中国水稻科学 ›› 2023, Vol. 37 ›› Issue (2): 213-224.DOI: 10.16819/j.1001-7216.2023.220305
• 实验技术 • 上一篇
张佳1,2, 王慧杰2, 何正权1,*(), 刘文真2,*()
收稿日期:
2022-03-03
修回日期:
2022-05-14
出版日期:
2023-03-10
发布日期:
2023-03-10
通讯作者:
何正权,刘文真
基金资助:
ZHANG Jia1,2, WANG Huijie2, HE Zhengquan1,*(), LIU Wenzhen2,*()
Received:
2022-03-03
Revised:
2022-05-14
Online:
2023-03-10
Published:
2023-03-10
Contact:
HE Zhengquan, LIU Wenzhen
摘要:
【目的】水稻转基因技术是推动水稻分子生物学研究和精准育种的重要工具。农杆菌介导法是水稻遗传转化的主流方法。然而受基因型限制,典型籼稻的转化效率仍然偏低,需提高其转化效率。【方法】以顽拗型籼稻品种9311和华占为受体材料,研究了不同大量元素、微量元素、有机物和碳源的组合,植物激素浓度,侵染培养基,乙酰丁香酮(AS)浓度和光周期对遗传转化效率的影响。【结果】在成熟种子组织培养试验中,MS大量元素、B5微量元素、N6有机物和麦芽糖为9311最优组合,华占最优组合为MS大量元素、MS微量元素、MS有机物和麦芽糖。诱导培养基中添加0.5 mg/L的BAP或1.5 mg/L的KT可显著提高9311和华占的组织培养再生率,可达70.0%以上。在侵染过程中,添加100 μmol/L AS的转化效率高于200 μmol/L AS。光周期实验显示9311和华占宜采用不同的光周期策略,9311在全黑暗条件下进行愈伤诱导和筛选,在全光照条件下进行分化,转化效率最高,达6.0%~6.4%,而华占在12 h光照/12 h黑暗条件下进行诱导、筛选和分化,获得的转化效率最高(5.0%~7.5%)。【结论】本研究优化了顽拗型籼稻9311和华占的组织培养和遗传转化体系,该体系也可以应用于其他相关籼稻基因型的遗传转化。
张佳, 王慧杰, 何正权, 刘文真. 农杆菌介导的籼稻9311和华占遗传转化体系的研究[J]. 中国水稻科学, 2023, 37(2): 213-224.
ZHANG Jia, WANG Huijie, HE Zhengquan, LIU Wenzhen. Analysis of Agrobacterium-Mediated Genetic Transformation System of indica Rice 9311 and Huazhan[J]. Chinese Journal OF Rice Science, 2023, 37(2): 213-224.
培养基 Medium | 成分 Composition |
---|---|
愈伤诱导培养基 Callus induction medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L Phytagel |
侵染培养基 Infection medium | AA大量+AA微量+AA有机+20 g/L蔗糖+10 g/L葡萄糖+铁盐+0.5 g/L酸水解酪蛋白+876 mg/L L-谷氨酰胺+174 mg/L 精氨酸+260 mg/L天冬氨酸 AA Macro+AA Micro+AA Vitamins+20 g/L sucrose+10 g/L glucose+Fe-Na-EDTA+0.5 g/L acid hydrolyzed casein +876 mg/L L-glutamine +174 mg/L arginine +260 mg/L aspartic acid |
选择培养基 Selection medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+30 g/L甘露醇+2.5 mg/L 2,4-D+0.5 mg/L BAP +5 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+30 g/L mannitol+2.5 mg/L 2,4-D+0.5 mg/L BAP+5 g/L Phytagel |
分化培养基 Regeneration medium | MS大量+MS微量+B5有机+麦芽糖+铁盐+2 g/L酸水解酪蛋白+30 g/L山梨醇+0.2 mg/L NAA +4 mg/L BAP+5 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Maltose+Fe-Na-EDTA+2 g/L acid hydrolyzed casein+30 g/L sorbitol +0.2 mg/L NAA+4 mg/L BAP+5 g/L Phytagel MS大量+MS微量+B5有机+铁盐+30 g/L葡萄糖+0.5 mg/L IBA+4 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Fe-Na-EDTA+30 g/L glucose+0.5 mg/L IBA+4 g/L Phytagel |
生根培养基 Rooting medium | |
YEM培养基 YEM medium | 10 g/L甘露醇+2 g/L C-谷氨酰胺+0.5 g/L磷酸二氢钾+0.2 g/L氯化钠+0.2 g/L硫酸镁+0.3 g/L酵母提取物+15 g/L Agar 10 g/L mannitol +2 g/L C-glutamine +0.5 g/L monopotassium phosphate+0.2 g/L sodium chloride+0.2 g/L magnesium sulfate +0.3 g/L yeast extract +15 g/L Agar |
表1 籼稻9311和华占遗传转化培养基
Table 1. The media used for transformation of the indica rice cultivars 9311 and Huazhan.
培养基 Medium | 成分 Composition |
---|---|
愈伤诱导培养基 Callus induction medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L Phytagel |
侵染培养基 Infection medium | AA大量+AA微量+AA有机+20 g/L蔗糖+10 g/L葡萄糖+铁盐+0.5 g/L酸水解酪蛋白+876 mg/L L-谷氨酰胺+174 mg/L 精氨酸+260 mg/L天冬氨酸 AA Macro+AA Micro+AA Vitamins+20 g/L sucrose+10 g/L glucose+Fe-Na-EDTA+0.5 g/L acid hydrolyzed casein +876 mg/L L-glutamine +174 mg/L arginine +260 mg/L aspartic acid |
选择培养基 Selection medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+30 g/L甘露醇+2.5 mg/L 2,4-D+0.5 mg/L BAP +5 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+30 g/L mannitol+2.5 mg/L 2,4-D+0.5 mg/L BAP+5 g/L Phytagel |
分化培养基 Regeneration medium | MS大量+MS微量+B5有机+麦芽糖+铁盐+2 g/L酸水解酪蛋白+30 g/L山梨醇+0.2 mg/L NAA +4 mg/L BAP+5 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Maltose+Fe-Na-EDTA+2 g/L acid hydrolyzed casein+30 g/L sorbitol +0.2 mg/L NAA+4 mg/L BAP+5 g/L Phytagel MS大量+MS微量+B5有机+铁盐+30 g/L葡萄糖+0.5 mg/L IBA+4 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Fe-Na-EDTA+30 g/L glucose+0.5 mg/L IBA+4 g/L Phytagel |
生根培养基 Rooting medium | |
YEM培养基 YEM medium | 10 g/L甘露醇+2 g/L C-谷氨酰胺+0.5 g/L磷酸二氢钾+0.2 g/L氯化钠+0.2 g/L硫酸镁+0.3 g/L酵母提取物+15 g/L Agar 10 g/L mannitol +2 g/L C-glutamine +0.5 g/L monopotassium phosphate+0.2 g/L sodium chloride+0.2 g/L magnesium sulfate +0.3 g/L yeast extract +15 g/L Agar |
培养基名称 Media | 基本培养基 Basal media(BM) | 碳源 Carbon source | 平均愈伤诱导率 Average frequency of callus induction / % | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|---|
大量 Macro | 微量 Micro | 有机 Vitamin | 9311 | 华占Huazhan | 9311 | 华占 Huazhan | |||
RBM1 | N6 | N6 | N6 | 蔗糖Sucrose | 76.0±4.0 | 81.3±1.2 | 14.6±2.1 ab | 2.7±2.7 bc | |
RBM2 | N6 | MS×5 | MS | 麦芽糖Maltose | 78.3±0.7 | 75.7±1.7 | 2.7±2.7 c | 7.8±2.2 ab | |
RBM3 | N6 | B5 | B5 | 混合 Mixed | 69.7±3.5 | 79.5±5.5 | 7.2±2.9 abc | 2.4±2.4 bc | |
RBM4 | MS | N6 | MS | 混合 Mixed | 69.3±4.8 | 77.0±1.0 | 15.9±4.1 ab | 13.0±2.4 a | |
RBM5 | MS | MS×5 | B5 | 蔗糖Sucrose | 82.7±2.0 | 71.3±2.6 | 5.2±0.4 bc | 8.9±2.2 ab | |
RBM6 | MS | B5 | N6 | 麦芽糖Maltose | 78.0±5.3 | 68.0±3.0 | 20.0±5.5 a | 8.5±2.6 ab | |
RBM7 | DKN | N6 | B5 | 麦芽糖Maltose | 48.7±3.5 | 56.7±3.4 | 0.0±0.0 c | 0.0±0.0 c | |
RBM8 | DKN | MS×5 | N6 | 混合 Mixed | 49.3±3.2 | 53.7±2.3 | 0.0±0.0 c | 0.0±0.0 c | |
RBM9 | DKN | B5 | MS | 蔗糖Sucrose | 49.0±1.5 | 57.0±1.0 | 0.0±0.0 c | 0.0±0.0 c |
表2 不同基本培养基对9311和华占组织培养的影响
Table 2. Effects of different basal media on 9311 and Huazhan tissue culture.
培养基名称 Media | 基本培养基 Basal media(BM) | 碳源 Carbon source | 平均愈伤诱导率 Average frequency of callus induction / % | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|---|
大量 Macro | 微量 Micro | 有机 Vitamin | 9311 | 华占Huazhan | 9311 | 华占 Huazhan | |||
RBM1 | N6 | N6 | N6 | 蔗糖Sucrose | 76.0±4.0 | 81.3±1.2 | 14.6±2.1 ab | 2.7±2.7 bc | |
RBM2 | N6 | MS×5 | MS | 麦芽糖Maltose | 78.3±0.7 | 75.7±1.7 | 2.7±2.7 c | 7.8±2.2 ab | |
RBM3 | N6 | B5 | B5 | 混合 Mixed | 69.7±3.5 | 79.5±5.5 | 7.2±2.9 abc | 2.4±2.4 bc | |
RBM4 | MS | N6 | MS | 混合 Mixed | 69.3±4.8 | 77.0±1.0 | 15.9±4.1 ab | 13.0±2.4 a | |
RBM5 | MS | MS×5 | B5 | 蔗糖Sucrose | 82.7±2.0 | 71.3±2.6 | 5.2±0.4 bc | 8.9±2.2 ab | |
RBM6 | MS | B5 | N6 | 麦芽糖Maltose | 78.0±5.3 | 68.0±3.0 | 20.0±5.5 a | 8.5±2.6 ab | |
RBM7 | DKN | N6 | B5 | 麦芽糖Maltose | 48.7±3.5 | 56.7±3.4 | 0.0±0.0 c | 0.0±0.0 c | |
RBM8 | DKN | MS×5 | N6 | 混合 Mixed | 49.3±3.2 | 53.7±2.3 | 0.0±0.0 c | 0.0±0.0 c | |
RBM9 | DKN | B5 | MS | 蔗糖Sucrose | 49.0±1.5 | 57.0±1.0 | 0.0±0.0 c | 0.0±0.0 c |
基本培养基 Basal medium | 处理 Treatment | 植物激素浓度 Phytohormone concentration / (mg L−1) | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|
BAP | KT | TDZ | ABA | 9311 | 华占 Huazhan | |||
BM2 | T1 | 0.25 | 0.00 | 0.10 | 0.00 | 11.3±3.0 bc | 6.0±1.7 d | |
T2 | 0.25 | 0.75 | 0.00 | 1.50 | 12.6±3.5 bc | 18.5±3.5 bc | ||
T3 | 0.25 | 1.50 | 0.20 | 3.00 | 39.0±8.2 a | 31.9±2.7 a | ||
T4 | 0.00 | 0.00 | 0.00 | 3.00 | 1.7±1.7 c | 0.0±0.0 e | ||
T5 | 0.00 | 0.75 | 0.20 | 0.00 | 2.4±2.4 c | 8.9±1.8 cd | ||
T6 | 0.00 | 1.50 | 0.10 | 1.50 | 34.6±5.4 a | 24.4±4.8 ab | ||
T7 | 0.50 | 0.00 | 0.20 | 1.50 | 22.2±4.1 b | 14.9±3.6 cd | ||
T8 | 0.50 | 0.75 | 0.10 | 3.00 | 9.2±1.5 c | 9.4±3.0 cd | ||
T9 | 0.50 | 1.50 | 0.00 | 0.00 | 1.5±1.5 c | 26.2±0.4 ab |
表3 不同激素对9311和华占组织培养的影响
Table 3. Effects of different phytohormones on 9311 and Huazhan tissue culture.
基本培养基 Basal medium | 处理 Treatment | 植物激素浓度 Phytohormone concentration / (mg L−1) | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|
BAP | KT | TDZ | ABA | 9311 | 华占 Huazhan | |||
BM2 | T1 | 0.25 | 0.00 | 0.10 | 0.00 | 11.3±3.0 bc | 6.0±1.7 d | |
T2 | 0.25 | 0.75 | 0.00 | 1.50 | 12.6±3.5 bc | 18.5±3.5 bc | ||
T3 | 0.25 | 1.50 | 0.20 | 3.00 | 39.0±8.2 a | 31.9±2.7 a | ||
T4 | 0.00 | 0.00 | 0.00 | 3.00 | 1.7±1.7 c | 0.0±0.0 e | ||
T5 | 0.00 | 0.75 | 0.20 | 0.00 | 2.4±2.4 c | 8.9±1.8 cd | ||
T6 | 0.00 | 1.50 | 0.10 | 1.50 | 34.6±5.4 a | 24.4±4.8 ab | ||
T7 | 0.50 | 0.00 | 0.20 | 1.50 | 22.2±4.1 b | 14.9±3.6 cd | ||
T8 | 0.50 | 0.75 | 0.10 | 3.00 | 9.2±1.5 c | 9.4±3.0 cd | ||
T9 | 0.50 | 1.50 | 0.00 | 0.00 | 1.5±1.5 c | 26.2±0.4 ab |
图1 不同激素浓度对水稻再生频率的影响 A―9311在RBM2+1.5 mg/L ABA培养基上的再生频率; B―华占在RBM2+1.5 mg/L ABA培养基上的再生频率; C―9311在RBM6+1.5 mg/L ABA培养基上的再生频率; D―华占在RBM6+1.5 mg/L ABA培养基上的再生频率。不同字母表示处理间有显著差异。垂直条表示标准误。
Fig. 1. Effects of different phytohormones concentration on rice regeneration frequency. A, Regeneration frequency of 9311 on medium (RBM2+1.5 mg/L ABA); B, Regeneration frequency of Huazhan on medium (RBM2+1.5 mg/L ABA); C, Regeneration frequency of 9311 on medium (RBM6+1.5 mg/L ABA); D, Regeneration frequency of Huazhan on medium (RBM6+1.5 mg/L ABA). Different small letters mean that they significantly differ from each other at P = 0.05. Vertical bar indicates standard error.
基因型 Rice genotype | AS浓度 AS concentration /(µmol·L−1) | 侵染 愈伤数 Infection callus number | 抗性 愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % |
---|---|---|---|---|---|---|---|---|
9311 | 100 | 75.0±0.6 a | 47.7±1.9 a | 63.6±2.4 a | 4.3±1.2 a | 8.9±2.3 a | 28.9±10.6 a | 1.3±0.0 a |
200 | 78.7±2.7 a | 50.0±2.9 a | 63.5±2.6 a | 0.6±0.2 b | 1.3±0.6 b | 0.0±0.0 a | 0.0±0.0 b | |
华占Huazhan | 100 | 66.3±0.9 a | 55.7±0.9 a | 84.0±2.3 a | 3.7±0.3 a | 6.6±0.7 a | 44.4±5.6 a | 2.5±0.5 a |
200 | 73.3±1.8 b | 62.3±2.2 b | 86.7±2.0 a | 2.3±0.3 b | 3.7±0.5 b | 38.9±20.0 a | 1.4±0.8 a |
表4 不同的AS浓度对籼稻品种9311和华占遗传转化效率的影响
Table 4. Effects of different AS concentration on genetic transformation efficiency of the indica rice cultivar.
基因型 Rice genotype | AS浓度 AS concentration /(µmol·L−1) | 侵染 愈伤数 Infection callus number | 抗性 愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % |
---|---|---|---|---|---|---|---|---|
9311 | 100 | 75.0±0.6 a | 47.7±1.9 a | 63.6±2.4 a | 4.3±1.2 a | 8.9±2.3 a | 28.9±10.6 a | 1.3±0.0 a |
200 | 78.7±2.7 a | 50.0±2.9 a | 63.5±2.6 a | 0.6±0.2 b | 1.3±0.6 b | 0.0±0.0 a | 0.0±0.0 b | |
华占Huazhan | 100 | 66.3±0.9 a | 55.7±0.9 a | 84.0±2.3 a | 3.7±0.3 a | 6.6±0.7 a | 44.4±5.6 a | 2.5±0.5 a |
200 | 73.3±1.8 b | 62.3±2.2 b | 86.7±2.0 a | 2.3±0.3 b | 3.7±0.5 b | 38.9±20.0 a | 1.4±0.8 a |
A | B | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants | ||||
---|---|---|---|---|---|---|---|---|---|
9311 | HZ | 9311 | HZ | 9311 | HZ | 9311 | HZ | ||
12/12 | 24 L | 64.7±0.9 a | 58.0±1.2 b | 32.7±1.4 a | 41.0±1.5 a | 68.6±1.6 a | 71.9±0.9 a | 5.0±0.6 b | 3.3±0.3 b |
12/12 | 24.0±2.1 c | 72.3±1.5 a | 12.0±4.0 c | 25.7±4.3 b | 67.3±3.4 a | 64.8±1.7 ab | 3.0±1.0 c | 6.3±0.3 a | |
24 D | 24 L | 45.0±1.7 b | 61.3±2.4 b | 28.7±3.8 ab | 28.3±1.7 b | 75.0±4.2 a | 58.9±1.7 b | 8.0±0.6 a | 1.3±0.3 c |
12/12 | 26.7±0.9 c | 26.7±0.9 c | 13.0±1.0 c | 7.7±1.2 c | 67.1±2.4 a | 56.8±5.1 b | 3.0±0.0 c | 0.7±0.3 cd | |
24 L | 24 L | 48.0±1.5 b | 61.3±1.2 b | 22.3±1.5 b | 25.7±0.7 b | 55.7±1.2 b | 56.7±2.4 b | 0.0±0.0 d | 0.0±0.0 d |
A | B | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % | |||||
9311 | HZ | 9311 | HZ | 9311 | HZ | ||||
12/12 | 24 L | 15.3±1.5 b | 7.9±0.6 b | 52.2±7.8 a | 58.3±12.7 a | 4.1±1.1 ab | 3.4±0.9 a | ||
12/12 | 25.3±1.9 a | 25.6±2.7 a | 23.3±14.5 bc | 56.3±15.5 a | 3.5±0.2 b | 5.0±1.5 a | |||
24 D | 24 L | 28.6±2.8 a | 4.7±1.0 bc | 33.1±2.6 ab | 33.3±33.3 ab | 6.0±0.9 a | 0.6±0.6 b | ||
12/12 | 23.3±1.7 a | 8.1±4.2 b | 22.2±11.1 bc | 0.0±0.0 b | 3.7±0.1 b | 0.0±0.0 b | |||
24 L | 24 L | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 b | 0.0±0.0 c | 0.0±0.0 b |
表5 不同光周期对籼稻品种9311和华占遗传转化效率的影响
Table 5. Effects of different photoperiod treatments on genetic transformation efficiency of the indica rice cultivars.
A | B | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants | ||||
---|---|---|---|---|---|---|---|---|---|
9311 | HZ | 9311 | HZ | 9311 | HZ | 9311 | HZ | ||
12/12 | 24 L | 64.7±0.9 a | 58.0±1.2 b | 32.7±1.4 a | 41.0±1.5 a | 68.6±1.6 a | 71.9±0.9 a | 5.0±0.6 b | 3.3±0.3 b |
12/12 | 24.0±2.1 c | 72.3±1.5 a | 12.0±4.0 c | 25.7±4.3 b | 67.3±3.4 a | 64.8±1.7 ab | 3.0±1.0 c | 6.3±0.3 a | |
24 D | 24 L | 45.0±1.7 b | 61.3±2.4 b | 28.7±3.8 ab | 28.3±1.7 b | 75.0±4.2 a | 58.9±1.7 b | 8.0±0.6 a | 1.3±0.3 c |
12/12 | 26.7±0.9 c | 26.7±0.9 c | 13.0±1.0 c | 7.7±1.2 c | 67.1±2.4 a | 56.8±5.1 b | 3.0±0.0 c | 0.7±0.3 cd | |
24 L | 24 L | 48.0±1.5 b | 61.3±1.2 b | 22.3±1.5 b | 25.7±0.7 b | 55.7±1.2 b | 56.7±2.4 b | 0.0±0.0 d | 0.0±0.0 d |
A | B | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % | |||||
9311 | HZ | 9311 | HZ | 9311 | HZ | ||||
12/12 | 24 L | 15.3±1.5 b | 7.9±0.6 b | 52.2±7.8 a | 58.3±12.7 a | 4.1±1.1 ab | 3.4±0.9 a | ||
12/12 | 25.3±1.9 a | 25.6±2.7 a | 23.3±14.5 bc | 56.3±15.5 a | 3.5±0.2 b | 5.0±1.5 a | |||
24 D | 24 L | 28.6±2.8 a | 4.7±1.0 bc | 33.1±2.6 ab | 33.3±33.3 ab | 6.0±0.9 a | 0.6±0.6 b | ||
12/12 | 23.3±1.7 a | 8.1±4.2 b | 22.2±11.1 bc | 0.0±0.0 b | 3.7±0.1 b | 0.0±0.0 b | |||
24 L | 24 L | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 b | 0.0±0.0 c | 0.0±0.0 b |
图2 农杆菌介导的籼稻品种9311和华占遗传转化过程 A和G―成熟种子诱导14 d后形成愈伤组织; B和H―第一次潮霉素筛选10 d后的愈伤组织; C和I―第二次潮霉素筛选10 d后的愈伤组织; D和J―分化培养后抗性愈伤组织表面出现绿点;E和K―抗性愈伤组织产生植株;F和L―转移到生根培养基的再生苗。
Fig. 2. Process of Agrobacterium-mediated genetic transformation of the indica rice cultivars 9311 and Huazhan. A and G, Calli formed from mature seeds after 14 days of induction; B and H, Cocultured calli were subjected to the first hygromycin selection for 10 days; C and I, Calli were subjected to the second hygromycin selection for 10 days. D and J, Resistant calli were cultured on regeneration medium and green tips appeared on the surface of resistant calli; E and K, Plantlets generated from resistant calli; F and L, Plantlets were transferred to test-tube with rooting medium for further development.
侵染培养基 Infection medium | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化率 Transformation frequency / % |
---|---|---|---|---|---|---|---|
A | 54.7±1.5 a | 45.3±0.9 a | 83.0±0.8 a | 10.7±1.2 a | 23.5±2.2 a | 50.2±4.9 a | 9.7±1.0 a |
B | 44.3±1.2 b | 34.7±2.2 b | 78.1±3.5 a | 9.7±1.9 a | 28.0±5.6 b | 36.6±9.5 b | 7.6±2.2 a |
表6 不同侵染培养基对籼稻品种华占遗传转化效率的影响
Table 6. Effects of different infection medium on genetic transformation efficiency of the indica rice cultivar Huazhan.
侵染培养基 Infection medium | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化率 Transformation frequency / % |
---|---|---|---|---|---|---|---|
A | 54.7±1.5 a | 45.3±0.9 a | 83.0±0.8 a | 10.7±1.2 a | 23.5±2.2 a | 50.2±4.9 a | 9.7±1.0 a |
B | 44.3±1.2 b | 34.7±2.2 b | 78.1±3.5 a | 9.7±1.9 a | 28.0±5.6 b | 36.6±9.5 b | 7.6±2.2 a |
图3 利用HPT基因和35S启动子特异性引物对转基因水稻事件进行PCR分析 用HPT特异性引物对HPT(581 bp)进行PCR扩增,用35S启动子特异性引物对35S启动子(522 bp和195 bp)进行PCR扩增。PCR扩增产物在1.0% (w/v)琼脂糖凝胶上电泳。A―9311转基因植株(24 h黑暗/24 h光照培养条件)的鉴定。B―华占转基因植株(全程12 h黑暗/12 h光照培养条件)的鉴定。M表示2000 bp 标记DNA。Lanes 1~10为转基因植株。Lane 11为非转基因植株。
Fig. 3. PCR analysis of transgenic rice events using HPT and 35S promoter specific primers. 581 bp fragment of HPT gene was amplified using HPT specific primers. The 522 bp and 195 bp fragments of the 35S promoter were amplified using 35S promoter specific primers. The PCR product was electrophoresed on 1.0% (w/v) agarose gel. A, Identification of 9311 transgenic plants (24 h dark/24 h light). B, Identification of Huazhan transgenic plants (12 h dark /12 h light). M, 2000 bp DNA marker. 1-10, Genomic DNA from transgenic plants. 11, Genomic DNA from untransformed plants.
[1] | Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050[J]. PLoS ONE, 2013, 8(6): e66428. |
[2] | Amini M, Deljou A, Nabiabad H S. Improvement of in vitro embryo maturation, plantlet regeneration and transformation efficiency from alfalfa somatic embryos using Cuscuta campestris extract[J]. Physiology & Molecular Biology of Plants, 2016, 22(3): 1-10. |
[3] | Arun M, Chinnathambi A, Subramanyam K, Ganapathi K S. Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean[J]. 3 Biotech, 2016, 6(2): 1-12. |
[4] |
He Y, Jones H D, Chen S, Chen X M, Wang D S, Xia L Q. Agrobacterium -mediated transformation of durum wheat with improved efficiency[J]. Journal of Experimental Botany, 2010, 61(6): 1567-1581.
PMID |
[5] | Hiei Y, Komari T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens[J]. Plant Cell, Tissue and Organ Culture, 2006, 85(3): 271. |
[6] |
Hiei Y, Ohta S, Toshihiro K, Komari T. Efficient transformation of rice mediated by Agrobacterium and sequences analysis of the boundaries of the T-DNA[J]. Plant Journal, 1994, 6(2): 271-282.
PMID |
[7] | Daigen M, Kawakami O, Nagasawa Y. Efficient anther culture method of the japonica rice cultivar Koshihikari[J]. Breeding Science, 2000, 50(3): 197-202. |
[8] | Ozawa K. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice[J]. Plant Science, 2009, 176(4): 522-527. |
[9] | Ozawa K. A high-efficiency Agrobacterium-mediated transformation system of rice[J]. Methods in Molecular Biology, 2012, 847: 51-57. |
[10] |
Sallaud C, Meynard D, van Boxtel J, Gay C, Bès M, Brizard J P, Larmande P, Ortega D, Portefaix M R, Al E. Highly efficient production and characterization of T-DNA plants for rice functional genomics[J]. Theoretical and Applied Genetics, 2003, 106(8): 1396-1408.
PMID |
[11] |
Chakraborty M, Reddy P S, Narasu M L, Rana K. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker[J]. Physiology and Molecular Biology of Plants, 2016, 22(1): 51-60.
PMID |
[12] | Hoque M E, Mansfield J W. Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of indica rice genotypes[J]. Plant Cell Tissue and Organ Culture, 2004, 78(3): 217-223. |
[13] |
Torrizo L B, Zapata F J. Anther culture in rice: IV. The effect of abscisic acid on plant regeneration[J]. Plant Cell Reports, 1986, 5(2): 136-139.
PMID |
[14] |
Ge X J, Chu Z H, Lin Y J, Wang S. A tissue culture system for different germplasms of indica rice[J]. Plant Cell Reports, 2006, 25(5): 392-402.
PMID |
[15] | Tan L W, Rahman Z A, Goh H H, Hwang D J, Zainal Z. Production of transgenic rice overexpressing Abp57 gene through Agrobacterium-mediated transformation[J]. Sains Malaysiana, 2017, 46(5): 703-711. |
[16] | Chu C C. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources[J]. Science in China, 1975, 18(5): 659. |
[17] |
Gamborg O L, Ojima K. Nutrient requirements of suspension cultures of soybean root cells[J]. Experimental Cell Research, 1968, 50(1): 151-158.
PMID |
[18] | Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497. |
[19] |
Dewir Y H, Naidoo Y, Dasilva J A T. Thidiazuron-induced abnormalities in plant tissue cultures[J]. Plant Cell Reports, 2018, 37(11): 1451-1470.
PMID |
[20] |
Jimenez V M, Bangerth F. Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro[J]. Plant Science, 2001, 160(2): 247-257.
PMID |
[21] | Ramesh M, Gupta A K. Transient expression of β-glucuronidase gene in indica and japonica rice callus cultures after different stages of co-bombardment[J]. African Journal of Biotechnology, 2005, 4(7): 596-600. |
[22] | Wani S H, Sanghera G S, Gosal S S. An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice variety PAU 201[J]. New Biotechnology, 2011, 28(4): 418-422. |
[23] | 别晓敏, 杜丽璞, 佘茂云, 徐惠君, 叶兴国. 不同生长素类型及ABA搭配对小麦幼胚再生效果的影响[J]. 核农学报, 2011, 25(5): 1023-1028. |
Bie X M, Du L P, She M Y, Xu H J, Ye X G. Effects of Different auxins and combining application with ABA on regeneration of immature embryos of wheat[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1023-1028. (in Chinese with English abstract) | |
[24] | 田文忠. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报, 1994, 21(3): 215-221. |
Tian W Z. Improvement of plant regeneration frequency in vitro in indica rice[J]. Journal of Genetics and Genomics, 1994, 21(3): 215-221. (in Chinese with English abstract) | |
[25] | Aldemita R R, Hodges T K. Agrobacterium tumefaciens -mediated transformation of japonica and indica rice varieties[J]. Planta, 1996, 199(4): 612-617. |
[26] |
Godwin I, Todd G, Ford-Lloyd B, Newbury H J. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991, 9(12): 671-675.
PMID |
[27] | Smith R H, Hood E E. Agrobacterium tumefaciens transformation of monocotyledons[J]. Crop Science, 1995, 35(2): 301-309. |
[28] | Clement W K F, Lai K S, Wong M Y, Maziah M. Heat and hydrolytic enzymes treatment improved the Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.)[J]. Plant Cell, Tissue and Organ Culture, 2015, 125(1): 183-190. |
[29] | Yaqoob U, Kaul T, Nawchoo I A. Development of an efficient protocol for Agrobacterium mediated transformation of some recalcitrant indica rice varieties[J]. Indian Journal of Plant Physiology, 2017, 22(3): 346-353. |
[30] |
Lin Y J, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice[J]. Plant Cell Reports, 2005, 23(8): 540-547.
PMID |
[31] | Patel M, Dewey R E, Qu R. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection[J]. Plant Cell, Tissue and Organ Culture, 2013, 114(1): 19-29. |
[32] |
Amoah B K, Wu H, Sparks C, Jones D H. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue[J]. Journal of Experimental Botany, 2001, 52(358): 1135-1142.
PMID |
[33] | Shri M, Rai A, Verma P K, Misra P, Dubey S, Kumar S, Verma S, Gautam N. An improved Agrobacterium-mediated transformation of recalcitrant indica rice cultivars[J]. Protoplasma, 2013, 250(2): 631-636. |
[34] | Toriyama K, Hinata K. Cell suspension and protoplast culture in rice[J]. Plant Science, 1985, 41(3): 179-183. |
[35] | Basu A, Ray A, Sarkar S, Chaudhuri T R, Kundu S. Agrobacterium mediated genetic transformation of popular Indica rice Ratna (IET 1411) [J]. African Journal of Biotechnology, 2014, 13(31): 3187-3197. |
[36] | Burman N, Chandran D, Khurana J P. A rapid and highly efficient method for transient gene expression in rice Plants[J]. Front Plant Science, 2020, 11: 584011-584022. |
[37] | Sundararajan S, Sivaraman B, Rajendran V, Ramalingam S. Tissue culture and Agrobacterium-mediated genetic transformation studies in four commercially important indica rice cultivars[J]. Journal of Crop Science and Biotechnology, 2017, 20(3): 175-183. |
[38] | Nguyen V C, Nguyen V K, Singh C H, Devi G S. Fast recovery of transgenic submergence tolerant rice cultivars of North-East India by early co-cultivation of Agrobacterium with pre-cultured callus[J]. Physiolgy and Molecular Biology of Plants, 2017, 23(1): 115-123. |
[39] | 郝建琴, 许语辉, 黄敏, 张伟漫, 刘伟利, 方标, 王振南, 王化琪. 山梨醇对栽培稻成熟胚愈伤组织分化的影响[J]. 农业生物技术学报, 2014, 22(8): 983-991. |
Hao J Q, Xu Y H, Huang M, Zhang W M, Liu W L, Fang B, Wang Z N, Wang H Q. Effect of sorbitol on callus regeneration from mature embryos of rice[J]. Journal of Agricultural Biotechnology, 2014, 22(8): 983-991. (in Chinese with English abstract) | |
[40] | 沈秋平, 严孙艺, 薛宇彤, 张立朋, 吕尊富, 李飞飞. 籼稻9311成熟胚高效再生体系的建立[J]. 杂交水稻, 2019, 34(2): 49-52. |
Shen Q P, Yan S Y, Xue Y T, Zhang L P, Lü Z F, Li F F. Establishment of high-efficiency regeneration system from mature embryo as explants of indica rice 9311[J]. Hybrid Rice, 2019, 34(2): 49-52. | |
[41] | 周永国, 尹中明, 沈忠伟, 李建粤. 籼稻9311成熟胚再生体系[J]. 上海师范大学学报, 2007, 36(4): 71-77. |
Zhou Y G, Yin Z M, Shen Z W, Li J Y. Study on the regeneration system from mature embryo of the indica rice 9311[J]. Journal of Shanghai Normal University, 2007, 36(4): 71-77. (in Chinese with English abstract) | |
[42] | Doyle J F, Dickson E E. Preservation of plant samples for DNA restriction endonuclease analysis[J]. Taxon, 1987, 36(4): 715-722. |
[43] | Zaidi M A, Narayanan M, Sardana R, Taga I, Postel S, Johns R, Mcnulty M, Mottiar M, Mao J, Loit E. Optimizing tissue culture media for efficient transformation of different indica rice genotypes[J]. Agronomy Research, 2006, 4(2): 563-575. |
[44] | 易自力, 曹守云, 王力, 储成才, 李祥, 何锶洁, 唐祚舜, 周朴华, 田文忠. 提高农杆菌转化水稻频率的研究[J]. 遗传学报, 2001, 28(4): 352-358. |
Yi Z L, Cao S Y, Wang L, Chu C C, Li X, He S J, Tang Z S, Zhou P H, Tian W Z. Improvement of transformation frequency of rice mediated by Agrobacterium[J]. Journal of Genetics and Genomics, 2001, 28(4): 352-358. (in Chinese with English abstract) | |
[45] | 李双成, 王世全, 尹福强, 邹良平, 起登风, 江洪, 李平. 提高农杆菌介导转化水稻效率的因素[J]. 中国水稻科学, 2005, 19(3): 231-237. |
Li S C, Wang S Q, Yin F Q, Zou L P, Qi D F, Jiang H, Li P. Some factors affecting Agrobacterium-mediated transformation frequencyin rice[J]. Chinese Journal of Rice Science, 2005, 19(3): 231-237. (in Chinese with English abstract) | |
[46] | Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J. Morphogenic regulators baby boom and wuschel improve monocot transformation[J]. Plant Cell, 2016, 28(9): 1998-2015. |
[47] | Wang K, Shi L, Liang X, Zhao P, Guo Y. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nature Plants, 2022. https://doi.org/10.1038/s41477-021-01085-8. |
[48] | Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nature Biotechnology, 2020, 38(11): 1-6. |
[49] | Xiao K Z, Mao X H, Wang Y H, Wang J L, Wei Y D, Cai Q H, Xie H, Zhang J F. Transcript profiling reveals abscisic acid, salicylic acid and jasmonic-isoleucine pathways involved in high regenerative capacities of immature embryos compared with mature seeds in japonica rice[J]. Rice Science, 2018, 25(4): 57-64. |
[1] | 张亚芳,陈宗祥,左示敏,娄丽娟,余永旗,潘学彪. 叶肉细胞特异表达焦磷酸化酶基因OsIP1在不同源库类型水稻品种中的效应[J]. 中国水稻科学, 2013, 27(2): 129-136. |
[2] | 杨迎青,杨媚,李明海,李勇,贺晓霞,周而勋. 根癌农杆菌介导的水稻纹枯病菌转化系统的建立 [J]. 中国水稻科学, 2010, 24(6): 617-622 . |
[3] | 向殿军,张瑜,殷奎德,. 农杆菌介导的转ICE1基因提高水稻的耐寒性[J]. 中国水稻科学, 2007, 21(5): 482-486 . |
[4] | 张震,杜新法,柴荣耀,毛雪琴,邱海萍,王艳丽,王教瑜,孙国昌. 根癌农杆菌介导遗传转化稻曲病菌[J]. 中国水稻科学, 2006, 20(4): 440-442 . |
[5] | 刘朋娟,王政逸,王秋华,李德葆. 农杆菌介导的稻瘟病菌转化及致病缺陷突变体筛选[J]. 中国水稻科学, 2006, 20(3): 231-237 . |
[6] | 郭龙彪,薛大伟,王慧中,陈受宜,卢德赵,曾大力,高振宇,颜美仙,黄大年,钱前,. 转基因与常规杂交相结合改良水稻耐盐性[J]. 中国水稻科学, 2006, 20(2): 141-146 . |
[7] | 王秀红,史向远,吴先军. 水稻不同外植体培养效果及其相关性分析[J]. 中国水稻科学, 2005, 19(2): 187-189 . |
[8] | 于恒秀 , 刘巧泉 , 陈秀花 , 陆美芳 , 王兴稳 , 王宗阳 , 顾铭洪 ,. 根癌农杆菌介导的水稻转化系统的优化及转反义Wx基因植株的获得[J]. 中国水稻科学, 2002, 16(4): 304-310 . |
[9] | 杨跃生,郑贵朝,简玉瑜. 铜在水稻愈伤组织培养中的作用的进一步研究[J]. 中国水稻科学, 1999, 13(4): 245-247 . |
[10] | 杨跃生,简玉瑜,郑迎冬. 铜在水稻愈伤组织培养再生植株中的促进作用[J]. 中国水稻科学, 1999, 13(2): 95-98 . |
[11] | 罗琼, 胡延玉, 周开达. 内源激素对水稻成熟胚培养力的影响[J]. 中国水稻科学, 1998, 12(4): 238-240 . |
[12] | 杨长登,吴连斌,赵成章. 单倍体籼稻无性系微芽的离体调控[J]. 中国水稻科学, 1998, 12(4): 219-222 . |
[13] | 杨长登 ,唐克轩 ,吴连斌 ,李 瑶 ,赵成章 ,刘光杰 ,沈大棱 . 农杆菌介导将雪莲凝集素(GNA)基因转入籼稻单倍体微芽的初步研究[J]. 中国水稻科学, 1998, 12(3): 129-133 . |
[14] | 过全生,沈 瑛. 低浓度2,4-D提高水稻体细胞成苗研究[J]. 中国水稻科学, 1996, 10(2): 103-109 . |
[15] | 杨长登,赵成章,戚秀芳. 籼稻绿芽悬浮细胞原生质体再生成株[J]. 中国水稻科学, 1993, 7(4): 222-226 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||