中国水稻科学 ›› 2024, Vol. 38 ›› Issue (1): 81-90.DOI: 10.16819/j.1001-7216.2024.230409

• 研究报告 • 上一篇    下一篇

不同抗感水稻品种对褐飞虱胁迫的高光谱响应特征

杨奇欣, 赖凤香, 何佳春, 魏琪, 王渭霞, 万品俊*(), 傅强*()   

  1. 中国水稻研究所,水稻生物育种全国重点实验室,杭州 310006
  • 收稿日期:2023-04-27 修回日期:2023-09-15 出版日期:2024-01-10 发布日期:2024-01-16
  • 通讯作者: * email: wanpinjun@caas.cn; fuqiang@caas.cn
  • 基金资助:
    现代农业产业技术体系建设专项(CARS-01-38);浙江省“领雁”研发攻关计划资助项目(2022C02034);中国农业科学院创新团队项目(CAAS-ASTIP-2016-CNRRI)

Hyperspectral Properties of Rice Varieties with Varying Resistance Under Brown Planthopper (Nilaparvata lugens) Infestation

YANG Qixin, LAI Fengxiang, HE Jiachun, WEI Qi, WANG Weixia, WAN Pinjun*(), FU Qiang*()   

  1. China National Rice Research Institute, National Key Laboratory of Rice Biological Breeding, Hangzhou 310006, China
  • Received:2023-04-27 Revised:2023-09-15 Online:2024-01-10 Published:2024-01-16
  • Contact: * email: wanpinjun@caas.cn; fuqiang@caas.cn

摘要:

【目的】探究不同抗感水稻受褐飞虱胁迫的高光谱反射率曲线变化及敏感光谱差异,研究水稻植株不同部位的高光谱变化。在此基础上,采用机器学习技术建立水稻褐飞虱抗性鉴定模型,为下一步开发智能化褐飞虱抗性鉴定技术提供重要基础资料。【方法】以三个具不同褐飞虱抗感特征的水稻品种(TN1、Mudgo、RHT)为对象,分析其光谱、植被指数差异并建立抗性级别预测的随机森林模型。【结果】研究发现,褐飞虱胁迫天数与光谱反射率显著相关的波段数及差异显著的波段数随着水稻的抗性水平的上升而减少。同时,在680 nm左右,三个品种的光谱反射率与褐飞虫胁迫时间的相关性最好。植被指数分析表明, SIPI、SR605/760和PSNDb与抗性级别的相关系数绝对值要高于680 nm的结果。感虫品种TN1差异最早体现,中抗品种Mudgo其次,高抗品种RHT最后。不同部位的差异首先出现在第1叶叶片和第1叶叶鞘,然后依次为第2叶叶片和第2叶叶鞘以及第3叶叶片和第3叶叶鞘。预测模型的结果表明,全波段作为输入的模型效果比以单一植被指数SIPI 构建的随机森林模型更好,模型准确率达到85.9%。【结论】本研究反映了不同抗感水稻品种受褐飞虱危害后的高光谱变化规律与不同抗感品种和不同部位的差异,并证实了机器学习技术对水稻抗性级别的分类能力。

关键词: 褐飞虱, 水稻抗性, 高光谱, 植被指数, 机器学习

Abstract:

【Objective】 The objective of this study is to investigate changes in hyperspectral reflectance curves and sensitive spectral features in rice varieties displaying varying resistance levels to brown planthopper infestation. Additionally, the study aims to examine changes in hyperspectral values in different parts of the rice plant. The obtained results are utilized to develop a machine learning model for identifying brown planthopper resistance, providing essential fundamental data for the development of intelligent technologies in identifying brown planthopper resistance. 【Method】 Three rice varieties (TN1, Mudgo, and RHT), each with varying resistance levels to brown planthoppers, were selected. The differences in hyperspectral values and vegetation indices were analyzed, and a random forest model was established to predict their resistance level. 【Results】 The study revealed that the number of significant spectral bands and the number of significant differences in spectral bands, significantly correlated with the duration of brown planthopper infestations, decrease with increasing resistance levels of the rice plant. At around 680 nm, the correlation with the duration of brown planthopper infestations was strongest for all three varieties. The analysis of vegetation indices showed that SIPI, SR605/760, and PSNDb had higher absolute values of correlation coefficients with resistance levels than those beyond 680 nm. Differences in different plant parts appeared first in TN1, a variety sensitive to brown planthoppers, followed by Mudgo, a moderately resistant variety, and finally RHT, a highly resistant one. The differences first appeared in the sheath of the first leaf, followed by the sheath of the second leaf, and the sheath of the third leaf. The results of the prediction model showed that the model with all spectral bands as input performed better than the random forest model built with a single vegetation index, SIPI, and achieved an accuracy of 85.9%.【Conclusion】 The study highlights spectral changes associated with brown planthopper resistance among rice varieties and different plant parts. It confirms the suitability of machine learning technology for predicting the resistance level of rice.

Key words: brown planthopper, rice resistance, hyperspectra, vegetation index, machine learning