中国水稻科学 ›› 2024, Vol. 38 ›› Issue (2): 198-210.DOI: 10.16819/j.1001-7216.2024.230404
彭显龙1,2,*(), 董强1, 张辰1, 李鹏飞1,2, 李博琳3, 刘智蕾1,2, 于彩莲3
收稿日期:
2023-04-17
修回日期:
2023-06-07
出版日期:
2024-03-10
发布日期:
2024-03-14
通讯作者:
* email: pxl0508@163.com
基金资助:
PENG Xianlong1,2,*(), DONG Qiang1, ZHANG Chen1, LI Pengfei1,2, LI Bolin3, LIU Zhilei1,2, YU Cailian3
Received:
2023-04-17
Revised:
2023-06-07
Online:
2024-03-10
Published:
2024-03-14
Contact:
* email: pxl0508@163.com
摘要:
【目的】在不同土壤上研究水稻秸秆还田后还原性物质的形成及其与水稻生长的关系。【方法】在砂壤土(S1)和粉壤土(S2)上进行2年盆栽试验,模拟低(RL)中(RM)高(RH)产量下秸秆全量还田,以秸秆不还田(R0)为对照,测定土壤还原性物质总量、Eh、亚铁离子、锰离子和铵态氮含量,分析水稻分蘖、根系干质量、根系活力和水稻产量等指标。【结果】秸秆还田后生育前期土壤Eh显著降低,还原性物质数量增加,S2的还原性物质高于砂壤土。与对照相比,2021年在移栽后56 d之前秸秆还田处理还原性物质总量、铁和锰离子含量分别提高了8.36%~199.64%、1.43%~160.03%和8.43%~57.68%。2022年在移栽后45 d前对应增加了2.95%~163.61%、0.77%~19.74%和3.28%~64.96%。随着秸秆还田量增加,还原性物质总量、铁和锰含量有增加趋势。在移栽后56 d前(2021年)和35 d前(2022年)秸秆还田显著增加了土壤铵态氮含量11.28%~50.67%和10.79%~351.53%。秸秆还田使水稻分蘖期和拔节期的根系干质量降低15.06%~45.80%,秸秆还田显著降低了砂壤土上水稻分蘖期和拔节期的根系活力,在S2土壤上RL和RM增加了拔节期根系活力,RH降低了根系活力。秸秆还田后水稻分蘖数在水稻生育期降低了7.23%~48.44%,干物质积累量降低了3.59%~43.57%。RL和RM处理第二年水稻产量降低不明显,RH处理2年均显著减产。砂壤土中氧化还原电位高于S2,S2还原性物质总量、锰离子含量、铵态氮含量、根系干质量、根系活力、分蘖数、干物质积累量和产量均高于砂壤土。【结论】在本研究条件下,秸秆还田显著增加还原性物质总量,抑制水稻早期生长。黏重土壤上秸秆全量还田引起减产,砂壤土上中低产量下秸秆全量还田不会造成穗数显著降低,因促进大穗形成不会造成显著减产。采取有效措施减少秸秆还田下还原性物质危害是秸秆还田技术优化的重点。
彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2): 198-210.
PENG Xianlong, DONG Qiang, ZHANG Chen, LI Pengfei, LI Bolin, LIU Zhilei, YU Cailian. Effects of Straw Return Rate on Soil Reducing Substances and Rice Growth Under Different Soil Conditions[J]. Chinese Journal OF Rice Science, 2024, 38(2): 198-210.
土壤质地 Soil texture | 土壤颗粒组成 Soil particle composition (%) | pH值 pH value | 有机质 Organic matter (g/kg) | 碱解氮 Alkaline N (mg/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | |||
---|---|---|---|---|---|---|---|---|---|
砂粒 Sandy particle (0.02~2.00 mm) | 黏粒 Clay particle (0.002~0.020 mm) | 粉粒 Silty particle (<0.002 mm) | |||||||
砂壤Sandy loam(S1) | 56.69 | 9.62 | 33.69 | 7.91 | 27.56 | 89.59 | 19.28 | 63.47 | |
粉壤Silty loam(S2) | 27.06 | 0.30 | 72.64 | 5.02 | 36.34 | 151.30 | 22.45 | 66.25 |
表1 土壤基本理化性质
Table 1. Basic physical and chemical properties of soil
土壤质地 Soil texture | 土壤颗粒组成 Soil particle composition (%) | pH值 pH value | 有机质 Organic matter (g/kg) | 碱解氮 Alkaline N (mg/kg) | 速效磷 Available P (mg/kg) | 速效钾 Available K (mg/kg) | |||
---|---|---|---|---|---|---|---|---|---|
砂粒 Sandy particle (0.02~2.00 mm) | 黏粒 Clay particle (0.002~0.020 mm) | 粉粒 Silty particle (<0.002 mm) | |||||||
砂壤Sandy loam(S1) | 56.69 | 9.62 | 33.69 | 7.91 | 27.56 | 89.59 | 19.28 | 63.47 | |
粉壤Silty loam(S2) | 27.06 | 0.30 | 72.64 | 5.02 | 36.34 | 151.30 | 22.45 | 66.25 |
图2 秸秆还田量对土壤氧化还原电位的影响 R代表秸秆还田量,S代表土壤类型,R×S代表秸秆还田量与土壤类型的交互作用;R0,RL,RM,RH分别代表秸秆还田量为0,23.74,47.48,71.22 g/盆。*, **在5%与1%水平下差异显著,ns代表差异不显著。其中向下箭头(↓)代表晒田后测定值。下同。
Fig. 2. Effect of straw return volume on soil redox potential R represents straw application rates; S represents soil type; R × S represents the interaction between straw application rates and soil type. R0, RL, RM, RH represent the amount of straw returned to the field was 0,23.74,47.48,71.22 g/pot, respectively. *, ** represent significant difference at 5% and 1% level, respectively. ns represents no significant difference; the downward arrow (↓) represents the measured value after aeration sun-drying treatment. The same as below.
图6 秸秆还田量对土壤铵态氮含量的影响 其中向下箭头代表追肥。
Fig. 6. Effect of straw return amount on soil ammonium nitrogen content The downward arrow represents fertilizer topdressing.
年份 Year | 土壤类型 Soil type | 处理 Treatment | 产量 Yield (g/pot) | 有效穗数 Effective panicles(No./pot) | 每穗粒数 Spikelets per panicle | 千粒重 1000-grain weight (g) | 结实率 Seed setting rate (%) |
---|---|---|---|---|---|---|---|
2021 | S1 | R0 | 91.22 a | 41.20 a | 100.00 c | 24.49 a | 82.80 a |
RL | 88.73 a | 40.59 a | 118.31 b | 24.55 a | 74.10 b | ||
RM | 88.03 a | 39.40 a | 123.51 b | 24.80 a | 75.78 b | ||
RH | 80.93 b | 32.11 b | 143.37 a | 24.90 a | 72.04 b | ||
S2 | R0 | 109.85 a | 50.59 a | 118.19 b | 24.95 b | 76.19 a | |
RL | 97.69 b | 46.80 b | 123.69 ab | 25.53 a | 65.30 b | ||
RM | 98.05 b | 44.64 bc | 132.33 ab | 25.57 a | 63.94 b | ||
RH | 87.56 b | 41.80 c | 137.65 a | 25.65 a | 63.23 b | ||
R | ** | ** | ** | ** | ** | ||
S | ** | ** | * | ** | ** | ||
R×S | ns | ns | ns | ns | ns | ||
2022 | S1 | R0 | 104.28 a | 35.80 a | 130.86 a | 25.19 a | 87.16 a |
RL | 100.10 a | 35.40 a | 127.20 a | 25.72 a | 86.71 a | ||
RM | 98.17 a | 35.20 a | 126.82 a | 25.79 a | 80.89 ab | ||
RH | 81.61 b | 32.20 b | 127.15 a | 25.85 a | 76.35 b | ||
S2 | R0 | 125.12 a | 43.40 a | 125.14 a | 25.78 a | 88.67 a | |
RL | 120.41 a | 43.00 a | 127.66 a | 25.80 a | 85.31 a | ||
RM | 119.94 a | 41.20 a | 133.98 a | 25.85 a | 87.25 a | ||
RH | 111.93 b | 40.20 a | 142.40 a | 25.95 a | 80.09 b | ||
R | ** | * | ns | ns | ** | ||
S | ** | ** | ns | ns | ns | ||
R×S | ns | ns | ns | ns | ns |
表2 不同土壤条件下秸秆还田量对水稻产量及其构成因素的影响
Table 2. Effect of straw return amount on rice yield and its components in different soils
年份 Year | 土壤类型 Soil type | 处理 Treatment | 产量 Yield (g/pot) | 有效穗数 Effective panicles(No./pot) | 每穗粒数 Spikelets per panicle | 千粒重 1000-grain weight (g) | 结实率 Seed setting rate (%) |
---|---|---|---|---|---|---|---|
2021 | S1 | R0 | 91.22 a | 41.20 a | 100.00 c | 24.49 a | 82.80 a |
RL | 88.73 a | 40.59 a | 118.31 b | 24.55 a | 74.10 b | ||
RM | 88.03 a | 39.40 a | 123.51 b | 24.80 a | 75.78 b | ||
RH | 80.93 b | 32.11 b | 143.37 a | 24.90 a | 72.04 b | ||
S2 | R0 | 109.85 a | 50.59 a | 118.19 b | 24.95 b | 76.19 a | |
RL | 97.69 b | 46.80 b | 123.69 ab | 25.53 a | 65.30 b | ||
RM | 98.05 b | 44.64 bc | 132.33 ab | 25.57 a | 63.94 b | ||
RH | 87.56 b | 41.80 c | 137.65 a | 25.65 a | 63.23 b | ||
R | ** | ** | ** | ** | ** | ||
S | ** | ** | * | ** | ** | ||
R×S | ns | ns | ns | ns | ns | ||
2022 | S1 | R0 | 104.28 a | 35.80 a | 130.86 a | 25.19 a | 87.16 a |
RL | 100.10 a | 35.40 a | 127.20 a | 25.72 a | 86.71 a | ||
RM | 98.17 a | 35.20 a | 126.82 a | 25.79 a | 80.89 ab | ||
RH | 81.61 b | 32.20 b | 127.15 a | 25.85 a | 76.35 b | ||
S2 | R0 | 125.12 a | 43.40 a | 125.14 a | 25.78 a | 88.67 a | |
RL | 120.41 a | 43.00 a | 127.66 a | 25.80 a | 85.31 a | ||
RM | 119.94 a | 41.20 a | 133.98 a | 25.85 a | 87.25 a | ||
RH | 111.93 b | 40.20 a | 142.40 a | 25.95 a | 80.09 b | ||
R | ** | * | ns | ns | ** | ||
S | ** | ** | ns | ns | ns | ||
R×S | ns | ns | ns | ns | ns |
[1] | 韩云哲, 徐伟豪, 柳洪良, 朴雪梅, 白学锋, 杨学智. 水稻秸秆还田与施氮量对水稻生育、产量及品质的影响[J]. 农业科技通讯, 2022(12): 75-78. |
Han Y Z, Xu W H, Liu H L, Piao X M, Bai X F, Yang X Z. Effects of rice straw return and nitrogen application on rice growth, yield and quality[J]. Bulletin of Agricultural Science and Technology, 2022(12): 75-78. (in Chinese with English abstract) | |
[2] | 张巩亮, 王宇先, 刘玉涛, 徐莹莹, 杨慧莹, 高盼, 王晨. 秸秆还田和增施氮肥对寒地水稻产量的影响[J]. 黑龙江农业科学, 2023(1): 8-12. |
Zhang G L, Wang Y X, Liu Y T, Xu Y Y, Yang H Y, Gao P, Wang C. Effects of straw returning and additional nitrogen fertilizer application on rice yield in cold regions[J]. Heilongjiang Agricultural Sciences, 2023(1): 8-12. (in Chinese with English abstract) | |
[3] | 宋俊鸣. 寒地稻草还田对土壤还原性物质和水稻生长的影响[D]. 哈尔滨: 东北农业大学, 2021. |
Song J M. Effects of rice straw returning on soil reducing substances and rice growth in cold region[D]. Harbin:Northeast Agricultural University, 2021. (in Chinese with English abstract) | |
[4] | 王子阳, 陈婉华, 袁伟, 周正萍, 刘世平. 长期秸秆还田与耕作方式对水稻产量及品质的影响[J]. 中国稻米, 2021, 27(3): 17-20. |
Wang Z Y, Chen W H, Yuan W, Zhou Z P, Liu S P. Effects of long-term straw returning and tillage ways on yield and quality of rice[J]. China Rice, 2021, 27(3): 17-20. (in Chinese with English abstract) | |
[5] | Zhai S L, Xu C F, Wu Y C, Liu J, Meng Y L, Yang H S. Long-term ditch-buried straw return alters soil carbon sequestration, nitrogen availability and grain production in a rice-wheat rotation system[J]. Crop and Pasture Science, 2021, 72(4): 245-254. |
[6] | 杨思存, 霍琳, 王建成. 秸秆还田的生化他感效应研究初报[J]. 西北农业学报, 2005(1): 52-56. |
Yang S C, Huo L, Wang J C. Allelopathic effect of straw returning[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2005(1): 52-56. (in Chinese with English abstract) | |
[7] | 李学垣, 韩德乾. 绿肥压青后水稻生育期间土壤中还原性物质的动态变化[J]. 土壤学报, 1966(1): 59-64. |
Li X Y, Han D Q. The dynamical equilibrium of soil reductive substances after green-manuring for rice culture[J]. Acta Pedologica Sinica, 1966(1): 59-64. (in Chinese with English abstract) | |
[8] | 潘林林. 稻草不同处理方式对盐渍型水稻土铁锰形态和还原性物质的影响[D]. 沈阳: 沈阳农业大学, 2018. |
Pan L L. Effects of different rice straw addition methods on iron and manganese forms and reducing substances in coastal saline paddy soil[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract) | |
[9] | 王红妮, 王学春, 赵长坤, 李军, 秦俭, 龙祖利. 油菜秸秆还田对水稻根系、分蘖和产量的影响[J]. 应用生态学报, 2019, 30(4): 1243-1252. |
Wang H N, Wang X C, Zhao C K, Li J, Qin J, Long Z L. Effects of oilseed rape straw incorporation on root, tiller and grain yield of rice[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1243-1252. (in Chinese with English abstract) | |
[10] | 韩新忠, 朱利群, 杨敏芳, 俞琦, 卞新民. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响[J]. 农业环境科学学报, 2012, 31(11): 2192-2199. |
Han X Z, Zhu L Q, Yang M F, Yu Q, Bian X M. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity[J]. Journal of Agro-Environment Science, 2012, 31(11): 2192-2199. (in Chinese with English abstract) | |
[11] | 金鑫. 秸秆还田对稻田土壤还原性物质和水稻生长的影响[D]. 南京: 南京农业大学, 2013. |
Jin X. Effects of straw application on rice growth and redox substance in rice fields[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese with English abstract) | |
[12] | Gao H J, Chen X W, Liang A Z, Peng C, Zhu P, Zhang X Z. Combined effects of straw returning and nitrogen fertilizer application on crop yield and nitrogen utilization in the chernozem of northeast China[J]. Applied Ecology and Environmental Research, 2022, 20(1): 893-903. |
[13] | 黄晶, 王学春, 郅正鸿, 陶诗顺. 小麦秸秆翻埋还田对水稻秧苗生长及土壤性状的影响[J]. 四川农业大学学报, 2016, 34(3): 276-281. |
Huang J, Wang X C, Zhi Z H, Tao S Z. Effect of wheat straw residue incorporation on characteristics of rice seedling growth and soil properties[J]. Journal of Sichuan Agricultural University, 2016, 34(3): 276-281. (in Chinese with English abstract) | |
[14] | 金鑫, 蔡林运, 李刚华, 侯朋福, 王绍华. 小麦秸秆全量还田对水稻生长及稻田氧化还原物质的影响[J]. 中国土壤与肥料, 2013(5): 80-85. |
Jin X, Cai L Y, Li G H, Hou P F, Wang S H. Effects of all wheat crop straw application on rice growth and redox substance in rice fields[J]. Soil and Fertilizer Sciences in China, 2013(5): 80-85. (in Chinese with English abstract) | |
[15] | 张赓, 李小坤, 鲁剑巍, 汪金平, 熊又升, 吴礼树, 任涛, 张智. 不同措施对冷浸田土壤还原性物质含量及水稻产量的影响[J]. 中国农学通报, 2014, 30(27): 153-157. |
Zhang G, Li X K, Lu J W, Wang J P, Xiong Y S, Wu L S, Ren T, Zhang Z. Effects of different measures on the concentration of reducing substances of soil and yield of rice in cold waterlogged paddy field[J]. Chinese Agricultural Science Bulletin, 2014, 30(27): 153-157. (in Chinese with English abstract) | |
[16] | Zhang Q, Chen Q, Wang S, Hong Y, Wang Z. Rice and cold stress: Methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014, 7(1): 24. |
[17] | Takakai F, Hirano S, Harakawa Y, Hatakeyama K, Yasuda K, Sato K, Kimura K, Kaneta Y. Fate of fertilizer-derived N applied to enhance rice straw decomposition in a paddy field during the fallow season under cool temperature conditions[J]. Agriculture, 2018, 8(4): 50. |
[18] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
Lu R K. Methods for Agrochemical Analysis of Soil[M]. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese with English abstract) | |
[19] | 王伟. 耕作培肥模式对寒地稻田土壤养分及水稻产量的影响[D]. 哈尔滨: 东北农业大学, 2019. |
Wang W. Effects of tillage and fertilization on soil fertility and rice yield in cold paddy fields[D]. Harbin:Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[20] | 王红妮, 王学春, 陶诗顺, 李军. 秸秆残茬对低温潜沼性稻田土壤还原性物质含量及稻谷产量的影响[J]. 干旱地区农业研究, 2014, 32(3): 179-183. |
Wang H N, Wang X C, Tao S S, Li J. Effect of straw returning on soil reducing substance and rice grain yield in gleyed paddy field[J]. Agricultural Research in the Arid Areas, 2014, 32(3): 179-183. (in Chinese with English abstract) | |
[21] | 郭腾飞. 稻田秸秆分解的碳氮互作机理[D]. 北京: 中国农业科学院, 2019. |
Guo T F. The mechanism of carbon and nitrogen interaction during rice straw decomposition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[22] | 葛选良, 于洋, 钱春荣. 还田作物秸秆腐解特性及相关影响因素的研究进展[J]. 农学学报, 2017, 7(7): 17-21. |
Ge X L, Yu Y, Qian C R. Returning crop straw: A review of decomposing features and influencing factors[J]. Journal of Agriculture, 2017, 7(7): 17-21. (in Chinese with English abstract) | |
[23] | 丁昌璞. 水稻土中的还原性物质[J]. 土壤学进展, 1984(2): 1-12. |
Ding C P. Reducing substances in paddy soil[J]. Progress in Soil Science, 1984(2): 1-12. (in Chinese) | |
[24] | 叶昌, 黄秀, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 水稻因土质施肥方法探讨[J]. 中国稻米, 2020, 26(1): 11-15. |
Ye C, Huang X, Chu G, Xu C M, Chen S, Zhang X F, Wang D Y. Discussion on fertility characteristics of different texture soils and rice fertilization method[J]. China Rice, 2020, 26(1): 11-15. (in Chinese with English abstract) | |
[25] | 张耀尹. 秸秆还田对土壤中氮素转化的作用机制[D]. 北京: 中国地质大学, 2021. |
Zhang Y Y. Mechanism of straw returning on nitrogen transformation in soil[D]. Beijing: China University of Geosciences, 2021. (in Chinese with English abstract) | |
[26] | Blanco-Canqui H, Lal R. Crop residue removal impacts on soil productivity and environmental quality[J]. Critical Reviews in Plant Sciences, 2009, 28(3): 139-163. |
[27] | Zhang L C, Yuan J, Zhang M Q, Zhang Y, Wang L, Li J. Long term effects of crop rotation and fertilization on crop yield stability in southeast China[J]. Scientific Reports, 2022, 12(1): 1-10. |
[28] | Akter U T, Mizanur R M, Moshiul I M. Integrated nutrient management for rice yield, soil fertility, and carbon sequestration[J]. Plants, 2022, 11(1): 138. |
[29] | Wang R, Li X, Hou L, Liu M, Zheng Y, Yin G. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications[J]. Marine Pollution Bulletin, 2018, 137: 542-548. |
[30] | Fauzi A, Skidmore A K, Heitkönig I M A, van Gils H, Schlerf M. Eutrophication of mangroves linked to depletion of foliar and soil base cations[J]. Environmental Monitoring and Assessment, 2014, 186(12): 8487-8498. |
[31] | Yang S Y, Hao D L, Song Z Z, Yang Z G, Wang L, Su Y H. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies[J]. Gene, 2015, 555(2): 305-317. |
[32] | 姚军, 张有山. 土壤质地类型与其基础肥力相关性[J]. 北京农业科学, 1998(4): 34-35. |
Yao J, Zhang Y S. Correlation between soil texture type and basic fertility[J]. Beijing Agricultural Sciences, 1998(4): 34-35. (in Chinese with English abstract) | |
[33] | Liu H, Luo G Q, Hu H Y, Zhang Q, Yang J K. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes[J]. Journal of Hazardous Materials, 2012, 235-236: 289-306. |
[34] | 徐国伟, 翟志华, 杨久军, 王贺正, 陈明灿. 秸秆还田量对直播稻苗期生长和土壤的影响[J]. 广东农业科学, 2015, 42(19): 1-7. |
Xu G W, Zhai Z H, Yang J J, Wang H Z, Chen M C. Effects of different amount of wheat-residue application on growth of direct-seeding rice and characteristics of soil[J]. Guangdong Agricultural Sciences, 2015, 42(19): 1-7. (in Chinese with English abstract) | |
[35] | Zhen X, Li X, Yu J, Xu F. OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice[J]. International Journal of Molecular Sciences, 2019, 20(19): 4956. |
[36] | Yoneyama T, Tanno F, Tatsumi J, Mae T. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: A review and synthesis[J]. Frontiers in Plant Science, 2016, 7: 1151. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点 [J]. 中国水稻科学, 2024, 38(5): 544-554. |
[7] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[8] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[9] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[10] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[11] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[12] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[13] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[14] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[15] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||