its components
季别 Growing season | 处理 Treatment | 实际产量 Actual yield (t/hm2) | 有效穗数 Effective panicle number(×104/hm2) | 每穗总粒数(粒) Spikelets per panicle | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight (g) | 理论产量 Theoretical yield(t/hm2) |
---|---|---|---|---|---|---|---|
早稻 Early rice | CK | 4.75±0.71 a | 315.6±46.1 c | 82.21±14.95 a | 82.3±3.4 ab | 21.91±0.73 a | 4.65±0.71 a |
W | 5.08±0.11 a | 392.2±25.1 ab | 71.72±10.32 a | 85.7±2.0 a | 22.94±1.10 a | 5.54±0.95 a | |
GW | 4.72±0.82 a | 361.0±50.6 bc | 82.49±11.17 a | 81.6±3.6 ab | 22.50±0.19 a | 5.49±0.95 a | |
LW | 4.40±0.49 a | 437.4±46.7 a | 65.22±13.72 a | 81.3±4.2 ab | 22.52±1.66 a | 5.14±0.57 a | |
GLW | 4.48±0.78 a | 393.2±49.6 ab | 81.01±16.09 a | 79.5±7.6 b | 21.76±0.49 a | 5.46±0.86 a | |
晚稻 Late rice | CK | 6.97±1.12 a | 307.0±31.8 b | 114.18±04.39 a | 83.7±6.6 b | 26.34±1.01 bc | 7.74±0.94 a |
W | 7.63±0.92 a | 339.2±46.2 ab | 89.73±17.15 b | 91.0±3.1 a | 27.95±0.79 a | 7.73±1.42 a | |
GW | 6.88±0.94 a | 359.4±62.1 ab | 89.80±10.11 b | 92.1±2.9 a | 27.67±0.98 ab | 8.21±0.90 a | |
LW | 7.55±0.94 a | 377.8±51.1 a | 102.75±9.77 ab | 82.6±6.8 b | 26.11±1.48 c | 8.32±0.55 a | |
GLW | 6.85±0.97 a | 307.8±32.0 b | 95.41±10.17 b | 93.6±2.5 a | 28.47±0.85 a | 7.83±0.86 a |
处理 Treatment | 土壤pH Soil pH | 土壤有效Cd含量 Soil available Cd content | 茎叶镉含量 Cadmium content of stems and leaves | 籽粒镉含量 Grain cadmium content | 稻壳镉含量 Rice husk cadmium content | IF糙米/茎叶 | IF稻壳/茎叶 | IF糙米/稻壳 |
---|---|---|---|---|---|---|---|---|
CK | −0.687* | −0.406 | 0.499 | 0.577 | 0.562 | −0.435 | −0.366 | −0.404 |
W | −0.674* | 0.502 | 0.443 | 0.803** | 0.553 | −0.068 | −0.333 | 0.370 |
GW | −0.254 | 0.350 | −0.226 | −0.536 | 0.275 | 0.499 | 0.186 | 0.729* |
LW | −0.916** | 0.621 | 0.655* | 0.864** | 0.855** | −0.645* | −0.753* | 0.330 |
GLW | 0.045 | 0.098 | −0.221 | 0.084 | 0.242 | 0.358 | 0.019 | 0.612 |
表6 不同处理下糙米Cd含量与土壤pH值、有效Cd含量、水稻不同部位Cd含量及转运系数的相关性
Table 6. Correlation of Cd content of brown rice with soil pH, available Cd, Cd content of different parts of rice, and transport coefficient
处理 Treatment | 土壤pH Soil pH | 土壤有效Cd含量 Soil available Cd content | 茎叶镉含量 Cadmium content of stems and leaves | 籽粒镉含量 Grain cadmium content | 稻壳镉含量 Rice husk cadmium content | IF糙米/茎叶 | IF稻壳/茎叶 | IF糙米/稻壳 |
---|---|---|---|---|---|---|---|---|
CK | −0.687* | −0.406 | 0.499 | 0.577 | 0.562 | −0.435 | −0.366 | −0.404 |
W | −0.674* | 0.502 | 0.443 | 0.803** | 0.553 | −0.068 | −0.333 | 0.370 |
GW | −0.254 | 0.350 | −0.226 | −0.536 | 0.275 | 0.499 | 0.186 | 0.729* |
LW | −0.916** | 0.621 | 0.655* | 0.864** | 0.855** | −0.645* | −0.753* | 0.330 |
GLW | 0.045 | 0.098 | −0.221 | 0.084 | 0.242 | 0.358 | 0.019 | 0.612 |
处理 Treatment | 土壤pH Soil pH | 土壤有效Cd含量 Soil available Cd content | 茎叶镉含量 Cadmium content of stems and leaves | 籽粒镉含量 Grain cadmium content | 糙米镉含量 Brown rice cadmium content | 稻壳镉含量 Rice husk cadmium content | IF糙米/茎叶 | IF稻壳/茎叶 | IF糙米/稻壳 |
---|---|---|---|---|---|---|---|---|---|
CK | −0.804** | −0.177 | 0.737* | 0.590 | 0.688* | 0.718* | −0.739* | −0.705* | −0.653* |
W | −0.820** | −0.425 | 0.885** | 0.363 | 0.391 | 0.808** | −0.767** | −0.706* | −0.547 |
GW | −0.545 | −0.351 | 0.609 | 0.192 | −0.005 | 0.262 | −0.416 | −0.557 | −0.010 |
LW | −0.876** | 0.561 | 0.839** | 0.928** | 0.867** | 0.963** | −0.762* | −0.799** | −0.053 |
GLW | −0.677* | −0.234 | 0.369 | −0.110 | 0.044 | 0.375 | 0.122 | 0.319 | −0.323 |
表7 不同处理下产量与土壤pH值、有效Cd含量、水稻不同部位Cd含量及转运系数的相关性
Table 7. Correlation of rice yield with soil pH, soil available Cd, Cd content of different parts of rice, and transport coefficient under different treatments
处理 Treatment | 土壤pH Soil pH | 土壤有效Cd含量 Soil available Cd content | 茎叶镉含量 Cadmium content of stems and leaves | 籽粒镉含量 Grain cadmium content | 糙米镉含量 Brown rice cadmium content | 稻壳镉含量 Rice husk cadmium content | IF糙米/茎叶 | IF稻壳/茎叶 | IF糙米/稻壳 |
---|---|---|---|---|---|---|---|---|---|
CK | −0.804** | −0.177 | 0.737* | 0.590 | 0.688* | 0.718* | −0.739* | −0.705* | −0.653* |
W | −0.820** | −0.425 | 0.885** | 0.363 | 0.391 | 0.808** | −0.767** | −0.706* | −0.547 |
GW | −0.545 | −0.351 | 0.609 | 0.192 | −0.005 | 0.262 | −0.416 | −0.557 | −0.010 |
LW | −0.876** | 0.561 | 0.839** | 0.928** | 0.867** | 0.963** | −0.762* | −0.799** | −0.053 |
GLW | −0.677* | −0.234 | 0.369 | −0.110 | 0.044 | 0.375 | 0.122 | 0.319 | −0.323 |
[1] | 陈天晔, 袁嘉琦, 刘艳阳, 许轲, 郭保卫, 戴其根, 霍中洋, 张洪程, 李国辉, 魏海燕. 江淮下游不同播期对稻-麦周年作物产量、品质及温光资源利用的影响[J]. 作物学报, 2020, 46 (10): 1566-1578. |
Chen T Y, Yuan J Q, Liu Y Y, Xu K, Guo B W, Dai Q G, Huo Z Y, Zhang H C, Li G H, Wei H Y. Effects of different sowing dates on annual crop yield, quality and utilization of temperature and light resources in the lower reaches of Jianghuai River[J]. Acta Agronomica Sinica, 2020, 46 (10): 1566-1578. (in Chinese with English abstract) | |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. (2014-04-17) [2022-06-06]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670_wh.htm. |
Ministry of Environmental Protection, Ministry of Land and Resources. National soil pollution condition investigation communique[R/OL]. (2014-04-17) [2022-06-06]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670_wh.htm. | |
[3] | 许肖博, 安鹏虎, 郭天骄, 韩丹, 贾玮, 黄五星. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35 (5): 415-426. |
Xu X B, An P H, Guo T J, Han D, Jia W, Huang W X. Research progress on response mechanism and control measures of cadmium stress in rice[J]. Chinese Journal of Rice Science, 2021, 35 (5): 415-426. (in Chinese with English abstract) | |
[4] | Zhang J L, Zhu Y C, Yu L J, Yang M, Zou X, Yin C X, Lin Y J. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L. )[J]. Cells, 2022, 11(3): 569. |
[5] | 张剑, 孔繁艺, 卢升高. 无机钝化剂对镉污染酸性水稻土的修复效果及其机制[J]. 环境科学, 2022, 43 (10): 4679-4686. |
Zhang J, Kong F Y, Lu S G. Remediation effect and mechanism of inorganic passivator on cadmium- contaminated acid paddy soil[J]. Environmental Science, 2022, 43 (10): 4679-4686. (in Chinese with English abstract) | |
[6] | Liao P, Huang S, Zeng Y J, Shao H, Zhang J, van Groenigen K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta- analysis[J]. Plant and Soil, 2021, 465(1): 157-169. |
[7] | 孙国红, 李剑睿, 徐应明, 秦旭, 梁学峰, 孙约兵, 杨磊, 董晋峰. 不同水分管理下镉污染红壤钝化修复稳定性及其对氮磷有效性的影响[J]. 农业环境科学学报, 2015, 34 (11): 2105-2113. |
Sun G H, Li J R, Xu Y M, Qin X, Liang X F, Sun Y B, Yang L, Dong J F. Effects of passivation restoration stability on nitrogen and phosphorus availability of cadmium-contaminated red soil under different water management[J]. Journal of Agricultural and Environmental Sciences, 2015, 34 (11): 2105-2113. (in Chinese with English abstract) | |
[8] | 冯敬云, 聂新星, 刘波, 李方敏, 杨利. 镉污染农田原位钝化修复效果及其机理研究进展[J]. 农业资源与环境学报, 2021, 38(5): 764-777. |
Feng J Y, Nie X X, Liu B, Li F M, Yang Li. Progress in in-situ passivation remediation of cadmium-contaminated farmland and its mechanism[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777. (in Chinese with English abstract) | |
[9] | 孙丽娟, 秦秦, 宋科, 乔红霞, 薛永. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 2018, 27 (7): 1377-1386. |
Sun L J, Qin Q, Song K, Qiao H X, Xue Y. Research progress on remediation techniques and safe utilization methods of cadmium-contaminated farmland soil[J]. Chinese Journal of Ecology and Environment, 2018, 27 (7): 1377-1386. (in Chinese with English abstract) | |
[10] | 李虎, 吴子帅, 陈传华, 罗群昌, 梁云涛, 何金富, 周新明, 朱其南, 李秋雯, 刘广林. 镉低积累水稻品种筛选及其在镉超标稻田的表现评价[J]. 南方农业学报, 2022, 53 (1): 96-103. |
Li H, Wu Z S, Chen C H, Luo Q C, Liang Y T, He J F, Zhou X M, Zhu Q N, Li Q W, Liu G L. Screening of rice varieties with low cadmium accumulation and evaluation of their performance in cadmium-exceeding paddy fields[J]. Journal of Southern Agricultural Sciences, 2022, 53 (1): 96-103. (in Chinese with English abstract) | |
[11] | 杨小粉, 吴勇俊, 张玉盛, 汪泽钱, 敖和军. 水分管理对水稻镉吸收的影响[J]. 中国稻米, 2019, 25(4): 34-37. |
Yang X F, Wu Y J, Zhang Y S, Wang Z Q, Ao H J. Effects of water management on cadmium uptake in rice[J]. China Rice, 2019, 25(4): 34-37. (in Chinese with English abstract) | |
[12] | 朱靖, 孙星星, 张晓绪, 陶润萍, 张嘉伟, 徐轶群. 不同来源有机物料降低水稻镉积累的效果[J]. 中国稻米, 2022, 28(2): 73-76+81. |
Zhu J, Sun X X, Zhang X X, Tao R P, Zhang J W, Xu Y Q. Effect of organic materials from different sources on reducing cadmium accumulation in rice[J]. China Rice, 2022, 28(2): 73-76+81. (in Chinese with English abstract) | |
[13] | 张振兴, 纪雄辉, 谢运河, 官迪, 彭华, 朱坚, 田发祥. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1867-1872. |
Zhang Z X, Ji X H, Xie Y H, Guan D, Peng H, Zhu Jian, Tian F X. Effects of quicklime application at different growth stages on cadmium content of rice[J]. Journal of Agro-Environmental Science, 2016, 35(10): 1867-1872. (in Chinese with English abstract) | |
[14] | 王建乐, 谢仕斌, 林丹虹, 唐婉玲, 方战强. 5种钝化剂对镉砷污染稻田的田间修复效果对比[J]. 环境工程学报, 2019, 13 (11): 2691-2700. |
Wang J L, Xie S B, Lin D H, Tang W L, Fang Z Q. Comparison of field remediation effects of five passivating agents on cadmium-arsenic contaminated rice fields[J]. Journal of Environmental Engineering, 2019, 13 (11): 2691-2700. (in Chinese with English abstract) | |
[15] | 任超, 朱利文, 李竞天, 杜倩倩, 肖建辉, 王浩, 赵瑞. 不同钝化剂对弱酸性镉污染土壤的钝化效果[J]. 生态与农村环境学报, 2022, 38 (3): 383-390. |
Ren C, Zhu L W, Li J T, Du Q Q, Xiao J H, Wang H, Zhao R. Effects of different passivating agents on weakly acidic cadmium polluted soil[J]. Journal of Ecology and Rural Environment, 2022, 38 (3): 383-390. (in Chinese with English abstract) | |
[16] | Zhang Q, Chen H F, Huang D Y, Guo X B, Xu C, Zhu H H, Li B, Liu T T, Feng R W, Zhu Q H. Sulfur fertilization integrated with soil redox conditions reduces Cd accumulation in rice through microbial induced Cd immobilization[J]. Science of The Total Environment, 2022, 824: 153868 |
[17] | 周亮, 肖峰, 肖欢, 张玉盛, 敖和军. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 2021, 54(4): 780-791. |
Zhou L, Xiao F, Xiao H, Zhang Y S, Ao H J. Effect of lime application on reducing cadmium accumulation in polluted double-cropping rice[J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791. (in Chinese with English abstract) | |
[18] | 邱子健, 申卫收, 林先贵. 化肥减量增效技术及其农学、生态环境效应[J]. 中国土壤与肥料, 2022(4): 237-248. |
Qiu Z J, Shen W S, Lin X G. Technology of fertilizer reduction and efficiency improvement and its effects on agronomy and ecological environment[J]. China Soil and Fertilizer, 2022(4): 237-248. (in Chinese with English abstract) | |
[19] | 肖敏, 范晶晶, 王华静, 许超, 张泉, 陈心胜, 朱捍华, 朱奇宏, 黄道友. 紫云英还田配施石灰对水稻镉吸收转运的影响[J]. 中国环境科学, 2022, 42(1): 276-284. |
Xiao M, Fan J J, Wang H J, Xu C, Zhang Q, Chen X S, Zhu H H, Zhu Q H, Huang D Y. Effects of returning milk vetch with lime on cadmium uptake and transport in rice[J]. China Environmental Science, 2022, 42(1): 276-284. (in Chinese with English abstract) | |
[20] | 黄雁飞, 陈桂芬, 黄玉溢, 熊柳梅, 刘淑仪, 钟蕙镁, 刘斌. 田间条件下不同钝化剂对水稻镉吸收累积的影响及其时效性[J]. 农业环境科学学报, 2023, 42(4): 787-798. |
Huang Y F, Chen G F, Huang Y Y, Xiong L M, Liu S Y, Zhong H M, Liu B. Effects of different passivators on cadmium uptake and accumulation in rice under field conditions and their timeliness[J]. Journal of Agricultural and Environmental Sciences, 2023, 42(4): 787-798. (in Chinese with English abstract) | |
[21] | 曾晓珊, 汤国华, 谢红军, 朱明东, 敖和军, 陈博, 李方婷, 郝明, 肖燕, 符慧荣, 张健, 余应弘. 耐迟收水稻品种的筛选及其在淹水降镉中的应用[J]. 中国农业科学, 2021, 54(17): 3561-3572. |
Zeng X S, Tang G H, Xie H J, Zhu M D, Ao H J, Chen B, Li F T, Hao M, Xiao Y, Fu H R, Zhang J, Yu Y H. Screening of late harvest tolerant rice varieties and their application to cadmium reduction in water flooding[J]. Scientia Agricultura Sinica, 2021, 54(17): 3561-3572. (in Chinese with English abstract) | |
[22] | 张燕, 江建锋, 黄奇娜, 邵国胜, 王宏航. 水分管理调控水稻镉污染的研究与应用进展[J]. 中国稻米, 2021, 27(3): 10-16. |
Zhang Y, Jiang J F, Huang Q N, Shao G S, Wang H H. Research and application progress of water management to control cadmium pollution in rice[J]. China Rice, 2021, 27(3): 10-16. (in Chinese with English abstract) | |
[23] | 王港, 余海英, 李廷轩, 唐婵. 两种淹水模式下施用钝化材料对镉污染农田水稻安全生产的影响[J]. 环境科学, 2022, 43(2): 1015-1022. |
Wang G, Yu H Y, Li T X, Tang C. Effects of application of passivation materials on the safety production of rice in cadmium-contaminated farmland under two flooding modes[J]. Environmental Science, 2022, 43(2): 1015-1022. (in Chinese with English abstract) | |
[24] | 杨小粉, 伍湘, 汪泽钱, 吴勇俊, 张玉盛, 王学华, 敖和军. 水分管理对水稻镉砷吸收积累的影响研究[J]. 生态环境学报, 2020, 29(10): 2091-2101. |
Yang X F, Wu X, Wang Z Q, Wu Y J, Zhang Y S, Wang X H, Ao H J. Effects of water management on cadmium and arsenic uptake and accumulation in rice[J]. Chinese Journal of Ecology and Environment, 2020, 29(10): 2091-2101. (in Chinese with English abstract) | |
[25] | 陈江民, 杨永杰, 黄奇娜, 胡培松, 唐绍清, 吴立群, 王建龙, 邵国胜. 持续淹水对水稻镉吸收的影响及其调控机理[J]. 中国农业科学, 2017, 50(17): 3300-3310. |
Chen J M, Yang Y J, Huang Q N, Hu P S, Tang S Q, Wu L Q, Wang J L, Shao G S. Effects of continuous flooding on cadmium uptake in rice and its regulation mechanism[J]. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310. (in Chinese with English abstract) | |
[26] | 刘昭兵, 纪雄辉, 彭华, 石丽红, 李洪顺. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报, 2010, 21(4): 908-914. |
Liu Z B, Ji X H, Peng H, Shi L H, Li H S. Effects of water management models on cadmium uptake and accumulation in rice[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 908-914. (in Chinese with English abstract) | |
[27] | 常海伟, 桂娟, 黎红亮. 土壤-水稻系统镉迁移富集影响因素研究进展[J]. 环境科学与技术, 2022, 45(S1): 282-295. |
Chang H W, Gui J, Li H L. Research progress on factors affecting cadmium migration and accumulation in soil-rice system[J]. Environmental Science and Technology, 2022, 45(S1): 282-295. (in Chinese with English abstract) | |
[28] | 文炯, 李祖胜, 许望龙, 陈鸽, 白玲玉, 曾希柏, 吴家梅. 生石灰和钙镁磷肥对晚稻生长及稻米镉含量的影响[J]. 农业环境科学学报, 2019, 38(11): 2496-2502. |
Wen J, Li Z S, Xu W L, Chen G, Bai L Y, Zeng X B, Wu J M. Effects of quicklime and calcium-magnesium- phosphorus fertilizers on growth of late rice and cadmium content in rice[J]. Journal of Agricultural Environmental Science, 2019, 38(11): 2496-2502. (in Chinese with English abstract) | |
[29] | 史磊, 郭朝晖, 梁芳, 彭驰, 肖细元, 封文利. 水分管理和施用石灰对水稻镉吸收与运移的影响[J]. 农业工程学报, 2017, 33(24): 111-117. |
Shi L, Guo Z H, Liang F, Peng C, Xiao X Y, Feng W L. Effects of water management and lime application on cadmium uptake and transport in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (24): 111-117. (in Chinese with English abstract) | |
[30] | 唐熙雯, 周旋, 黄凤球, 周峻宇. 不同污染程度耕地下稻米镉综合治理效果研究[J]. 生态与农村环境学报, 2020, 36(10): 1339-1346. |
Tang X W, Zhou X, Huang F Q, Zhou J Y. Effect of comprehensive treatment of cadmium in rice under different pollution levels[J]. Journal of Ecology and Rural Environment, 2020, 36(10): 1339-1346. (in Chinese with English abstract) | |
[31] | Kong L L, Guo Z H, Peng C, Xiao X Y, He Y L. Factors influencing the effectiveness of liming on cadmium reduction in rice: A meta-analysis and decision tree analysis[J]. Science of the Total Environment, 2021, 779: 146477. |
[32] | Zhang S Y, Deng Y, Fu S D, Xu M L, Zhu P, Liang Y L, Yin H Q, Jiang L H, Bai L Y, Liu X D, Jiang H D, Liu H W. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: Insight into microbial community[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110908 |
[33] | 高山, 陈建斌, 王果. 淹水条件下有机物料对潮土外源镉形态及化学性质的影响[J]. 植物营养与肥料学报, 2003, 29(1): 102-105. |
Gao S, Chen J B, Wang G. Effects of organic materials on morphology and chemical properties of exogenous cadmium in tidal soil under flooding conditions[J]. Plant Nutrition and Fertilizer Journal, 2003, 29(1): 102-105. (in Chinese with English abstract) | |
[34] | 陶荣浩, 袁旭峰, 吴新德, 王垚, 鲁洪娟, 叶文玲, 陈勇, 马友华. 修复肥料和紫云英对水稻吸收积累镉的影响[J]. 农业环境科学学报, 2023, 42(1): 76-86. |
Tao R H, Yuan X F, Wu X D, Wang Y, Lu H J, Ye W L, Chen Y, Ma Y H. Effects of remediation fertilizer and purple cloud on cadmium uptake and accumulation in rice[J]. Journal of Agro-Environmental Science, 2023, 42 (1): 76-86. (in Chinese with English abstract) | |
[35] | Wang Y, Liang H, Li S, Zhang Z H, Liao Y L, Lu Y H, Zhou G P, Gao S J, Nie S J, Cao W D. Co-utilizing milk vetch, rice straw, and lime reduces the Cd accumulation of rice grain in two paddy soils in south China[J]. Science of The Total Environment, 2022, 806: 150622 |
[36] | Zheng S, Liao Y L, Xu C, Wang Y, Zhang Q, Zhu Q H, Zhu H H, Sun Y Q, Zhou Y Y, Zhong D L, Huang D Y. Milk vetch returning reduces rice grain Cd concentration in paddy fields: Roles of iron plaque and soil reducing-bacteria[J]. Chemosphere, 2022, 308: 136158. |
[37] | Xu C, Zheng S, Huang D Y, Zhang Q, Xiao M, Fan J J, Zhu Q H, Zhu H H. Phytoavailability of cadmium in rice amended with organic materials and lime: Effects of rhizosphere chemical changes and cadmium sequestration in iron plaque[J]. Ecotoxicology and Environmental Safety, 2023, 265: 115525 |
[38] | 王阳, 刘恩玲, 王奇赞, 叶正钱, 胡杨勇. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189-193. |
Wang Y, Liu E L, Wang Q Z, Ye Z Q, Hu Y Y. Effects of Ziyunying returning to rice field on cadmium and lead uptake and accumulation[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189-193. (in Chinese with English abstract) | |
[39] | 方克明, 钟国民, 周丽芳, 沈慧芳, 江麟, 邱水胜, 叶医群. 石灰在酸性稻田的施用效果[J]. 中国土壤与肥料, 2017(5): 105-109. |
Fang K M, Zhong G M, Zhou L F, Shen H F, Jiang L, Qiu S S, Ye Y Q. Application effect of lime in acidic rice field[J]. China Soil and Fertilizer, 2017(5): 105-109. (in Chinese with English abstract) | |
[40] | 葛颖, 马进川, 邹平, 潘建清, 陈丽芬, 石其伟, 马军伟. 水分管理对镉轻度污染农田水稻镉积累的影响[J]. 灌溉排水学报, 2021, 40(3): 79-86. |
Ge Y, Ma J C, Zou P, Pan J Q, Chen L F, Shi Q W, Ma J W. Effects of water management on cadmium accumulation in rice with slight cadmium pollution[J]. Journal of Irrigation and Drainage, 2021, 40(3): 79-86. (in Chinese with English abstract) | |
[41] | 彭鸥, 刘玉玲, 铁柏清, 叶长城, 张淼, 李园星露, 周俊驰, 许蒙, 张燕, 龙涌. 调理剂及农艺措施对污染稻田中水稻吸收镉的影响[J]. 中国农业科学, 2020, 53 (3): 574-584. |
Peng O, Liu Y L, Tie B Q, Ye C C, Zhang M, Li Y X L, Zhou J C, Xu M, Zhang Y, Long Y. Effects of conditioning agents and agronomic measures on cadmium uptake in polluted rice fields[J]. Scientia Agricultura Sinica, 2020, 53(3): 574-584. (in Chinese with English abstract) | |
[42] | 易镇邪, 苏雨婷, 谷子寒, 王元元, 屠乃美, 周文新. 不同生育阶段间歇灌溉对镉污染稻田双季稻产量构成与镉累积的影响[J]. 水土保持学报, 2019, 33(5): 364-368. |
Yi Z X, Su Y T, Gu Z H, Wang Y Y, Tu N M, Zhou W X. Effects of intermittent irrigation at different growth stages on yield composition and cadmium accumulation of double cropping rice in cadmium-contaminated paddy fields[J]. Journal of Soil and Water Conservation, 2019, 33(5): 364-368. (in Chinese with English abstract) | |
[43] | 苏雨婷, 赵英杰, 谷子寒, 王元元, 屠乃美, 周文新, 陈平平, 易镇邪. 灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响[J]. 作物研究, 2018, 32(3): 180-187. |
Su Y T, Zhao Y J, Gu Z H, Wang Y Y, Tu N M, Zhou W X, Chen P P, Yi Z X. Effects of irrigation methods on soil available cadmium content, yield formation and cumulative distribution of cadmium in double cropping rice[J]. Crop Research, 2018, 32(3): 180-187. (in Chinese with English abstract) | |
[44] | 高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报, 2020, 26(12): 2115-2126. |
Gao S J, Zhou G P, Cao W D. Effect and mechanism of increasing and saving yield of winter green fertilizer in southern rice field[J]. Plant Nutrition and Fertilizer Journal, 2020, 26(12): 2115-2126. (in Chinese with English abstract) | |
[45] | Wang H, Tang S, Han S, Li M, Cheng W L, Bu R Y, Wang Y Q, Cao W D, Wu J. Rational utilization of Chinese milk vetch improves soil fertility, rice production, and fertilizer use efficiency in double-rice cropping system in East China[J]. Soil Science and Plant Nutrition, 2021, 67(2): 171-179 |
[46] | 廖萍, 汤军, 曾勇军, 吴自明, 石庆华, 黄山. 生物炭和石灰对酸性稻田水稻产量、土壤性状和经济效益的影响[J]. 中国稻米, 2019, 25(1): 44-48. |
Liao P, Tang J, Zeng Y J, Wu Z N, Shi Q H, Huang S. Effects of biochar and lime on rice yield, soil properties and economic benefits in acid paddy field[J]. China Rice, 2019, 25(1): 44-48. (in Chinese with English abstract) | |
[47] | Liu Z B, Huang Y, Ji X H, Xie Y H, Peng J W, Eissa M A, Fahmy A E, Abou-Elwafa S F. Effects and mechanism of continuous liming on cadmium immobilization and uptake by rice grown on acid paddy soils[J]. Journal of Soil Science and Plant Nutrition, 2020, 20: 2316-2328. |
[48] | 唐杉, 王允青, 赵决建, 张智, 吴立蒙, 曹卫东. 紫云英还田对双季稻产量及稳定性的影响[J]. 生态学杂志, 2015, 34(11): 3086-3093. |
Tang S, Wang Y Q, Zhao J J, Zhang Z, Wu L M, Cao W D. Effects of Ziyunying returning to field on yield and stability of double-cropping rice[J]. Chinese Journal of Ecology, 2015, 34(11): 3086-3093. (in Chinese with English abstract) |
[1] | 杨陶陶, 邹积祥, 伍龙梅, 包晓哲, 江瑜, 张楠, 张彬. 开放式增温对华南双季稻稻米品质的影响[J]. 中国水稻科学, 2023, 37(1): 66-77. |
[2] | 王丰, 廖亦龙, 柳武革, 刘迪林, 曾学勤, 傅友强, 朱满山, 李金华, 付崇允, 马晓智, 霍兴. 籼型杂交稻恢复系动态株型与光能利用率评价[J]. 中国水稻科学, 2021, 35(2): 141-154. |
[3] | 杨通, 吴俊男, 鲍婷, 李凤博, 冯金飞, 周锡跃, 方福平. 耕作方式对双季稻田土壤剖面CH4和N2O分布特征的影响[J]. 中国水稻科学, 2021, 35(1): 78-88. |
[4] | 叶春, 李艳大, 曹中盛, 黄俊宝, 孙滨峰, 舒时富, 吴罗发. 不同育秧盘对机插双季稻株型与产量的影响[J]. 中国水稻科学, 2020, 34(5): 435-442. |
[5] | 钟雪梅, 黄铁平, 彭建伟, 卢文璐, 康兴蓉, 孙梦飞, 宋思明, 唐启源, 陈裕新, 湛冬至, 周旋. 机插同步一次性精量施肥对双季稻养分累积及利用率的影响[J]. 中国水稻科学, 2019, 33(5): 436-446. |
[6] | 陈中督, 徐春春, 纪龙, 方福平. 基于农户调查的长江中游地区双季稻生产碳足迹及其构成[J]. 中国水稻科学, 2018, 32(6): 601-609. |
[7] | 陈中督 徐春春 纪龙 方福平*. 基于农户调查的长江中游地区双季稻生产碳足迹及其构成[J]. 中国水稻科学, 2018, 32(6): 601-609. |
[8] | 杨陶陶, 胡启星, 黄山, 曾研华, 谭雪明, 曾勇军, 潘晓华, 石庆华, 张俊. 双季优质稻产量和品质形成对开放式主动增温的响应[J]. 中国水稻科学, 2018, 32(6): 572-580. |
[9] | 田昌, 周旋, 谢桂先, 刘强, 荣湘民, 张玉平, 谭力彰, 彭建伟. 控释尿素减施对双季稻田氨挥发损失和氮肥利用率的影响[J]. 中国水稻科学, 2018, 32(4): 387-397. |
[10] | 张浪, 周玲红, 魏甲彬, 成小琳, 徐华勤, 肖志祥, 唐启源, 唐剑武. 冬季种养结合对双季稻生长与土壤肥力的影响[J]. 中国水稻科学, 2018, 32(3): 226-236. |
[11] | 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀, 曾研华. 近30年江西双季稻安全生产期及温光资源变化[J]. 中国水稻科学, 2016, 30(3): 323-334. |
[12] | 陈佳娜, 谢小兵, 伍丹丹, 曹放波, 单双吕, 高伟, 李志斌, 邹应斌. 机插密度与氮肥运筹对中嘉早17产量形成及氮肥利用率的影响[J]. 中国水稻科学, 2015, 29(6): 628-636. |
[13] | 吴萍萍,.刘金剑.杨秀霞.商庆银.周 毅.谢小立.沈其荣.郭世伟,. 不同施肥制度对红壤地区双季稻田氨挥发的影响 [J]. 中国水稻科学, 2009, 23(1): 85-85~93 . |
[14] | 陈友订, 万邦惠, 张旭. 华南双季超高产水稻抽穗期理想株型结构研究[J]. 中国水稻科学, 2005, 19(1): 52-58 . |
[15] | 邹应斌, 黄见良, 李合松, 张杨珠, 肖应辉, 黄升平, 宋春芳, 程正良, 易建平. 双季稻超高产栽培技术研究[J]. 中国水稻科学, 1998, 12(增刊): 4-8 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||