中国水稻科学 ›› 2023, Vol. 37 ›› Issue (1): 55-65.DOI: 10.16819/j.1001-7216.2023.220302
陈涛1,2, 赵庆勇1, 朱镇1, 赵凌1, 姚姝1, 周丽慧1, 赵春芳1, 张亚东1,*(), 王才林1,*()
收稿日期:
2022-03-01
修回日期:
2022-06-06
出版日期:
2023-01-10
发布日期:
2023-01-10
通讯作者:
张亚东,王才林
基金资助:
CHEN Tao1,2, ZHAO Qingyong1, ZHU Zhen1, ZHAO Ling1, YAO Shu1, ZHOU Lihui1, ZHAO Chunfang1, ZHANG Yadong1,*(), WANG Cailin1,*()
Received:
2022-03-01
Revised:
2022-06-06
Online:
2023-01-10
Published:
2023-01-10
Contact:
ZHANG Yadong, WANG Cailin
摘要: 目的 选育低谷蛋白新品种是功能性水稻育种的一个重要方向。为满足肾脏病患者对人体健康和稻米品质的需求,迫切需要在育种中加强对功能性和食味品质的协同改良。 方法 以具有低直链淀粉含量基因Wxmp和香味基因fgr的优良食味粳稻品种南粳46与含低谷蛋白基因Lgc1的日本粳稻品种LGC-1杂交、回交,利用与目标基因共分离的分子标记进行跟踪检测并结合田间选择,在BC2F6获得5个新品系。以亲本南粳46和LGC-1为对照,对新品系的农艺、产量、品质性状进行分析。结果 与LGC-1相比,新品系的谷蛋白含量和可吸收蛋白含量相当,食味品质得到显著提升,且综合性状优良,表现出较高的产量潜力,适宜在江苏不同稻区进行种植。 结论 分子标记辅助选择作为一种快速、准确、有效的方法,与常规育种技术紧密结合,能够显著提高优质、高产、低谷蛋白水稻品种的选育效率。
陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65.
CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin. Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection[J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65.
图1 BC1F1世代各单株Lgc1(A)、Wxmp(B)和fgr(C)基因型的电泳检测 M-DNA标记;1-LGC-1;2-南粳46;3-南粳46/LGC-1 F1;4~24-BC1F1的单株。
Fig. 1. Electrophoresis detection of Lgc1(A), Wxmp (B) and fgr (C) genotype for B1C1 plants. M, DNA marker; 1, LGC-1; 2, Nanjing 46; 3, F1 (Nanjing 46/LGC-1); 4~24, BC1F1 plants.
图2 新品系Lgc1(A)、Wxmp(B)和fgr(C)基因型的电泳检测 M-DNA标记;1-LGC-1;2-南粳46;3-南粳46/LGC-1 F1;4~23-L03、L07、L16、L19和L20每个株系随机选择的4个单株。
Fig. 2. Electrophoresis detection of Lgc1(A), Wxmp (B) and fgr (C) genotype for new lines. M, DNA marker; 1, LGC-1; 2, Nanjing 46; 3, F1 (Nanjing 46/LGC-1); 4~23, Four plants randomly selected from L03, L07, L16, L19 and L20.
图4 低谷蛋白新品系种子总蛋白的SDS-PAGE分析 M-蛋白质分子标记;1-LGC-1;2-南粳46;3-南粳46/LGC-1 F1;4~8-L03、L07、L16、L19、L20。
Fig. 4. SDS-PAGE analysis of total protein in rice seeds for new lines of low glutelin content. M, Molecular marker; 1, LGC-1; 2, Nanjing 46; 3, F1 (Nanjing 46/LGC-1); 4-8, L03, L07, L16, L19 and L20.
品系 Line | 总蛋白 Total protein /% | 蛋白质各组分比例 Percentage of protein components/% | 蛋白质各组分含量 Content of protein components/% | 可吸收蛋白Digestible protein% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | 清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | |||
L03 | 8.14±0.22 a | 6.54±0.18 a | 8.25±0.23 a | 54.11±0.66 a | 31.10±0.89 b | 0.53±0.01 a | 0.67±0.03 a | 4.40±0.07 a | 2.53±0.14 b | 3.74±0.16 b |
L07 | 8.08±0.25 a | 6.87±0.24 a | 8.39±0.19 a | 55.37±1.06 a | 29.38±0.82 b | 0.56±0.03 a | 0.68±0.03 a | 4.47±0.05 a | 2.38±0.16 b | 3.61±0.20 b |
L16 | 7.99±0.23 a | 6.52±0.23 a | 8.81±0.37 a | 54.56±0.71 a | 30.11±0.92 b | 0.52±0.03 a | 0.70±0.01 a | 4.36±0.15 a | 2.41±0.10 b | 3.63±0.11 b |
L19 | 7.91±0.19 a | 6.86±0.20 a | 8.60±0.32 a | 54.31±0.75 a | 30.23±0.69 b | 0.54±0.02 a | 0.68±0.02 a | 4.30±0.10 a | 2.39±0.10 b | 3.62±0.12 b |
L20 | 8.15±0.15 a | 6.45±0.14 a | 8.84±0.15 a | 54.87±1.01 a | 29.84±0.92 b | 0.53±0.02 a | 0.72±0.02 a | 4.47±0.03 a | 2.43±0.12 b | 3.68±0.15 b |
LGC-1 | 8.11±0.15 a | 6.54±0.25 a | 8.50±0.34 a | 54.44±1.05 a | 30.52±0.70 b | 0.53±0.01 a | 0.69±0.02 a | 4.41±0.16 a | 2.47±0.05 b | 3.69±0.05 b |
南粳46 Nanjing 46 | 7.79±0.21 a | 6.51±0.28 a | 8.33±0.27 a | 22.89±0.81 b | 62.26±0.91 a | 0.51±0.02 a | 0.65±0.02 a | 1.78±0.06 b | 4.85±0.17 a | 6.01±0.19 a |
方差分析Analysis of variance | ||||||||||
重复Repeat | 3.38 | 0.12 | 2.43 | 1.41 | 1.13 | 1.80 | 1.17 | 3.74 | 1.13 | 2.58 |
品系Line | 1.17 | 1.06 | 1.68 | 397.02** | 424.37** | 0.99 | 1.75 | 279.89** | 424.37** | 89.56** |
表1 新品系与亲本稻米总蛋白及各组分含量的比较
Table 1. Comparison of total protein and its component contents in rice grains for new lines and parents.
品系 Line | 总蛋白 Total protein /% | 蛋白质各组分比例 Percentage of protein components/% | 蛋白质各组分含量 Content of protein components/% | 可吸收蛋白Digestible protein% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | 清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | |||
L03 | 8.14±0.22 a | 6.54±0.18 a | 8.25±0.23 a | 54.11±0.66 a | 31.10±0.89 b | 0.53±0.01 a | 0.67±0.03 a | 4.40±0.07 a | 2.53±0.14 b | 3.74±0.16 b |
L07 | 8.08±0.25 a | 6.87±0.24 a | 8.39±0.19 a | 55.37±1.06 a | 29.38±0.82 b | 0.56±0.03 a | 0.68±0.03 a | 4.47±0.05 a | 2.38±0.16 b | 3.61±0.20 b |
L16 | 7.99±0.23 a | 6.52±0.23 a | 8.81±0.37 a | 54.56±0.71 a | 30.11±0.92 b | 0.52±0.03 a | 0.70±0.01 a | 4.36±0.15 a | 2.41±0.10 b | 3.63±0.11 b |
L19 | 7.91±0.19 a | 6.86±0.20 a | 8.60±0.32 a | 54.31±0.75 a | 30.23±0.69 b | 0.54±0.02 a | 0.68±0.02 a | 4.30±0.10 a | 2.39±0.10 b | 3.62±0.12 b |
L20 | 8.15±0.15 a | 6.45±0.14 a | 8.84±0.15 a | 54.87±1.01 a | 29.84±0.92 b | 0.53±0.02 a | 0.72±0.02 a | 4.47±0.03 a | 2.43±0.12 b | 3.68±0.15 b |
LGC-1 | 8.11±0.15 a | 6.54±0.25 a | 8.50±0.34 a | 54.44±1.05 a | 30.52±0.70 b | 0.53±0.01 a | 0.69±0.02 a | 4.41±0.16 a | 2.47±0.05 b | 3.69±0.05 b |
南粳46 Nanjing 46 | 7.79±0.21 a | 6.51±0.28 a | 8.33±0.27 a | 22.89±0.81 b | 62.26±0.91 a | 0.51±0.02 a | 0.65±0.02 a | 1.78±0.06 b | 4.85±0.17 a | 6.01±0.19 a |
方差分析Analysis of variance | ||||||||||
重复Repeat | 3.38 | 0.12 | 2.43 | 1.41 | 1.13 | 1.80 | 1.17 | 3.74 | 1.13 | 2.58 |
品系Line | 1.17 | 1.06 | 1.68 | 397.02** | 424.37** | 0.99 | 1.75 | 279.89** | 424.37** | 89.56** |
图5 低谷蛋白新品系和LGC-1的田间表现及稻米外观 A和G—LGC-1;B和H—L03;C和I—L07;D和J—L16;E和K—L19;F和L—L20。
Fig. 5. Field performance and appearance quality for new lines of low glutelin content and LGC-1. A and G, LGC-1; B and H, L03; C and I, L07; D and J, L16; E and K, L19; F and L, L20.
[1] | 中国水稻研究所, 国家水稻产业技术研发中心. 2021年中国水稻产业发展报告[M]. 北京: 中国农业科学技术出版社, 2021: 148-154. |
China National Rice Research Institute, National Rice Industry Technology Research and Development Center. Report on the development of China's rice industry in 2021[M]. Beijing: China Agricultural Science and Technology Press, 2021: 148-154 (in Chinese) | |
[2] | 陈静, 唐振闯, 程广燕. 我国稻谷口粮消费特征及其趋势预测[J]. 中国农业资源与区划, 2020, 41(4): 108-116. |
Chen J, Tang Z C, Cheng G Y. Edible rice consumption characteristics and trend prediction in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 108-116. (in Chinese with English abstract) | |
[3] | 刘巧泉, 周丽慧, 王红梅, 顾铭洪. 水稻种子贮藏蛋白合成的分子生物学研究进展[J]. 分子植物育种, 2008, 6(1): 1-15. |
Liu Q Q, Zhou L H, Wang H M, Gu M H. Advanced on biosynthesis of rice seed storage proteins in molecular biology[J]. Molecular Plant Breeding, 2008, 6(1): 1-5. (in Chinese with English abstract) | |
[4] | 江绍玫, 徐朗莱, 万建民. 水稻谷蛋白研究进展[J]. 江西农业大学学报, 2002, 24(1): 14-19. |
Jiang S M, Xu L L, Wan J M. Advance on the glutelin research on rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2002, 24(1): 14-19. (in Chinese with English abstract) | |
[5] | GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017[J]. The Lancet, 2020, 395(10225): 709-733. |
[6] |
Modification of Diet in Renal Disease Study Group. Effects of dietary protein restriction on the progression of moderate renal disease in the modification of diet in renal disease study[J]. Journal of the American Society of Nephrology, 1996, 7(12): 2616-2626.
PMID |
[7] |
Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine[J]. Theoretical and Applied Genetics, 1993, 87(3): 374-378.
PMID |
[8] | Iida S, Kusaba M, Nishio T. Mutants lacking glutelin subunits in rice: Mapping and combination of mutated glutelin genes[J]. Theoretical and Applied Genetics, 1997, 94(2): 177-183. |
[9] | Miyahara K, Kusaba M, Sassa E, Iida S, Takano T, Nishio T. Analysis of glutelin gene in rice low glutelin line ‘LGC-1’[J]. Breeding Science, 1996, 46(S1): 42. |
[10] |
Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishio N. Low glutelin content1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice[J]. Plant Cell, 2003, 15(6): 1455-1467.
PMID |
[11] | Fukuoka R, Hirabayashi H, Nishida M, Fukaura S, Yamashita H, Nishio T, Iida S, Yagi T. Breeding of new rice line “Saikai 231” with low glutelin content[J]. Breeding Science, 1996, 46(Sl): 223. |
[12] | Iida S, Sunohara Y, Maeda H, Matsushita K, Nemoto H, Ishii T, Yoshida T, Nakagawa N, Sakai M, Nishio T. A new rice cultivar with good eating quality (low amylose) and low glutelin protein, ‘LGC soft’[J]. Bulletin of the National Agricultural Research Center for Western Region (Japan), 2004, 3: 57-74. (in Japanese with English abstract) |
[13] | Nishimura M, Kusaba M, Miyahara K, Nishio T, Iida S, Imbe T, Sato H. New rice varieties with low levels of easy-to-digest protein, ‘LGC-Katsu’ and ‘LGC-Jun’[J]. Breeding Science, 2005, 55(1): 103-105. |
[14] | 万建民, 翟虎渠, 刘世家, 江玲, 杨世湖, 陈亮明, 王春明. 功能性专用水稻品种W3660的选育[J]. 作物杂志, 2004, 20(5): 58. |
Wan J M, Zhai H Q, Liu S J, Jiang L, Yang S H, Chen L M, Wang C M. Breeding of rice variety W3660 with special function[J]. Crops, 2004, 20(5): 58. (in Chinese) | |
[15] | 陈达刚, 周新桥, 刘传光, 李丽君, 李巨昌, 陈友订. 应用分子标记辅助选择培育籼型低谷蛋白水稻品系[J]. 分子植物育种, 2016, 14(7): 1753-1758. |
Chen D G, Zhou X Q, Liu C G, Li L J, Li J C, Chen Y D. Breeding of indica rice lines with low glutelin content by molecular marker-assisted selection[J]. Molecular Plant Breeding, 2016, 14(7): 1753-1758. (in Chinese with English abstract) | |
[16] | 张云辉, 张所兵, 周金云亮, 林静, 汪迎节, 方先文. 水稻低谷蛋白创新种质的选育和鉴定[J]. 植物遗传资源学报, 2015, 16(1): 158-162. |
Zhang Y H, Zhang S B, Zhou J Y L, Lin J, Wang Y J, Fang X W. Enhancement and identification of new rice germplasms with low glutelin content[J]. Journal of Plant Genetic Resources, 2015, 16(1): 158-162. (in Chinese with English abstract) | |
[17] | 蔡金洋, 杨尧城, 徐伟东, 李白, 李军. 利用分子标记辅助选育低谷蛋白水稻株系[J]. 浙江农业学报, 2015, 27(9): 1505-1509. |
Cai J Y, Yang Y C, Xu W D, Li B, Li J. Breeding of rice lines with low glutelin content by molecular marker- assisted selection[J]. Acta Agriculturae Zhejiangensis, 2015, 27(9): 1505-1509. (in Chinese with English abstract) | |
[18] | 郭涛, 王海风, 薛芳, 房文文, 林香青, 张士永. 利用分子标记辅助选择低谷蛋白水稻新品种. 山东农业科学, 2018, 50(8): 29-34. |
Guo T, Wang H F, Xue F, Fang W W, Lin X Q, Zhang S Y. Breeding of rice varieties with low glutelin content by molecular marker-assisted selection. Shandong Agricultural Sciences, 2018, 50(8): 29-34. (in Chinese with English abstract) | |
[19] | 王才林, 张亚东, 赵春芳, 魏晓东, 姚姝, 周丽慧, 朱镇, 陈涛, 赵庆勇, 赵凌, 路凯, 梁文化. 江苏省优良食味粳稻的遗传与育种研究[J]. 遗传, 2021, 43(5): 442-458. |
Wang C L, Zhang Y D, Zhao C F, Wei X D, Yao S, Zhou L H, Zhu Z, Chen T, Zhao Q Y, Zhao L, Lu K, Liang W H. Inheritance and breeding of japonica rice with good eating quality in Jiangsu province[J]. Hereditas (Beijing), 2021, 43(5): 442-458. (in Chinese with English abstract) | |
[20] | Murray M G, Thompson W F. Rapid isolation of high molecular-weight plant DNA[J]. Nucleic Acids Research, 1980, 19(8): 4321-4325. |
[21] | Chen T, Tian M X, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Lin J, Zhou L H, Wang C L. Development of simple functional markers for low glutelin content gene 1 (Lgc1) in rice (Oryza sativa)[J]. Rice Science, 2010, 17(3): 173-178. |
[22] | 陈涛, 骆名瑞, 张亚东, 朱镇, 赵凌, 赵庆勇, 周丽慧, 姚姝, 于新, 王才林. 利用四引物扩增受阻突变体系PCR技术检测水稻低直链淀粉含量基因Wx-mq[J]. 中国水稻科学, 2013, 27(5): 529-534. |
Chen T, Luo M R, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Zhou L H, Yao S, Yu X, Wang C L. Detection of Wx-mq gene for low-amylose content by tetra-primer amplification refractory mutation system PCR in rice[J]. Chinese Journal Rice Science, 2013, 27(5): 529-534. (in Chinese with English abstract) | |
[23] | 王军, 杨杰, 陈志德, 仲维功. 水稻香米基因标记的开发与应用[J]. 分子植物育种, 2008, 6(6): 1209-1212. |
Wang J, Yang J, Chen Z D, Zhong W G. Development and application of fragrance gene markers in rice[J]. Molecular Plant Breeding, 2008, 6(6): 1209-1212. (In Chinese with English abstract) | |
[24] | 江绍玫, 朱速松, 刘世家, 江玲, 徐朗莱, 万建民. 水稻谷蛋白突变体的筛选及遗传分析[J]. 遗传学报, 2003, 30(7): 641-645. |
Jiang S M, Zhu S S, Liu S J, Jiang L, Xu L L, Wan J M. Screening and genetic analysis of rice glutelin mutant[J]. Acta Genetica Sinica, 2003, 30(7): 641-645. (in Chinese with English abstract) | |
[25] | Liu Z H, Cheng F M, Cheng W D, Zhang G P. Positional variations in phytic acid and protein content within a panicle of japonica rice[J]. Journal of Cereal Science, 2005, 41(3): 297-303. |
[26] | 韩展誉, 管弦悦, 赵倩, 吴春艳, 黄福灯, 潘刚, 程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098. |
Han Z Y, Guan X Y, Zhao Q, Wu C Y, Huang F D, Pan G, Cheng F M. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains[J]. Acta Agromomica Sinica, 2020, 46(7): 1087-1098. (in Chinese with English abstract) | |
[27] | 莫惠栋. 农业试验统计[M]. 上海: 上海科学技术出版社, 1992: 151-166. |
Mo H D. Agricultural Experiment Statistics[M]. Shanghai: Shanghai Science and Technology Press, 1992: 151-166. (in Chinese) | |
[28] | 胡培松. 功能性稻米研究与开发[J]. 中国稻米, 2003, 9(5): 3-5. |
Hu P S. Research and exploitation of functional rice[J]. China Rice, 2003, 9(5): 3-5. (in Chinese) | |
[29] | 胡时开, 胡培松. 功能稻米研究现状与进展[J]. 中国水稻科学, 2021, 35(4):311-325. |
Hu S K, Hu P S. Research progress and prospect of functional rice[J]. Chinese Journal Rice Science, 2021, 35(4): 311-325. (in Chinese with English abstract) | |
[30] | 苏宁, 万向元, 翟虎渠, 万建民. 功能型水稻研究现状和发展趋向[J]. 中国农业科学, 2007, 40(3): 433-439. |
Su N, Wan X Y, Zhai H Q, Wan J M. Progress and prospect of functional rice researches[J]. Scientia Agricultura Sinica, 2007, 40(3): 433-439. (in Chinese with English abstract) | |
[31] |
Mochizuki T, Hara S. Usefulness of low protein rice in diet therapy in patients with chronic renal failure[J]. Japanese Journal of Nephrology, 2000, 42(1): 24-29. (In Japanese with English abstract)
PMID |
[32] | 王梨名, 刘金凤, 陈佳, 罗佳, 汪晓月, 何娅妮, 蔡明玉. 低谷蛋白大米(W0868)对小鼠营养状况及肾功能的影响[J]. 第三军医大学学报, 2021, 43(1):68-74 |
Wang L M, Liu J F, Chen J, Luo J, Wang X Y, He Y N, Cai M Y. Effect of low-gluten rice (W0868) feeding on nutritional status and renal function in mice[J]. Journal of Third Military Medical University, 2021, 43(1): 68-74. (in Chinese with English abstract) | |
[33] | 胡国奥, 詹晓北, 李志涛, 朱莉, 赵志超, 张洪涛. 低谷蛋白大米在仿生大肠反应器中对肠道菌群结构及代谢的影响[J]. 食品与发酵工业, 2021, 47(13):23-29. |
Hu G A, Zhan X B, Li Z T, Zhu L, Zhao Z C, Zhang H T. Effect of flow glutelin rice on composition and metabolism of intestinal flora in bionic large intestinal reactor[J]. Food and Fermentation Industries, 2021, 47(13): 23-29. (in Chinese with English abstract) | |
[34] | 张光恒, 曾大力, 郭龙彪, 刘慧娟, 胡江, 高振宇, 华志华, 钱前. 葡萄糖焦磷酸酶基因与巨胚基因聚合创建营养功能稻[J]. 中国水稻科学, 2007, 21(6):567-572. |
Zhang G H, Zeng D L, Guo L B, Liu H J, Hu J, Gao Z Y, Hua Z H, Qian Q. Nutrition-functional rice created by polymerizing ADP-glucose pyrophosphorylase(AGP) and giant embryo (ge) genes[J]. Chinese Journal Rice Science, 2007, 21(6): 567-572. (in Chinese with English abstract) | |
[35] | Morita R, Kusaba M, Iida S, Nishio T, Nishimura M. Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties[J]. Theoretical and Applied Genetics, 2009, 119(1): 125-130. |
[36] | 王萌, 李建粤. 分子标记辅助选育红米巨胚水稻[J]. 上海师范大学学报: 自然科学版, 2017, 46(5):647-653. |
Wang M, Li J Y. Development of red giant embryo rice by molecular marker-assisted selection[J]. Journal of Shanghai Normal University (Natural Sciences), 2017, 46(5): 647-653. (in Chinese with English abstract) |
[1] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[2] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
[3] | 冯爱卿, 汪聪颖, 苏菁, 封金奇, 陈凯玲, 林晓鹏, 陈炳, 梁美玲, 杨健源, 朱小源, 陈深. 水稻细菌性条斑病抗性新品系的创制及其农艺性状分析[J]. 中国水稻科学, 2023, 37(6): 587-596. |
[4] | 李景芳, 温舒越, 赵利君, 陈庭木, 周振玲, 孙志广, 刘艳, 陈海元, 张云辉, 迟铭, 邢运高, 徐波, 徐大勇, 王宝祥. 基于CRISPR/Cas9技术创制耐盐香稻[J]. 中国水稻科学, 2023, 37(5): 478-485. |
[5] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[6] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[7] | 姚姝, 赵春芳, 陈涛, 路凯, 周丽慧, 赵凌, 朱镇, 赵庆勇, 梁文化, 赫磊, 王才林, 张亚东. 低谷蛋白半糯型粳稻营养品质与蒸煮食味品质特征分析[J]. 中国水稻科学, 2023, 37(2): 178-188. |
[8] | 裴峰, 王广达, 高鹏, 冯志明, 胡珂鸣, 陈宗祥, 陈红旗, 崔傲, 左示敏. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1): 16-28. |
[9] | 王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36. |
[10] | 魏晓东, 张亚东, 赵凌, 路凯, 宋雪梅, 王才林. 稻米香味物质2-乙酰-1-吡咯啉的形成及其影响因素[J]. 中国水稻科学, 2022, 36(2): 131-138. |
[11] | 董铮, 王雅美, 黎用朝, 熊海波, 薛灿辉, 潘孝武, 刘文强, 魏秀彩, 李小湘. 基于MAGIC群体的水稻镉含量全基因组关联分析[J]. 中国水稻科学, 2022, 36(1): 35-42. |
[12] | 王才林, 张亚东, 陈涛, 朱镇, 赵庆勇, 姚姝, 赵凌, 赵春芳, 周丽慧, 魏晓东, 路凯, 梁文化. 姊妹系间杂交快速培育优良食味半糯粳稻新品种的育种效果[J]. 中国水稻科学, 2021, 35(5): 455-465. |
[13] | 王孟佳, 殷敏, 褚光, 刘元辉, 徐春梅, 章秀福, 王丹英, 陈松. 长江中下游双季晚粳稻产量、生育时期及温光资源配置的生态性差异[J]. 中国水稻科学, 2021, 35(5): 475-486. |
[14] | 王才林, 张亚东, 陈涛, 朱镇, 赵庆勇, 赵春芳, 姚姝, 周丽慧, 赵凌, 魏晓东, 路凯, 梁文化. 地点和播期对半糯粳稻食味品质的影响[J]. 中国水稻科学, 2021, 35(4): 373-382. |
[15] | 张庆, 胡雅杰, 郭保卫, 张洪程, 徐晓杰, 徐玉峰, 朱邦辉, 徐洁芬, 钮中一, 凃荣文. 太湖地区优良食味高产软米粳稻品种特征研究[J]. 中国水稻科学, 2021, 35(3): 279-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||