中国水稻科学 ›› 2023, Vol. 37 ›› Issue (4): 436-448.DOI: 10.16819/j.1001-7216.2023.221018
• 综述与专论 • 上一篇
收稿日期:
2022-11-17
修回日期:
2023-02-02
出版日期:
2023-07-10
发布日期:
2023-07-17
通讯作者:
*email: ezhiguo@caas.cn
基金资助:
HAN Cong, HE Yuchang, WU Lijuan, JIA Lili, WANG Lei, E Zhiguo()
Received:
2022-11-17
Revised:
2023-02-02
Online:
2023-07-10
Published:
2023-07-17
Contact:
*email: ezhiguo@caas.cn
摘要:
碱性亮氨酸拉链(basic leucine zipper, bZIP)是一类重要的转录调控因子,广泛存在于真核生物中,因含有高度保守的bZIP结构域而得名。bZIP结构域由紧密相邻的碱性区域和亮氨酸拉链区域两部分组成。粳稻基因组中注释有89个bZIP基因,其中45个已得到功能验证,它们参与调节水稻生长发育、生物与非生物胁迫应答,包括种子休眠和萌发、成花转变、光形态建成,以及胁迫和激素信号通路等。
韩聪, 何禹畅, 吴丽娟, 郏丽丽, 王磊, 鄂志国. 水稻碱性亮氨酸拉链(bZIP)蛋白家族功能研究进展[J]. 中国水稻科学, 2023, 37(4): 436-448.
HAN Cong, HE Yuchang, WU Lijuan, JIA Lili, WANG Lei, E Zhiguo. Research Progress in the Function of Basic Leucine Zipper (bZIP) Protein Family in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(4): 436-448.
图1 bZIP转录因子的结构 A―bZIP结构域示意图, 由碱性DNA结合区(蓝色)和相邻的亮氨酸拉链区(灰色)组成; B―bZIP二聚体的结构模型。
Fig. 1. Structural aspects of bZIP transcription factors. model of a dimer of the bZIP domains. A, Schematic representation of the bZIP domain, consisting of a basic DNA-binding region (blue) and the adjacent ZIP domain(grey). B, Structural
基因符号 Gene No. | 别名 Gene alias | 基因位点 Locus ID | 功能 Function |
---|---|---|---|
OsbZIP01 | OsRE1, OUR1 | LOC_Os01g07880 | 开花(-)[ |
OsbZIP03 | OsHBP1b | LOC_Os01g17260 | 耐盐耐旱(+)、耐热(+)[ |
OsbZIP05 | OSBZ8 | LOC_Os01g46970 | 耐旱(+)[ |
OsbZIP09 | HBF2 | LOC_Os01g59760 | 开花(-)[ |
OsbZIP10 | OsABI5, OREB1 | LOC_Os01g64000 | 种子萌发(-) [ |
OsbZIP12 | OsABF1 | LOC_Os01g64730 | 开花(-)[ |
OsbZIP16 | LOC_Os02g09830 | 耐旱(+)[ | |
OsbZIP18 | OsHY5L1 | LOC_Os02g10860 | 支链氨基酸合成(+)[ |
OsbZIP20 | RITA-1 | LOC_Os02g16680 | 抗氧化(+)、NH4+同化(+)[ |
OsbZIP23 | LOC_Os02g52780 | 耐盐耐旱(+)[ | |
OsbZIP28 | OsbZIP1 | LOC_Os03g20310 | 稻瘟病菌侵染应答[ |
OsbZIP30 | RF2b | LOC_Os03g21800 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP33 | REB | LOC_Os03g58250 | 耐旱(+)[ |
OsbZIP37 | OsTGAP1 | LOC_Os04g54474 | 萜类植保素积累(+)[ |
OsbZIP38 | LIP19 | LOC_Os05g03860 | 耐寒(+)[ |
OsbZIP39 | LOC_Os05g34050 | 内质网胁迫应答(+)[ | |
OsbZIP40 | EDT1 | LOC_Os05g36160 | 耐旱(+)[ |
OsbZIP42 | HBF1 | LOC_Os05g41070 | 开花(-)[ |
OsbZIP44 | OsbZIP50 | LOC_Os05g41540 | 锌积累(+)[ |
OsbZIP45 | LOC_Os05g49420 | 耐旱(+)[ | |
OsbZIP46 | OsABF2 | LOC_Os06g10880 | 耐盐耐旱、抗氧化(+)[ |
OsbZIP47 | LOC_Os06g15480 | 粒宽(-)、粒重(-)[ | |
OsbZIP48 | OsHY5 | LOC_Os06g39960 | 光形态建成(-)[ |
OsbZIP50 | OsbZIP74 | LOC_Os06g41770 | 内质网胁迫应答(+)[ |
OsbZIP53 | APIP5 | LOC_Os06g50310 | 稻瘟病抗性(-)[ |
OsbZIP55 | OsFD2 | LOC_Os06g50600 | 种子发育(-)[ |
OsbZIP58 | RISBZ1 | LOC_Os07g08420 | 胚乳发育和种子萌发(-)[ |
OsbZIP60 | OPAQUE3 | LOC_Os07g44950 | 耐旱耐热(+)[ |
OsbZIP62 | OsFD7 | LOC_Os07g48660 | 开花(+)[ |
OsbZIP63 | rTGA2.1 | LOC_Os07g48820 | 白叶枯病抗性(-)[ |
OsbZIP65 | LOC_Os08g26880 | 开花(-)[ | |
OsbZIP66 | TRAB1 | LOC_Os08g36790 | 种子萌发(-)[ |
OsbZIP68 | LOC_Os08g43090 | 不依赖ABA的渗透胁迫应答(+)[ | |
OsbZIP69 | OsFD4 | LOC_Os08g43600 | 开花(+)[ |
OsbZIP71 | LOC_Os09g13570 | 开花(-)[ | |
OsbZIP72 | LOC_Os09g28310 | 正常条件下种子萌发(-)[ | |
OsbZIP73 | OsTFX1 | LOC_Os09g29820 | 白叶枯病抗性(-)[ |
OsbZIP75 | RF2a | LOC_Os09g34060 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP76 | LOC_Os09g34880 | 胚乳发育(-)[ | |
OsbZIP77 | OsFD1 | LOC_Os09g36910 | 开花(+)[ |
OsbZIP79 | LOC_Os11g05480 | 萜类植保素积累(-)[ | |
OsbZIP81 | LOC_Os11g06170 | 茉莉酸积累(+)[ | |
OsbZIP84 | LOC_Os12g06520 | 株高(+)[ | |
OsbZIP86 | LOC_Os12g13170 | 耐旱(+)[ | |
OsbZIP88 | LOC_Os12g40920 | 除草剂抗性(+)[ |
表1 已功能鉴定的水稻bZIP转录因子
Table 1. Functional identified bZIP transcription factors in rice.
基因符号 Gene No. | 别名 Gene alias | 基因位点 Locus ID | 功能 Function |
---|---|---|---|
OsbZIP01 | OsRE1, OUR1 | LOC_Os01g07880 | 开花(-)[ |
OsbZIP03 | OsHBP1b | LOC_Os01g17260 | 耐盐耐旱(+)、耐热(+)[ |
OsbZIP05 | OSBZ8 | LOC_Os01g46970 | 耐旱(+)[ |
OsbZIP09 | HBF2 | LOC_Os01g59760 | 开花(-)[ |
OsbZIP10 | OsABI5, OREB1 | LOC_Os01g64000 | 种子萌发(-) [ |
OsbZIP12 | OsABF1 | LOC_Os01g64730 | 开花(-)[ |
OsbZIP16 | LOC_Os02g09830 | 耐旱(+)[ | |
OsbZIP18 | OsHY5L1 | LOC_Os02g10860 | 支链氨基酸合成(+)[ |
OsbZIP20 | RITA-1 | LOC_Os02g16680 | 抗氧化(+)、NH4+同化(+)[ |
OsbZIP23 | LOC_Os02g52780 | 耐盐耐旱(+)[ | |
OsbZIP28 | OsbZIP1 | LOC_Os03g20310 | 稻瘟病菌侵染应答[ |
OsbZIP30 | RF2b | LOC_Os03g21800 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP33 | REB | LOC_Os03g58250 | 耐旱(+)[ |
OsbZIP37 | OsTGAP1 | LOC_Os04g54474 | 萜类植保素积累(+)[ |
OsbZIP38 | LIP19 | LOC_Os05g03860 | 耐寒(+)[ |
OsbZIP39 | LOC_Os05g34050 | 内质网胁迫应答(+)[ | |
OsbZIP40 | EDT1 | LOC_Os05g36160 | 耐旱(+)[ |
OsbZIP42 | HBF1 | LOC_Os05g41070 | 开花(-)[ |
OsbZIP44 | OsbZIP50 | LOC_Os05g41540 | 锌积累(+)[ |
OsbZIP45 | LOC_Os05g49420 | 耐旱(+)[ | |
OsbZIP46 | OsABF2 | LOC_Os06g10880 | 耐盐耐旱、抗氧化(+)[ |
OsbZIP47 | LOC_Os06g15480 | 粒宽(-)、粒重(-)[ | |
OsbZIP48 | OsHY5 | LOC_Os06g39960 | 光形态建成(-)[ |
OsbZIP50 | OsbZIP74 | LOC_Os06g41770 | 内质网胁迫应答(+)[ |
OsbZIP53 | APIP5 | LOC_Os06g50310 | 稻瘟病抗性(-)[ |
OsbZIP55 | OsFD2 | LOC_Os06g50600 | 种子发育(-)[ |
OsbZIP58 | RISBZ1 | LOC_Os07g08420 | 胚乳发育和种子萌发(-)[ |
OsbZIP60 | OPAQUE3 | LOC_Os07g44950 | 耐旱耐热(+)[ |
OsbZIP62 | OsFD7 | LOC_Os07g48660 | 开花(+)[ |
OsbZIP63 | rTGA2.1 | LOC_Os07g48820 | 白叶枯病抗性(-)[ |
OsbZIP65 | LOC_Os08g26880 | 开花(-)[ | |
OsbZIP66 | TRAB1 | LOC_Os08g36790 | 种子萌发(-)[ |
OsbZIP68 | LOC_Os08g43090 | 不依赖ABA的渗透胁迫应答(+)[ | |
OsbZIP69 | OsFD4 | LOC_Os08g43600 | 开花(+)[ |
OsbZIP71 | LOC_Os09g13570 | 开花(-)[ | |
OsbZIP72 | LOC_Os09g28310 | 正常条件下种子萌发(-)[ | |
OsbZIP73 | OsTFX1 | LOC_Os09g29820 | 白叶枯病抗性(-)[ |
OsbZIP75 | RF2a | LOC_Os09g34060 | 东格鲁杆状病毒抗性(+)[ |
OsbZIP76 | LOC_Os09g34880 | 胚乳发育(-)[ | |
OsbZIP77 | OsFD1 | LOC_Os09g36910 | 开花(+)[ |
OsbZIP79 | LOC_Os11g05480 | 萜类植保素积累(-)[ | |
OsbZIP81 | LOC_Os11g06170 | 茉莉酸积累(+)[ | |
OsbZIP84 | LOC_Os12g06520 | 株高(+)[ | |
OsbZIP86 | LOC_Os12g13170 | 耐旱(+)[ | |
OsbZIP88 | LOC_Os12g40920 | 除草剂抗性(+)[ |
[1] | 王金英, 丁峰, 潘介春, 张树伟, 杨亚涵, 黄幸, 范志毅, 李琳, 王颖. 植物bZIP转录因子家族的研究进展[J]. 热带农业科学, 2019, 39(6): 39-45. |
Wang J Y, Ding F, Pan J C, Zhang S W, Yang Y H, Huang X, Fan Z Y, Li L, Wang Y. Research progress of bZIP lineage transcription factors in plant[J]. Chinese Journal of Tropical Agriculture, 2019, 39(6): 39-45. | |
[2] | 国家统计局. 中国统计年鉴[G]. 北京: 中国统计出版社, 2022: 385-387, 428-430. |
National Bureau of Statistics of the People's Republic of China. Chinese Statistical Yearbook[G]. Beijing: China Statistics Press, 2022: 385-387,428-430. (in Chinese) | |
[3] | Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family: An update[J]. Current Opinion in Plant Biology, 2018, 45: 36-49. |
[4] | Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146(2): 333-350. |
[5] | Ji Q, Zhang L S, Wang Y F, Wang J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa[J]. Journal of Shanghai University, 2009, 13(2): 174-182. |
[6] | Corrêa L G G, Riaño-Pachón D M, Schrago C G, dos Santos R V, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes[J]. PLoS One, 2008, 3: e2944. |
[7] | Chai J T, Zhu S S, Li C N, Wang C M, Cai M H, Zheng X M, Zhou L, Zhang H, Sheng P K, Wu M M, Jin X, Cheng Z J, Zhang X, Lei C L, Ren Y L, Lin Q B, Zhou S R, Guo X P, Wang J, Zhao Z C, Wan J M. OsRE1 interacts with OsRIP1 to regulate rice heading date by finely modulating Ehd1 expression[J]. Plant Biotechnology Journal, 2021, 19(2): 300-310. |
[8] | Hasegawa T, Lucob-Agustin N, Yasufuku K, Kojima T, Nishiuchi S, Ogawa A, Takahashi-Nosaka M, Kano-Nakata M, Inari-Ikeda M, Sato M, Tsuji H, Wainaina C M, Yamauchi A, Inukai Y. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling[J]. Plant Science, 2021, 306: 110861. |
[9] | Lakra N, Nutan K K, Das P, Anwar K, Singla-Pareek S L, Pareek A. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery[J]. Journal of Plant Physiology, 2015, 176: 36-46. |
[10] | Das P, Lakra N, Nutan K K, Singla-Pareek S L, Pareek A. A unique bZIP transcription factor imparting multiple stress tolerance in rice[J]. Rice, 2019, 12: 58. |
[11] | 仝宇, 王聪, 赵利利, 连娟, 刘晓梅, 赵宝存. 转录因子OsbZIP5负调控水稻的耐旱性[J]. 中国生物化学与分子生物学报, 2021, 37(6): 798-810. |
Tong Y, Wang C, Zhao L L, Lian J, Liu X M, Zhao B C. Transcription factor OsbZIP5 negatively regulates drought-tolerance in rice[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(6): 798-810. (in Chinese with English abstract) | |
[12] | Brambilla V, Martignago D, Goretti D, Cerise M, Somssich M, de Rosa M, Galbiati F, Shrestha R, Lazzaro F, Simon R, Fornara F. Antagonistic transcription factor complexes modulate the floral transition in rice[J]. Plant Cell, 2017, 29(11): 2801-2816. |
[13] | Zhu C C, Wang C X, Lu C Y, Wang J D, Zhou Y, Xiong M, Zhang C Q, Liu Q Q, Li Q F. Genome-wide identification and expression analysis of OsbZIP09 target genes in rice reveal its mechanism of controlling seed germination[J]. International Journal of Molecular Sciences, 2021, 22(4): 1661. |
[14] | Wang C X, Zhu C C, Zhou Y, Xiong M, Wang J D, Bai H, Lu C Y, Zhang C Q, Liu Q Q, Li Q F. OsbZIP09, a unique OsbZIP transcription factor of rice, promotes rather than suppresses seed germination by attenuating abscisic acid pathway[J]. Rice Science, 2021, 28(4): 358-367. |
[15] | Bhatnagar N, Min M K, Choi E H, Kim N, Moon S J, Yoon I, Kwon T, Jung K H, Kim B G. The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10[J]. Plant Molecular Biology, 2017, 93(4): 389-401. |
[16] | Kim H, Hwang H, Hong J W, Lee Y N, Ahn I P, Yoon I S, Yoo S D, Lee S, Lee S C, Kim B G. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. Journal of Experimental Botany, 2012, 63(2): 1013-1024. |
[17] | Li Y X, Zhou J H, Li Z, Qiao J Z, Quan R D, Wang J, Huang R F, Qin H. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice[J]. Plant Physiology, 2022, 189(2): 1110-1127. |
[18] | Yoshida H, Hirano K, Yano K, Wang F, Mori M, Kawamura M, Koketsu E, Hattori M, Ordonio R L, Huang P, Yamamoto E, Matsuoka M. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination[J]. Nature Communications, 2022, 13: 5665. |
[19] | Zou M J, Guan Y C, Ren H B, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Molecular Biology, 2008, 66(6): 675-683. |
[20] | Li Q, Zhou L Y, Chen Y N, Xiao N, Zhang D P, Zhang M J, Wang W G, Zhang C Q, Zhang A N, Li H, Chen J M, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid[J]. Plant Cell, 2022, 34(11): 4293-4312. |
[21] | Zhang C Y, Liu J, Zhao T, Gomez A, Li C, Yu C S, Li H Y, Lin J Z, Yang Y Z, Liu B, Lin C T. A drought-inducible transcription factor delays reproductive timing in rice[J]. Plant Physiology, 2016, 171(1): 334-343. |
[22] | Joo J, Lee Y H, Song S I. Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA[J]. Plant Biotechnology Reports, 2014, 8(6): 431-441. |
[23] | Hossain M A, Lee Y, Cho J I, Ahn C H, S K, Jeon J S, Kang H, Lee C H, An G, Park P B. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice[J]. Plant Molecular Biology, 2010, 72(4-5): 557-566. |
[24] | Tang L Q, Xu H Y, Wang Y F, Wang H M, Li Z Y, Liu X X, Shu Y Z, Li G, Liu W N, Ying J Z, Tong X H, Yao J L, Xiao W F, Tang S Q, Ni S, Zhang J. OsABF 1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2021, 22(22): 12220. |
[25] | Fukumoto T, Kano A, Ohtani K, Inoue M, Yoshihara A, Izumori K, Tajima S, Shigematsu Y, Tanaka K, Ohkouchi T, Ishida Y, Nishizawa Y, Tada Y, Ichimura K, Gomi K, Yoo S D, Sheen J, Akimitsu K. Phosphorylation of d-allose by hexokinase involved in regulation of OsABF1 expression for growth inhibition in Oryza sativa L.[J]. Planta, 2013, 237(5): 1379-1391. |
[26] | Chen H, Chen W, Zhou J L, He H, Chen L B, Chen H D, Deng X W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice[J]. Plant Science, 2012, 193-194: 8-17. |
[27] | Sun Y Y, Shi Y H, Liu G G, Yao F, Zhang Y Y, Yang C K, Guo H, Liu X Q, Jin C, Luo J. Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice[J]. New Phytologist, 2020, 228(5): 1548-1558. |
[28] | Sun Y Y, Wang B, Ren J X, Zhou Y T, Han Y, Niu S Y, Zhang Y Y, Shi Y H, Zhou J J, Yang C K, Ma X M, Liu X Q, Luo Y H, Jin C, Luo J. OsbZIP18, a positive regulator of serotonin biosynthesis, negatively controls the UV-B tolerance in rice[J]. International Journal of Molecular Sciences, 2022, 23(6): 3215. |
[29] | Bai B, Lu N N, Li Y P, Guo S L, Yin H B, He Y N, Sun W, Li W, Xie X Z. OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions[J]. Plant Science, 2019, 284: 192-202. |
[30] | Sun L, Di D W, Li G J, Kronzucker H J, Wu X Y, Shi W M. Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway[J]. Journal of Experimental Botany, 2020, 71(15): 4562-4577. |
[31] | Wang B X, Xu B, Liu Y, Li J F, Sun Z G, Chi M, Xing Y G, Yang B, Li J, Liu J B, Chen T M, Fang Z W, Lu B G, Xu D Y, Babatunde K B. A novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L.)[J]. Plant Science, 2022, 323: 111393. |
[32] | Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. |
[33] | Park Su H, Jeong J S, Lee K H, Kim Y S, Choi Y D, Kim J K. OsbZIP23 and OsbZIP45, members of the rice basic leucine zipper transcription factor family, are involved in drought tolerance[J]. Plant Biotechnology Reports, 2015, 9(2): 89-96. |
[34] | Zong W, Yang J, Fu J, Xiong L. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice[J]. Journal of Integrative Plant Biology, 2020, 62(6): 723-729. |
[35] | Srivastava A K, Zhang C J, Caine R S, Gray J, Sadanandom A. Rice SUMO protease Overly Tolerant to Salt 1 targets the transcription factor, OsbZIP23 to promote drought tolerance in rice[J]. Plant Journal, 2017, 92(6): 1031-1043. |
[36] | Zong W, Tang N, Yang J, Peng L, Ma S, Xu Y, Li G, Xiong L. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiology, 2016, 171(4): 2810-2825. |
[37] | Song S, Wang G, Wu H, Fan X, Liang L, Zhao H, Li S, Hu Y, Liu H, Ayaad M, Xing Y. OsMFT2 is involved in the regulation of ABA signaling mediated seed germination through interacting with OsbZIP23/66/72 in rice[J]. Plant Journal, 2020, 103(2): 532-546. |
[38] | Wang WQ, Xu DY, Sui YP, Ding XH, Song XJ. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(9): e2026355119. |
[39] | Meng X B, Zhao W S, Lin R M, Wang M, Peng Y L. Identification of a novel rice bZIP-type transcription factor gene, OsbZIP1, involved in response to infection of Magnaporthe grisea[J]. Plant Molecular Biology Reporter, 2005, 23(3): 301-302. |
[40] | Dai S H, Zhang Z H, Chen S Y, Beachy R N. RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease[J]. Proceedings of the National Academy of Sciences, 2004, 101(2): 687-692. |
[41] | Dai S H, Wei X P, Alfonso A A, Pei L P, Duque U G, Zhang Z H, Babb G M, Beachy R N. Transgenic rice plants that overexpress transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease[J]. Proceedings of the National Academy of Sciences, 2008, 105(52): 21012-21016. |
[42] | Chen H, Dai X J, Gu Z Y. OsbZIP33 is an ABA-dependent enhancer of drought tolerance in rice[J]. Crop Science, 2015, 55(4): 1673-1685. |
[43] | Okada A, Okada K, Miyamoto K, Koga J, Shibuya N, Nojiri H, Yamane H. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice[J]. Journal of Biological Chemistry, 2009, 284(39): 26510-26518. |
[44] | Miyamoto K, Matsumoto T, Okada A, Komiyama K, Chujo T, Yoshikawa H, Nojiri H, Yamane H, Okada K. Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells[J]. PLoS ONE, 2014, 9(8): e105823. |
[45] | Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T. LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant and Cell Physiology, 2005, 46(10): 1623-1634. |
[46] | Takahashi H, Kawakatsu T, Wakasa Y, Hayashi S, Takaiwa F. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response[J]. Plant and Cell Physiology, 2012, 53(1): 144-153. |
[47] | Wu T, Zhang M X, Zhang H J, Huang K, Chen M J, Chen C, Yang X, Li Z, Chen H Y, Ma Z M, Zhang X M, Jiang W Z, Du X L. Identification and characterization of EDT1 conferring drought tolerance in rice[J]. Journal of Plant Biology, 2019, 62: 39-47. |
[48] | Lilay G H, Castro P H, Guedes J G, Almeida D M, Campilho A, Azevedo H, Aarts M G M, Saibo N J M, Assunção A G L. Rice F-bZIP transcription factors regulate the zinc deficiency response[J]. Journal of Experimental Botany, 2020, 71(12): 3664-3677. |
[49] | Hossain M A, Cho J I, Han M, Ahn C H, Jeon J S, An G, Park P B. The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17): 1512-1520. |
[50] | Tang N, Zhang H, Li X H, Xiao J H, Xiong L Z. Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice[J]. Plant Physiology, 2012, 158(4): 1755-1768. |
[51] | Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice[J]. Plant Cell, 2016, 28(9): 2161-2177. |
[52] | Yang X, Yang Y N, Xue L J, Zou M J, Liu J Y, Chen F, Xue H W. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiology, 2011, 156(3): 1397-1409. |
[53] | Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8): 1266-1280. |
[54] | Burman N, Bhatnagar A, Khurana J P. OsbZIP48, a HY5 transcription factor ortholog, exerts pleiotropic effects in light-regulated development[J]. Plant Physiology, 2018, 176(2): 1262-1285. |
[55] | Zhang F, Huang J C, Guo H, Yang C K, Li Y F, Shen S Q, Zhan C S, Qu L H, Liu X Q, Wang S C, Chen W, Luo J. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice[J]. Science China Life Sciences, 2022, 65(7): 1380-1394. |
[56] | Kim D H, Park S, Lee J Y, Ha S H, Lee J G, Lim S H. A rice B-box protein, OsBBX14, finely regulates anthocyanin biosynthesis in rice[J]. International Journal of Molecular Sciences, 2018, 19(8): 2190. |
[57] | Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice[J]. Plant Journal, 2012, 69(6): 946-956. |
[58] | Lu S J, Yang Z T, Sun L, Sun L, Song Z T, Liu J X. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses[J]. Molecular Plant, 2012, 5(2): 504-514. |
[59] | Yang W, Xu P, Zhang J, Zhang S, Li Z, Yang K, Chang X, Li Y. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 414-426. |
[60] | Liu X H, Lü Y S, Yang W, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329. |
[61] | Wang R T, Ning Y S, Shi X T, He F, Zhang C Y, Fan J B, Jiang N, Zhang Y, Zhang T, Hu Y J, Bellizzi M, Wang G L. Immunity to rice blast disease by suppression of effector-triggered necrosis[J]. Current Biology, 2016, 26(18): 2399-2411. |
[62] | Fang H, Shen S Q, Wang D, Zhang F, Zhang C Y, Wang Z X, Zhou Q Q, Wang R Y, Tao H, He F, Yang C K, Peng M, Jing X Y, Hao Z Y, Liu X L, Luo J, Wang G L, Ning Y S. A monocot-specific hydroxycinnamoyl- putrescine gene cluster contributes to immunity and cell death in rice[J]. Science Bulletin, 2021, 66(23): 2381-2393. |
[63] | Fang H, Zhang F, Zhang C Y, Wang D, Shen S Q, He F, Tao H, Wang R Y, Wang M, Wang D B, Liu X L, Luo J, Wang G L, Ning Y S. Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae[J]. Journal of Genetics and Genomics, 2022, 49(8): 776-786. |
[64] | Zhang F, Fang H, Wang M, He F, Tao H, Wang R Y, Long J W, Wang J Y, Wang G L, Ning Y S. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice[J]. Nucleic Acids Research, 2022, 50(9): 5064-5079. |
[65] | He Y, Li L Y, Shi W B, Tan J H, Luo X X, Zheng S Y, Chen W T, Li J, Zhuang C X, Jiang D G. Florigen repression complexes involving rice CENTRORADIALIS2 regulate grain size[J]. Plant Physiology, 2022, 190(2): 1260-1274. |
[66] | Tsuji H, Nakamura H, Taoka K I, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes[J]. Plant and Cell Physiology, 2013, 54(3): 385-397. |
[67] | Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]. Plant Journal, 2009, 59(6): 908-920 |
[68] | Kawakatsu T, and Takaiwa F. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain[J]. Plant and Cell Physiology, 2010, 51(12): 1964-1974 |
[69] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[70] | Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. Plant Journal, 2014, 80(6): 1118-1130. |
[71] | 喻旭, 牛向丽, 杨盛慧, 李欲翔, 刘亮亮, 唐维, 刘永胜. 过量表达转录因子OsbZIP60对水稻抗热和抗旱能力的研究[J]. 中国农业科学, 2011, 44(20): 4142-4149. |
Yu X, Niu X L, Yang S Hu, Li Y X, Liu L L, Tang W, Liu Y S. Research on heat and drought tolerance in rice (Oryza sativa L.) by overexpressing transcription factor OsbZIP60[J]. Scientia Agricultura Sinica, 2011, 44(20): 4142-4149.(in Chinese with English abstract) | |
[72] | Cao R J, Zhao S L, Jiao G A, Duan Y Q, Ma L Y, Dong N N, Lu F F, Zhu M D, Shao G N, Hu S K, Sheng Z H, Zhang J, Tang S Q, Wei X J, Hu P S. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice[J]. Plant Communications, 2022, 3(6): 100463. |
[73] | Kaur A, Nijhawan A, Yadav M, Khurana J P. OsbZIP62/OsFD7, a functional ortholog of FLOWERING LOCUS D, regulates floral transition and panicle development in rice[J]. Journal of Experimental Botany, 2021, 72(22): 7826-7845. |
[74] | Yang S Q, Xu K, Chen S J, Li T F, Xia H, Chen L, Liu H Y, Luo L J. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice[J]. BMC Plant Biology, 2019, 19: 260. |
[75] | Fitzgerald H A, Canlas P E, Chern M S, Ronald P C. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae[J]. Plant Journal, 2005, 43(3): 335-347. |
[76] | Pan T T, He M L, Liu H L, Tian X J, Wang Z Y, Yu X L, Miao X F, Li X F. Transcription factor bZIP65 delays flowering via suppressing Ehd1 expression in rice[J]. Molecular Breeding, 2022, 42(10): 63. |
[77] | Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26): 15348-15353. |
[78] | Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors[J]. Plant Journal, 2005, 44(6): 939-949. |
[79] | Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[80] | Yoon S, Lee D K, Yu I J, Kim Y S, Choi Y D, Kim J K. Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants[J]. Plant Biotechnology Reports, 2017, 11(1): 53-62. |
[81] | Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice[J]. Molecular Plant, 2021, 14(8): 1297-1311. |
[82] | Zhou H, Zhang F, Zhai F C, Su Y, Zhou Y, Ge Z L, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z M, Yang J, Shen W B, Yuan X X, Xie Y J. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling[J]. Molecular Plant, 2022, 15(4): 651-670. |
[83] | Cerise M, Giaume F, Galli M, Khahani B, Lucas J, Podico F, Tavakol E, Parcy F, Gallavotti A, Brambilla V, Fornara F. OsFD4 promotes the rice floral transition via florigen activation complex formation in the shoot apical meristem[J]. New Phytologist, 2021, 229(1): 429-443. |
[84] | Li X, Tian X, He M, Liu X, Li Z, Tang J, Mei E, Xu M, Liu Y, Wang Z, Guan Q, Meng W, Fang J, Zhang J, Bu Q. bZIP71 delays flowering by suppressing Ehd1 expression in rice[J]. Journal of Integrative Plant Biology, 2022, 64(7): 1352-1363. |
[85] | Liu C T, Mao B G, Ou S J, Wang W, Liu L C, Wu Y B, Chu C C, Wang X P. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice[J]. Plant Molecular Biology, 2014, 84(1-2): 19-36. |
[86] | Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi M R, Zhao B, Xiao G, Wang X, Chu C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9: 3302. |
[87] | Liu C, Schläppi M R, Mao B, Wang W, Wang A, Chu C. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019, 17(9): 1834-1849. |
[88] | Wang S, Liu W, He Y, Adegoke T V, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1[J]. Plant Physiology and Biochemistry, 2021, 169: 112-118. |
[89] | Lu G, Gao C, Zheng X, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice[J]. Planta, 2009, 229(3): 605-615. |
[90] | Wang B, Liu Y, Wang Y, Li J, Sun Z, Chi M, Xing Y, Xu B, Yang B, Li J, Liu J, Chen T, Fang Z, Lu B, Xu D, Babatunde K B. OsbZIP72 is involved in transcriptional gene-regulation pathway of abscisic acid signal transduction by activating rice high-affinity potassium transporter OsHKT1;1[J]. Rice Science, 2021, 28(3): 257-267. |
[91] | Sugio A, Yang B, Zhu T, White F F. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10720-10725. |
[92] | Wang Q, Lin Q B, Wu T, Duan E C, Huang Y S, Yang C Y, Mou C L, Lan J, Zhou C L, Xie K, Liu X, Zhang X, Guo X P, Wang J, Jiang L, Wan J M. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice[J]. Plant Science, 2020, 298: 110570. |
[93] | Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1983-1996. |
[94] | Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011, 476(7360): 332-335. |
[95] | Peng Q, Zhu C, Liu T, Zhang S, Feng S, Wu C. Phosphorylation of OsFD1 by OsCIPK3 promotes the formation of RFT1-containing florigen activation complex for long-day flowering in rice[J]. Molecular Plant, 2021, 14(7): 1135-1148. |
[96] | Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells[J]. Journal of Plant Physiology, 2015, 173: 19-27. |
[97] | Liu D, Shi S, Hao Z, Xiong W, Luo M. OsbZIP81, a homologue of Arabidopsis VIP1, may positively regulate JA levels by directly targetting the genes in JA signaling and metabolism pathway in rice[J]. International Journal of Molecular Sciences, 2019, 20(9): 2360. |
[98] | 刘德芳. 水稻B-bZIP转录因子亚家族成员OsbZIP81和OsbZIP84的功能分析[D]. 武汉: 华中农业大学, 2019. |
Liu D F. Functional analysis of rice B-bZIP subfamily members OsbZIP81 and OsbZIP84[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[99] | Gao W W, Li M K, Yang S G, Gao C Z, Su Y, Zeng X, Jiao Z L, Xu W J, Zhang M Y, Xia K F. miR2105 and the kinase OsSAPK10 co-regulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice[J]. Plant Physiology, 2022, 189(2): 889-905. |
[100] | Zhang Y H, Gao H T, Fang J P, Wang H, Chen J Y, Li J, Dong L Y. Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. glabrescens[J]. Journal of Experimental Botany, 2022, 73(19): 6916-6930. |
[101] | Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka K I. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD[J]. Plant and Cell Physiology, 2018, 59(3): 458-468. |
[102] | Wang Y, Lu Y, Guo Z, Ding Y, Ding C. RICE CENTRORADIALIS 1, a TFL1-like gene, responses to drought stress and regulates rice flowering transition[J]. Rice, 2020, 13: 70. |
[103] | Cai M H, Zhu S S, Wu M M, Zheng X M, Wang J C, Zhou L, Zheng T H, Cui S, Zhou S R, Li C N, Zhang H, Chai J T, Zhang X Y, Jin X, Cheng Z J, Zhang X, Lei C L, Ren Y L, Wan J M. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice[J]. Molecular Plant, 2021, 14(2): 330-343. |
[104] | Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions[J]. Theoretical and Applied Genetics, 2007, 115(1): 35-46. |
[105] | Li R Q, Zheng W Y, Yang R F, Hu Q W, Ma L Y, Zhang H L. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice[J]. Plant Journal, 2022, 112(1): 151-171. |
[106] | Li R Q, Jiang M, Song Y, Zhang H L. Melatonin alleviates low-temperature stress via ABI5-mediated signals during seed germination in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2021, 12: 727596. |
[107] | Yang L J, Chen Y, Xu L, Wang J X, Qi H Y, Guo J Z, Zhang L, Shen J, Wang H Y, Zhang F, Xie L J, Zhu W J, Lü P T, Qian Q, Yu H, Song S Y. The OsFTIP6-OsHB22-OsMYBR57 module regulates drought response in rice[J]. Molecular Plant, 2022, 15(7): 1227-1242. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||