中国水稻科学 ›› 2023, Vol. 37 ›› Issue (3): 307-320.DOI: 10.16819/j.1001-7216.2023.220604
收稿日期:
2022-06-04
修回日期:
2022-08-05
出版日期:
2023-05-10
发布日期:
2023-05-16
通讯作者:
*email: 912050823@qq.com
基金资助:
LIN Dan1, JIANG Min1, MIAO Bo1, GUO Meng1, SHI Chunlin2,*()
Received:
2022-06-04
Revised:
2022-08-05
Online:
2023-05-10
Published:
2023-05-16
Contact:
*email: 912050823@qq.com
摘要:
【目的】通过研究高温对水稻产量形成的影响,构建水稻高温热害模型,旨在提高水稻高温热害的防御和灾损评估水平。【方法】选用福建省种植的4个代表性品种,分别于早稻开花期和灌浆期、中稻减数分裂期和开花期,设置不同温度水平T1(35℃)、T2(41℃)和高温胁迫持续天数D1(3 d)、D2(7 d),以适宜环境条件为对照(CK),分析不同处理下水稻产量及其构成因素的变化,并据此构建高温热害对水稻产量影响的综合模型。根据近20年气象资料,利用模型对福建省四个水稻种植样点的产量进行灾损评估。【结果】早稻在开花期T2D2高温处理时,单株产量降幅最大,为60.8%;两个品种的结实率降幅在T2D2处理下可达60%。灌浆期高温对早稻单株产量影响较小,T2D2处理下为17.8%,两个品种结实率和千粒重降幅最大值分别为11.6%和9.0%。中稻两个品种受减数分裂期高温影响后,在T2D2处理下的单株产量降幅最大可达43.6%,每穗粒数下降为17.4%,结实率所受影响明显大于千粒重,降幅分别为30.8%和9.8%。中稻开花期T2D2高温处理对产量影响最大,单株产量降幅可达42.1%,结实率和千粒重受高温影响后降幅最大分别为37.0%和5.7%。根据项目组研发的水稻发育期模型和本研究结果确定了4个供试品种的遗传参数,构建了水稻关键发育期的高温累积度时和高温处理后灾损率之间的定量关系,进而分别构建了早稻和中稻的高温热害模型。对4个水稻种植样点进行灾损模拟,发现各地损失率和气象产量的时间变化规律正好相反,且中稻较早稻遭受高温危害更为严重。【结论】早稻开花期高温热害对水稻产量的影响大于灌浆期,中稻减数分裂期高温热害的影响比开花期严重。通过本研究确定的4个供试品种的遗传参数在代表性样点对生育期的模拟效果较好。构建的早稻和中稻高温热害模型对四个代表性样点的灾损模拟效果较理想。
林聃, 江敏, 苗波, 郭萌, 石春林. 水稻高温热害模型研究及其在福建省的应用[J]. 中国水稻科学, 2023, 37(3): 307-320.
LIN Dan, JIANG Min, MIAO Bo, GUO Meng, SHI Chunlin. Research on Simulation Model of High Temperature Stress on Rice and Its Application in Fujian Province[J]. Chinese Journal OF Rice Science, 2023, 37(3): 307-320.
生育期 Growth period | 持续天数DT/d | 高温处理时期(月-日) High temperature treatment duration(Month-Day) | |||
---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 You 2155 | 禾两优676 Heliangyou 676 | Ⅱ优3301 ⅡYou 3301 | ||
减数分裂期Meiosis stage | 3 | / | / | 8-12—8-14 | 8-12—8-14 |
7 | / | / | 8-12—8-18 | 8-12—8-18 | |
开花期Flowering stage | 3 | 7-13—7-15 | 7-15—7-17 | 8-21—8-23 | 8-24—8-26 |
7 | 7-13—7-19 | 7-15—7-21 | 8-21—8-27 | 8-24—8-30 | |
灌浆期Grain-filling stage | 3 | 7-23—7-25 | 7-25—7-27 | / | / |
7 | 7-23—7-29 | 7-25—7-31 | / | / |
表1 生育期高温处理日期
Table 1. High temperature treatment date of each growth period.
生育期 Growth period | 持续天数DT/d | 高温处理时期(月-日) High temperature treatment duration(Month-Day) | |||
---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 You 2155 | 禾两优676 Heliangyou 676 | Ⅱ优3301 ⅡYou 3301 | ||
减数分裂期Meiosis stage | 3 | / | / | 8-12—8-14 | 8-12—8-14 |
7 | / | / | 8-12—8-18 | 8-12—8-18 | |
开花期Flowering stage | 3 | 7-13—7-15 | 7-15—7-17 | 8-21—8-23 | 8-24—8-26 |
7 | 7-13—7-19 | 7-15—7-21 | 8-21—8-27 | 8-24—8-30 | |
灌浆期Grain-filling stage | 3 | 7-23—7-25 | 7-25—7-27 | / | / |
7 | 7-23—7-29 | 7-25—7-31 | / | / |
图1 水稻高温处理时期自然环境日最高温度与日平均温度变化
Fig. 1. Changes of daily maximum temperature and daily mean temperature in natural environment during high temperature treatment.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 单株穗数 Panicle number per plant | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | CK | 39.0±3.1 a | 11.7±0.6 a | 128.7±4.2 a | 88.9±1.8 a | 29.3±0.9 a |
T1D1 | 36.3±1.4 a | 11.7±0.6 a | 129.3±8.1 a | 82.8±3.0 b | 29.2±0.3 a | |
T2D1 | 21.8±2.4 c | 12.3±0.6 a | 130.0±5.0 a | 47.2±1.8 d | 28.7±0.1 a | |
T1D2 | 30.5±2.8 b | 12.0±1.0 a | 147.0±8.5 a | 59.5±4.1 c | 29.1±0.7 a | |
T2D2 | 16.9±2.1 d | 13.0±1.0 a | 152.3±25.0 a | 31.6±4.2 e | 27.0±0.8 b | |
T78优2155 T78 you 2155 | CK | 43.5±0.4 a | 12.0±1.0 a | 154.0±13.5 a | 92.4±1.2 a | 25.6±0.2 a |
T1D1 | 39.9±1.5 b | 11.7±1.2 a | 152.7±13.7 a | 88.3±4.2 a | 25.5±0.1 a | |
T2D1 | 25.5±0.9 d | 12.0±2.0 a | 160.3±20.5 a | 55.0±1.5 c | 25.1±0.1 a | |
T1D2 | 33.3±0.6 c | 11.3±1.5 a | 157.3±12.2 a | 74.0±4.6 b | 25.4±0.1 a | |
T2D2 | 17.1±1.4 e | 12.3±0.6 a | 156.7±5.5 a | 38.2±1.5 d | 23.1±0.7 b |
表2 开花期高温对早稻产量及其构成因素的影响
Table 2. Effects of high temperature on grain yield and its components of early rice at flowering stage.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 单株穗数 Panicle number per plant | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | CK | 39.0±3.1 a | 11.7±0.6 a | 128.7±4.2 a | 88.9±1.8 a | 29.3±0.9 a |
T1D1 | 36.3±1.4 a | 11.7±0.6 a | 129.3±8.1 a | 82.8±3.0 b | 29.2±0.3 a | |
T2D1 | 21.8±2.4 c | 12.3±0.6 a | 130.0±5.0 a | 47.2±1.8 d | 28.7±0.1 a | |
T1D2 | 30.5±2.8 b | 12.0±1.0 a | 147.0±8.5 a | 59.5±4.1 c | 29.1±0.7 a | |
T2D2 | 16.9±2.1 d | 13.0±1.0 a | 152.3±25.0 a | 31.6±4.2 e | 27.0±0.8 b | |
T78优2155 T78 you 2155 | CK | 43.5±0.4 a | 12.0±1.0 a | 154.0±13.5 a | 92.4±1.2 a | 25.6±0.2 a |
T1D1 | 39.9±1.5 b | 11.7±1.2 a | 152.7±13.7 a | 88.3±4.2 a | 25.5±0.1 a | |
T2D1 | 25.5±0.9 d | 12.0±2.0 a | 160.3±20.5 a | 55.0±1.5 c | 25.1±0.1 a | |
T1D2 | 33.3±0.6 c | 11.3±1.5 a | 157.3±12.2 a | 74.0±4.6 b | 25.4±0.1 a | |
T2D2 | 17.1±1.4 e | 12.3±0.6 a | 156.7±5.5 a | 38.2±1.5 d | 23.1±0.7 b |
图2 早稻相对结实率和相对千粒重随高温累积度时的变化
Fig. 2. Changes of relative seed setting rate and relative 1000-grain weight of early rice with accumulated degree-hours of high temperature.
品种 Variety | 产量构成因素 Yield component | 系数及R2值 Coefficients and R2 | 生育期Growth period | |
---|---|---|---|---|
开花期Flowering stage | 灌浆期Grain-filling stage | |||
榕盛优1131 Rongshengyou 1131 | 相对结实率 RSSR | A1 | 0.309 19 | 0.884 49 |
x0 | 124.152 53 | 141.462 46 | ||
p | 3.120 29 | 80.687 67 | ||
R2 | 0.987 93 | 0.9753 | ||
相对千粒重 RTGW | A1 | 0.923 08 | 0.909 66 | |
x0 | 157.457 88 | 119.082 35 | ||
p | 23.755 46 | 3.007 38 | ||
R2 | 0.991 17 | 0.962 87 | ||
T78优2155 T78 you 2155 | 相对结实率 RSSR | A1 | 0.1723 | 143.553 09 |
x0 | 231.633 21 | 32.650 81 | ||
p | 2.158 66 | 0.983 81 | ||
R2 | 0.997 88 | 0.989 53 | ||
相对千粒重 RTGW | A1 | 0.903 09 | 0.738 54 | |
x0 | 160.394 05 | 532.208 03 | ||
p | 20.170 34 | 1.558 12 | ||
R2 | 0.938 31 | 0.983 97 |
表3 早稻相对结实率和相对千粒重随高温累积度时变化的拟合系数及R2值
Table 3. Fitting coefficients and R2 values of relative seed setting rate(RSSR) and relative 1000-grain weight(RTGW) of early rice as a function of the cumulative degree of high temperature-period hour.
品种 Variety | 产量构成因素 Yield component | 系数及R2值 Coefficients and R2 | 生育期Growth period | |
---|---|---|---|---|
开花期Flowering stage | 灌浆期Grain-filling stage | |||
榕盛优1131 Rongshengyou 1131 | 相对结实率 RSSR | A1 | 0.309 19 | 0.884 49 |
x0 | 124.152 53 | 141.462 46 | ||
p | 3.120 29 | 80.687 67 | ||
R2 | 0.987 93 | 0.9753 | ||
相对千粒重 RTGW | A1 | 0.923 08 | 0.909 66 | |
x0 | 157.457 88 | 119.082 35 | ||
p | 23.755 46 | 3.007 38 | ||
R2 | 0.991 17 | 0.962 87 | ||
T78优2155 T78 you 2155 | 相对结实率 RSSR | A1 | 0.1723 | 143.553 09 |
x0 | 231.633 21 | 32.650 81 | ||
p | 2.158 66 | 0.983 81 | ||
R2 | 0.997 88 | 0.989 53 | ||
相对千粒重 RTGW | A1 | 0.903 09 | 0.738 54 | |
x0 | 160.394 05 | 532.208 03 | ||
p | 20.170 34 | 1.558 12 | ||
R2 | 0.938 31 | 0.983 97 |
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | CK | 39.1±3.1 a | 11.7±0.6 a | 128.7±4.2 a | 88.9±1.8 a | 29.3±0.9 a |
T1D1 | 38.2±0.8 a | 12.0±2.0 a | 127.7±18.0 a | 87.6±3.1 ab | 28.9±0.1 ab | |
T2D1 | 34.8±0.6b | 13.0±1.0 a | 125.3±17.0 a | 78.7±3.5 b | 27.3±0.2 c | |
T1D2 | 37.7±0.9 a | 11.7±1.5 a | 134.0±16.1 a | 85.8±0.6 ab | 28.4±0.4 b | |
T2D2 | 33.7±1.0 b | 12.0±1.0 a | 135.0±19.1 a | 78.6±7.8 b | 26.7±0.2 c | |
T78优2155 T78 you 2155 | CK | 43.5±0.4 a | 12.0±1.0 a | 154.0±13.5 a | 92.4±1.2 a | 25.6±0.2 a |
T1D1 | 41.0±1.9 b | 12.0±0.0 a | 146.3±3.1 a | 92.0±2.4 a | 25.4±0.2 a | |
T2D1 | 37.4±0.9 cd | 12.3±1.5 a | 141.7±11.8 a | 89.6±1.7 a | 24.1±0.6 b | |
T1D2 | 38.6±0.9 c | 11.7±1.2 a | 144.7±9.0 a | 91.4±1.6 a | 25.1±0.4 a | |
T2D2 | 35.7±0.8 d | 12.0±0.9 a | 144.7±9.0 a | 89.0±9.2 a | 23.3±0.1c |
表4 灌浆期高温对早稻产量及其构成因素的影响
Table 4. Effects of high temperature at grain-filling stage on yield and its components of early rice.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | CK | 39.1±3.1 a | 11.7±0.6 a | 128.7±4.2 a | 88.9±1.8 a | 29.3±0.9 a |
T1D1 | 38.2±0.8 a | 12.0±2.0 a | 127.7±18.0 a | 87.6±3.1 ab | 28.9±0.1 ab | |
T2D1 | 34.8±0.6b | 13.0±1.0 a | 125.3±17.0 a | 78.7±3.5 b | 27.3±0.2 c | |
T1D2 | 37.7±0.9 a | 11.7±1.5 a | 134.0±16.1 a | 85.8±0.6 ab | 28.4±0.4 b | |
T2D2 | 33.7±1.0 b | 12.0±1.0 a | 135.0±19.1 a | 78.6±7.8 b | 26.7±0.2 c | |
T78优2155 T78 you 2155 | CK | 43.5±0.4 a | 12.0±1.0 a | 154.0±13.5 a | 92.4±1.2 a | 25.6±0.2 a |
T1D1 | 41.0±1.9 b | 12.0±0.0 a | 146.3±3.1 a | 92.0±2.4 a | 25.4±0.2 a | |
T2D1 | 37.4±0.9 cd | 12.3±1.5 a | 141.7±11.8 a | 89.6±1.7 a | 24.1±0.6 b | |
T1D2 | 38.6±0.9 c | 11.7±1.2 a | 144.7±9.0 a | 91.4±1.6 a | 25.1±0.4 a | |
T2D2 | 35.7±0.8 d | 12.0±0.9 a | 144.7±9.0 a | 89.0±9.2 a | 23.3±0.1c |
图3 早稻相对结实率和相对千粒重随高温累积度时的变化
Fig. 3. Changes of relative seed-setting rate and 1000-grain weight of early rice with accumulated degree-hours of high temperature.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
Ⅱ优3301 ⅡYou3301 | CK | 39.6±0.8 a | 10.3±0.6 a | 178.0±4.4 a | 79.4±3.6 a | 27.4±0.7 a |
T1D1 | 37.3±1.0 b | 10.3±0.6 a | 172.7±4.5 a | 77.4±2.9 a | 27.1±0.7 ab | |
T2D1 | 26.4±0.8 d | 10.3±1.2 a | 153.3±11.4 b | 64.9±4.1 b | 25.9±1.0 ab | |
T1D2 | 30.0±1.6 c | 10.0±1.0 a | 168.3±7.6 a | 67.7±3.2 b | 26.4±1.4 ab | |
T2D2 | 23.3±1.0 e | 10.7±0.6 a | 151.0±7.9 b | 58.1±3.6 c | 24.9±1.4 b | |
禾两优676 Heliangyou676 | CK | 41.9±2.5 a | 10.3±0.6 a | 178.7±3.8 a | 80.9±2.4 a | 28.1±0.5 a |
T1D1 | 38.5±2.4 a | 10.7±0.6 a | 174.0±5.3 ab | 74.3±2.6 b | 27.9±0.5 ab | |
T2D1 | 28.0±1.9 c | 11.3±0.6 a | 149.4±5.5 c | 62.9±1.8 c | 26.2±0.9 cd | |
T1D2 | 32.2±1.4 b | 11.0±0.0 a | 166.0±10.0 b | 65.6±1.2 c | 26.9±0.5 bc | |
T2D2 | 23.6±1.4 d | 11.3±0.6 a | 147.7±3.2 c | 56.0±5.6 d | 25.3±0.6 d |
表5 减数分裂期高温对中稻产量及其构成因素的影响
Table 5. Effects of high temperature during meiosis on yield and its components of middle rice.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
Ⅱ优3301 ⅡYou3301 | CK | 39.6±0.8 a | 10.3±0.6 a | 178.0±4.4 a | 79.4±3.6 a | 27.4±0.7 a |
T1D1 | 37.3±1.0 b | 10.3±0.6 a | 172.7±4.5 a | 77.4±2.9 a | 27.1±0.7 ab | |
T2D1 | 26.4±0.8 d | 10.3±1.2 a | 153.3±11.4 b | 64.9±4.1 b | 25.9±1.0 ab | |
T1D2 | 30.0±1.6 c | 10.0±1.0 a | 168.3±7.6 a | 67.7±3.2 b | 26.4±1.4 ab | |
T2D2 | 23.3±1.0 e | 10.7±0.6 a | 151.0±7.9 b | 58.1±3.6 c | 24.9±1.4 b | |
禾两优676 Heliangyou676 | CK | 41.9±2.5 a | 10.3±0.6 a | 178.7±3.8 a | 80.9±2.4 a | 28.1±0.5 a |
T1D1 | 38.5±2.4 a | 10.7±0.6 a | 174.0±5.3 ab | 74.3±2.6 b | 27.9±0.5 ab | |
T2D1 | 28.0±1.9 c | 11.3±0.6 a | 149.4±5.5 c | 62.9±1.8 c | 26.2±0.9 cd | |
T1D2 | 32.2±1.4 b | 11.0±0.0 a | 166.0±10.0 b | 65.6±1.2 c | 26.9±0.5 bc | |
T2D2 | 23.6±1.4 d | 11.3±0.6 a | 147.7±3.2 c | 56.0±5.6 d | 25.3±0.6 d |
图4 中稻相对穗粒数、相对结实率和相对千粒重随高温累积度时的变化
Fig. 4. Changes of grain number per panicle, seed setting rate and 1000-grain weight of medium rice with accumulated degree-hours of high temperature.
品种 Variety | 产量构成因素 Yield component | 拟合系数及R2值 Fitting coefficients and R2 | 生育期Growth period | |
---|---|---|---|---|
减数分裂期Meiosis stage | 开花期Flowering stage | |||
Ⅱ优3301 ⅡYou 3301 | 相对穗粒数 RGN | A1 | 0.791 63 | / |
x0 | 190.109 58 | / | ||
p | 1.6427 | / | ||
R2 | 0.911 88 | / | ||
相对结实率 RGN | A1 | 0.717 58 | 0.633 19 | |
x0 | 131.3975 | 86.169 17 | ||
p | 3.068 56 | 2.030 04 | ||
R2 | 0.996 26 | 0.997 49 | ||
相对千粒重 RTGW | A1 | 0.896 71 | 0.9426 | |
x0 | 159.3183 | 147.443 26 | ||
p | 2.270 27 | 24.822 37 | ||
R2 | 0.981 53 | 0.992 88 | ||
禾两优676 Heliangyou 676 | 相对穗粒数 RGN | A1 | 0.823 09 | / |
x0 | 101.515 02 | / | ||
p | 3.3079 | / | ||
R2 | 0.966 49 | / | ||
相对结实率 RGN | A1 | 0.617 84 | 0.493 48 | |
x0 | 135.960 37 | 174.413 57 | ||
p | 1.643 85 | 1.441 28 | ||
R2 | 0.989 55 | 0.987 03 | ||
相对千粒重 RTGW | A1 | 0.896 25 | 0.948 31 | |
x0 | 148.222 61 | 147.529 44 | ||
p | 3.453 69 | 44.2462 | ||
R2 | 0.987 73 | 1 |
表6 中稻相对穗粒数、相对结实率和相对千粒重随高温累积度时变化的拟合系数及R2值
Table 6. Fitting coefficients and R2 values of relative grain number per panicle, relative seed setting rate and relative 1000-grain weight of middle rice with accumulated degree-hours of high temperature.
品种 Variety | 产量构成因素 Yield component | 拟合系数及R2值 Fitting coefficients and R2 | 生育期Growth period | |
---|---|---|---|---|
减数分裂期Meiosis stage | 开花期Flowering stage | |||
Ⅱ优3301 ⅡYou 3301 | 相对穗粒数 RGN | A1 | 0.791 63 | / |
x0 | 190.109 58 | / | ||
p | 1.6427 | / | ||
R2 | 0.911 88 | / | ||
相对结实率 RGN | A1 | 0.717 58 | 0.633 19 | |
x0 | 131.3975 | 86.169 17 | ||
p | 3.068 56 | 2.030 04 | ||
R2 | 0.996 26 | 0.997 49 | ||
相对千粒重 RTGW | A1 | 0.896 71 | 0.9426 | |
x0 | 159.3183 | 147.443 26 | ||
p | 2.270 27 | 24.822 37 | ||
R2 | 0.981 53 | 0.992 88 | ||
禾两优676 Heliangyou 676 | 相对穗粒数 RGN | A1 | 0.823 09 | / |
x0 | 101.515 02 | / | ||
p | 3.3079 | / | ||
R2 | 0.966 49 | / | ||
相对结实率 RGN | A1 | 0.617 84 | 0.493 48 | |
x0 | 135.960 37 | 174.413 57 | ||
p | 1.643 85 | 1.441 28 | ||
R2 | 0.989 55 | 0.987 03 | ||
相对千粒重 RTGW | A1 | 0.896 25 | 0.948 31 | |
x0 | 148.222 61 | 147.529 44 | ||
p | 3.453 69 | 44.2462 | ||
R2 | 0.987 73 | 1 |
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
Ⅱ优3301 ⅡYou 3301 | CK | 39.9±0.8 a | 10.3±0.6 a | 178.0±4.4 a | 79.4±3.6 a | 27.4±0.7 a |
T1D1 | 33.8±4.0 b | 10.7±1.2 a | 168.0±19.1 a | 69.7±5.1 b | 27.2±0.4 a | |
T2D1 | 27.3±0.6 c | 10.0±0.0 a | 181.3±2.5 a | 57.0±1.3 c | 26.4±0.2 ab | |
T1D2 | 26.6±1.3 c | 9.7±0.6 a | 174.3±3.2 a | 58.5±1.1 c | 27.0±0.5 a | |
T2D2 | 26.5±1.5 c | 10.7±0.6 a | 185.7±5.5 a | 52.0±2.7 c | 25.8±0.1 b | |
禾两优676 Heliangyou 676 | CK | 41.9±2.5 a | 10.3±0.6 a | 178.7±3.8 a | 80.9±2.4 a | 28.1±0.5 a |
T1D1 | 35.5±0.4 b | 10.7±0.6 a | 162.7±15.7 a | 73.4±4.8 b | 28.1±0.1 a | |
T2D1 | 27.4±1.3 d | 10.7±1.5 a | 174.3±10.8 a | 55.4±6.4 d | 27.1±0.9 ab | |
T1D2 | 30.2±0.6 c | 10.3±2.1 a | 166.3±24.3 a | 63.9±1.3 c | 27.9±0.5 ab | |
T2D2 | 24.2±0.7 e | 11.0±1.7 a | 164.7±15.5 a | 51.0±3.3 d | 26.6±1.2 b |
表7 开花期高温对中稻产量及其构成因素的影响
Table 7. Effects of high temperature during meiosis on yield and its components of middle rice.
品种 Variety | 处理 Treatment | 单株产量 Yield per plant / g | 穗数 Panicle number | 穗粒数 Grain number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
Ⅱ优3301 ⅡYou 3301 | CK | 39.9±0.8 a | 10.3±0.6 a | 178.0±4.4 a | 79.4±3.6 a | 27.4±0.7 a |
T1D1 | 33.8±4.0 b | 10.7±1.2 a | 168.0±19.1 a | 69.7±5.1 b | 27.2±0.4 a | |
T2D1 | 27.3±0.6 c | 10.0±0.0 a | 181.3±2.5 a | 57.0±1.3 c | 26.4±0.2 ab | |
T1D2 | 26.6±1.3 c | 9.7±0.6 a | 174.3±3.2 a | 58.5±1.1 c | 27.0±0.5 a | |
T2D2 | 26.5±1.5 c | 10.7±0.6 a | 185.7±5.5 a | 52.0±2.7 c | 25.8±0.1 b | |
禾两优676 Heliangyou 676 | CK | 41.9±2.5 a | 10.3±0.6 a | 178.7±3.8 a | 80.9±2.4 a | 28.1±0.5 a |
T1D1 | 35.5±0.4 b | 10.7±0.6 a | 162.7±15.7 a | 73.4±4.8 b | 28.1±0.1 a | |
T2D1 | 27.4±1.3 d | 10.7±1.5 a | 174.3±10.8 a | 55.4±6.4 d | 27.1±0.9 ab | |
T1D2 | 30.2±0.6 c | 10.3±2.1 a | 166.3±24.3 a | 63.9±1.3 c | 27.9±0.5 ab | |
T2D2 | 24.2±0.7 e | 11.0±1.7 a | 164.7±15.5 a | 51.0±3.3 d | 26.6±1.2 b |
图5 中稻相对结实率和相对千粒重随高温累积度时的变化
Fig. 5. Changes of relative seed setting rate and relative 1000-grain weight of middle rice with accumulated degree-hours of high temperature.
品种 Variety | 生育期 Growth period | 损失率 Loss rate |
---|---|---|
早稻 Early rice | 开花期 Flowering stage | ={1―{0.240745+0.759255/[1+( |
灌浆期 Grain-filling stage | ={1―{0.92368+0.07632/[1+( | |
中稻 Middle rice | 减数分裂期 Meiosis stage | ={1―{0.80736+0.19264/[1+( |
开花期 Flowering stage | ={1―{0.563335+0.436665/[1+( |
表8 早稻和中稻不同发育期的高温热害损失率
Table 8. Heat-induced yield loss rate of early rice and middle rice at different developmental phases.
品种 Variety | 生育期 Growth period | 损失率 Loss rate |
---|---|---|
早稻 Early rice | 开花期 Flowering stage | ={1―{0.240745+0.759255/[1+( |
灌浆期 Grain-filling stage | ={1―{0.92368+0.07632/[1+( | |
中稻 Middle rice | 减数分裂期 Meiosis stage | ={1―{0.80736+0.19264/[1+( |
开花期 Flowering stage | ={1―{0.563335+0.436665/[1+( |
品种参数 Varieties of parameter | 品种Variety | |||
---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 you 2155 | Ⅱ优3301 ⅡYou 3301 | 禾两优676 Heliangyou 676 | |
P1 | 92.04 | 92.04 | 81.98 | 81.98 |
P2 | 1392.35 | 1392.35 | 1387.47 | 1387.47 |
P3 | 904.12 | 925.56 | 1208.82 | 1184.76 |
P4 | 709.08 | 732.45 | 976.79 | 948.42 |
表9 福建省4个水稻品种的发育期品种参数
Table 9. Variety parameters of four rice varieties during developmental phase in Fujian Province.
品种参数 Varieties of parameter | 品种Variety | |||
---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 you 2155 | Ⅱ优3301 ⅡYou 3301 | 禾两优676 Heliangyou 676 | |
P1 | 92.04 | 92.04 | 81.98 | 81.98 |
P2 | 1392.35 | 1392.35 | 1387.47 | 1387.47 |
P3 | 904.12 | 925.56 | 1208.82 | 1184.76 |
P4 | 709.08 | 732.45 | 976.79 | 948.42 |
图6 水稻全生育期时长模拟值与观测值对比 **表示在0.01统计水平上显著。
Fig. 6. Comparison between simulated and observed values of rice growth period. **Significant at 0.01 probability level.
[1] | 福建省统计局. 福建统计年鉴2021[M]. 福建: 福建省统计局, 2022. |
Fujian Bureau of Statistics. Fujian Statistical Yearbook 2021[M]. Fujian: Fujian Bureau of Statistics, 2022. (in Chinese) | |
[2] | 张婷, 程昌秀. 顾及空间集聚程度的中国高温灾害危险性评价[J]. 地球信息科学学报, 2019, 21(6): 865-874. |
Zhang T, Cheng C X. Assessment of China's high-temperature hazards: Accounting for spatial agglomeration[J]. Journal of Geo-information Science, 2019, 21(6): 865-874. (in Chinese with English abstract) | |
[3] | 卢淑云. 高温对水稻后期生长发育的影响及防御技术措施[J]. 现代经济信息, 2009(2): 145. |
Lu S Y. Effects of high temperature on late growth and development of rice and preventive measures[J]. Modern Economic Information, 2009(2): 145. (in Chinese) | |
[4] | 段骅, 佟卉, 刘燕清, 许庆芬, 马骏, 王春敏. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. |
Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism[J]. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese with English abstract) | |
[5] | 杨军, 章毅之, 贺浩华, 李迎春, 陈小荣, 边建民, 金国花, 李翔翔, 黄淑娥. 水稻高温热害的研究现状与进展[J]. 应用生态学报, 2020, 31(8): 2817-2830. |
Yang J, Zhang Y Z, He H H, Li Y C, Chen X R, Bian J M, Jin G H, Li X X, Huang S E. Current status and research advances of high-temperature hazards in rice[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2817-2830. (in Chinese with English abstract) | |
[6] | 骆宗强, 石春林, 江敏, 刘杨, 宣守丽, 金之庆. 孕穗期高温对水稻物质分配及产量结构的影响[J]. 中国农业气象, 2016, 37(3): 326-334. |
Luo Z Q, Shi C L, Jiang M, Liu Y, Xuan S L, Jin Z Q. Effect of high temperature on rice dry matter partition and yield component during booting stage[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 326-334. (in Chinese with English abstract) | |
[7] | Bouman B A M, Kropff M J, Tuong T P, Wopereis M C S, Berge H F M T, Laar H H V. ORYZA2000: Modeling Lowland Rice[M]. Los Banos, Philippines: International Rice Research Institute, 2001: 235. |
[8] | Sun Q, Zhao Y X, Zhang Y, Chen S N, Ying Q, Lü Z F, Chen X H, Wang D L. Heat stress may cause a significant reduction of rice yield in China under future climate scenarios[J]. Science of the Total Environment, 2021, 818: 151746. |
[9] | 石春林, 金之庆, 汤日圣, 郑建初. 水稻高温败育模拟模型[J]. 中国水稻科学, 2007(2): 220-222. |
Shi C L, Jin Z Q, Tang R S, Zheng J C. Model to Simulate high temperature-induced sterility of rice[J]. Chinese Journal of Rice Science, 2007(2): 220-222. (in Chinese with English abstract) | |
[10] | van Dort O P A J, Saito K, Zwart S J, Shrestha, S. A simple model for simulating heat induced sterility in rice as a function of flowering time and transportational cooling[J]. Field Crops Research, 2014, 156: 303-312. |
[11] | Irfan R N, Fahd R, Ashfaq A, Hafiz N A, Gerrit H. Climate change impacts and adaptations for fine, coarse, and hybrid rice using CERES-Rice[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9454-9464. |
[12] | Muhammad K A, Tayyaba H, Shahzad H, Muhammad H N. Modeling adaptation strategies against climate change impacts in integrated rice-wheat agricultural production system of Pakistan[J]. International Journal of Environmental Research, 2020, 17(7): 2522. |
[13] | Sudharsan D, Adinarayana J, Reddy D R, Sreenivas G, Ninomiya S, Hirafuji M, Kiura T, Tanaka K, Desai U B, Merchant S N. Evaluation of weather-based rice yield models in India[J]. International Journal of Biometeorology, 2013, 57(1): 107-123. |
[14] | 高亮之, 金之庆, 黄耀, 陈华, 李秉柏. 水稻栽培计算机模拟优化决策系统[M]. 北京: 中国农业科技出版社, 1992. |
Gao L Z, Jin Z Q, Huang Y, Chen H, Li B B. Computer Simulation and Optimization Decision System for Rice Cultivation[M]. Beijing: China Agricultural Science and Technology Press, 1992. (in Chinese) | |
[15] | Zhang T, Li T, Yang X G, Elisabeth S. Model biases in rice phenology under warmer climates[J]. Scientific Reports, 2016, 6: 27355. |
[16] | 郭建茂, 王星宇, 刘慎彬, 钱娅, 李羚. 基于稻田实测温度的水稻模型ORYZA2000应用[J]. 中国农业气象, 2020, 41(4): 211-221. |
Guo J M, Wang X Y, Liu S B, Qian Y, Li L. Application of rice model ORYZA2000 based on measured temperature in rice fields[J]. Chinese Journal of Agrometeorology, 2020, 41(4): 211-221. (in Chinese with English abstract) | |
[17] | Tang L, Zhu Y, Hannaway D, Meng Y, Liu L, Chen L, Cao W. RiceGrow: A rice growth and productivity model[J]. Wageningen Journal of Life Sciences, 2009, 57(1): 83-92. |
[18] | Horie T. Global warming and rice production in Asia: Modeling, impact prediction and adaptation[J]. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95(6): 211-245. |
[19] | 吕厚荃, 张艳红, 冯明, 李秉柏, 刘安国, 毛飞, 庄立伟, 李祎君, 吴门新. 水稻热害气象等级: GB/T 37744―2019[S]. 北京: 国家市场监督管理总局/国家标准化管理委员会. 2019. |
Lu H Q, Zhang Y H, Feng M, Li B B, Liu A G, Mao F, Zhuang L W, Li Y J, Wu M X. Meteorological Grades of Hot Damage to Rice: GB/T37744―2019[S]. Beijing: State Administration for Market Regulation/State Standardization Administration, 2019. (in Chinese) | |
[20] | Shi P H, Tang L, Lin C B, Liu L L, Wang H H, Cao W X, Zhu Y. Modeling the effects of post-anthesis heat stress on rice phenology[J]. Field Crops Research, 2015, 177: 26-36. |
[21] | 石春林, 金之庆, 郑建初, 汤日圣. 减数分裂期高温对水稻颖花结实率影响的定量分析[J]. 作物学报, 2008, 34(4): 627-631. |
Shi C L, Jin Z Q, Zheng J C, Tang R S. Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets[J]. Acta Agronomica Sinica, 2008, 34(4): 627-631. (in Chinese with English abstract) | |
[22] | Tao F L, Zhang S, Zhang Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes[J]. Regional Environmental Change, 2013, 13(4): 743-759. |
[23] | 陈升孛, 吴坤悌, 陈明, 赵蕾, 张亚杰. 海南早稻灌浆成熟期高温热害对千粒重的影响[J]. 中国农学通报, 2018, 34(27): 8-11. |
Chen S B, Wu K T, Chen M, Chen M, Zhang Y J. High temperature damage at grain filling stage of early rice in Hainan: Effects on 1000-grain weight[J]. Chinese Agricultural Science Bulletin, 2018, 34(27): 8-11. (in Chinese with English abstract) | |
[24] | Muhammad S A, Muhammad F, Folkard A, Jagadish S V K, Prasad P V, Kadambot H M S. Thermal stress impacts reproductive development and grain yield in rice[J]. Plant Physiology and Biochemistry, 2017, 115: 57-72. |
[25] | 曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J]. 作物学报, 2008, 34(12): 2134-2142. |
Cao Y Y, Duan Y, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134-2142. (in Chinese with English abstract) | |
[26] | 石春林, 金之庆, 汤日圣, 郑建初. 水稻颖花结实率对减数分裂期和开花期高温的响应差异[J]. 江苏农业学报, 2010, 26(6): 1139-1142. |
Shi C L, Jin Z Q, Tang R S, Zheng J C. Response difference of seed setting rate of rice florets at the meiosis and anthesis stages to high temperature[J]. Jiangsu Journal of Agricultural Sciences, 2010, 26(6): 1139-1142. (in Chinese with English abstract) | |
[27] | Hu Q, Wang W, Lu Q, Huang J L, Peng S B, Cui K H. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology, 2021, 21(1): 428. |
[28] | 宋有金, 吴超. 高温影响水稻颖花育性的生理机制综述[J]. 江苏农业科学, 2020, 48(16): 41-48. |
Song Y J, Wu C. Physiological mechanism of high temperature affecting fertility of rice spikelets: A review[J]. Jiangsu Agricultural Sciences, 2020, 48(16): 41-48. (in Chinese with English abstract) | |
[29] | 陈建珍, 闫浩亮, 刘科, 穆麒麟, 朱开典, 张运波, 田小海. 大穗型水稻品种抽穗开花期遭遇高温后的结实表现[J]. 中国农业气象, 2018, 39(2): 84-91. |
Chen J Z, Yan H L, Liu K, Mu Q L, Zhu K D, Zhang Y B, Tian X H. Seed-set of large-panicle rice cultivars suffered from high temperature at anthesis[J]. Chinese Journal of Agrometeorology, 2018, 39(2): 84-91. (in Chinese with English abstract) | |
[30] | Mahmood A, Wang W, Ali I, Zhen F X, Raheel O, Liu B, Liu L L, Zhu Y, Cao W X, Tang L. Individual and combined effects of booting and flowering high- temperature stress on rice biomass accumulation[J]. Plants (Basel), 2021, 10(5): 1021. |
[31] | 褚丽敏, 赵洪利, 韩万海. 灌浆结实期高温胁迫对水稻产量及品质的影响[J]. 现代化农业, 2015(5): 1-2. |
Chu L M, Zhao H L, Han W H. Effects of high temperature stress on yield and quality of rice during filling stage[J]. Modernizing Agriculture, 2015(5): 1-2. (in Chinese) | |
[32] | Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice[J]. Environmental and Experimental Botany, 2016, 132: 28-41. |
[33] | Park J R, Kim E G, Jang Y H, Kim K M. Screening and identification of genes affecting grain quality and spikelet fertility during high-temperature treatment in grain filling stage of rice[J]. BMC Plant Biology, 2021, 21(1): 263. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||