中国水稻科学 ›› 2022, Vol. 36 ›› Issue (6): 601-610.DOI: 10.16819/j.1001-7216.2022.211212
史玉良1,#, 杨勇1,#, 李雪飞1, 李钱峰1, 黄李春1, 张昌泉1, 宋学堂2, 刘巧泉1,*()
收稿日期:
2021-12-12
修回日期:
2022-03-30
出版日期:
2022-11-10
发布日期:
2022-11-10
通讯作者:
刘巧泉
作者简介:
第一联系人:#共同第一作者
基金资助:
SHI Yuliang1,#, YANG Yong1,#, LI Xuefei1, LI Qianfeng1, HUANG Lichun1, ZHANG Changquan1, SONG Xuetang2, LIU Qiaoquan1,*()
Received:
2021-12-12
Revised:
2022-03-30
Online:
2022-11-10
Published:
2022-11-10
Contact:
LIU Qiaoquan
About author:
First author contact:# These authors contributed equally to this work
摘要:
【目的】具有较低直链淀粉含量(5%~12%)的优良食味软米在国内市场上广受消费者欢迎,然而不同软米品种间稻米品质表现差异较大,造成这种差异的原因尚未明确。因此,有必要深入研究不同类型软米理化品质的差异及其成因。【方法】选取了江苏地区具有显著品质差异的4个软米品种、2个糯稻品种和2个常规品种(均为粳稻品种)为对象,对其稻米理化品质和淀粉结构进行了系统的比较分析。【结果】测序结果表明,软米品种南粳5055和南粳9108携带Wxmp等位基因,而软米品种香软玉和武香粳113携带跟2个常规粳稻品种相同的Wxb等位基因。品质分析表明,香软玉和武香粳113稻米较另两个软米品种中的直链淀粉含量更低,籽粒胚乳透明度更差;4个软米类稻米胚乳淀粉粒内部存在明显的孔隙,并且稻米胚乳越不透明,孔隙越明显;较低直链淀粉含量的软米食味表现更佳,这可能与低直链淀粉含量稻米具有更低的冷胶黏度、较大的崩解值和较小的消减值有关。淀粉精细结构测定表明,与常规粳稻米相比,软米的直链淀粉组分占比较低,而支链淀粉短链组分占比较高。【结论】目前江苏地区软米品种间存在显著的遗传和理化品质特性的差异,这为新型软米品种的培育和优异基因的克隆与利用提供依据。
史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较[J]. 中国水稻科学, 2022, 36(6): 601-610.
SHI Yuliang, YANG Yong, LI Xuefei, LI Qianfeng, HUANG Lichun, ZHANG Changquan, SONG Xuetang, LIU Qiaoquan. Comparison of Grain Quality Profiles of japonica Soft Rice Varieties with Different Amylose Contents[J]. Chinese Journal OF Rice Science, 2022, 36(6): 601-610.
品种 Variety | Wx基因型 Wx genotype | 直链淀粉含量 Amylose content /% | 胶稠度 Gel consistency /mm | 蛋白质含量 Protein content / % | 食味值 Taste value |
---|---|---|---|---|---|
武运粳30 Wuyunjing 30 | Wxb | 15.86±0.47 a | 63.33±4.51 d | 8.08±0.05 a | 62.50±1.29 d |
常12 Chang 12 | Wxb | 16.01±0.52 a | 60.25±2.65 d | 7.73±0.16 b | 67.25±0.96 c |
南粳5055 Nanjing 5055 | Wxmp | 10.89±0.21 b | 86.67±3.21 c | 7.88±0.17 b | 80.00±0.82 b |
南粳9108 Nanjing 9108 | Wxmp | 10.65±0.36 b | 87.53±4.52 c | 7.62±0.16 b | 81.50±1.09 b |
武香粳113 Wuxiangjing 113 | Wxb | 8.78±0.21 c | 91.67±5.67 b | 7.73±0.34 b | 83.50±1.29 a |
香软玉 Xiangruanyu | Wxb | 8.58±0.14 c | 93.46±6.21 b | 7.61±0.27 b | 83.25±1.31 a |
糯153 Nuo 153 | wx | 2.34±0.20 d | 112.67±8.25 a | 8.02±0.11 a | |
糯156 Nuo 156 | wx | 2.41±0.24 d | 108.33±7.26 a | 7.93±0.14 ab |
表1 不同粳稻品种中Wx基因型和主要理化品质性状
Table 1. Wx genotype and grain quality profiles of different japonica rice varieties.
品种 Variety | Wx基因型 Wx genotype | 直链淀粉含量 Amylose content /% | 胶稠度 Gel consistency /mm | 蛋白质含量 Protein content / % | 食味值 Taste value |
---|---|---|---|---|---|
武运粳30 Wuyunjing 30 | Wxb | 15.86±0.47 a | 63.33±4.51 d | 8.08±0.05 a | 62.50±1.29 d |
常12 Chang 12 | Wxb | 16.01±0.52 a | 60.25±2.65 d | 7.73±0.16 b | 67.25±0.96 c |
南粳5055 Nanjing 5055 | Wxmp | 10.89±0.21 b | 86.67±3.21 c | 7.88±0.17 b | 80.00±0.82 b |
南粳9108 Nanjing 9108 | Wxmp | 10.65±0.36 b | 87.53±4.52 c | 7.62±0.16 b | 81.50±1.09 b |
武香粳113 Wuxiangjing 113 | Wxb | 8.78±0.21 c | 91.67±5.67 b | 7.73±0.34 b | 83.50±1.29 a |
香软玉 Xiangruanyu | Wxb | 8.58±0.14 c | 93.46±6.21 b | 7.61±0.27 b | 83.25±1.31 a |
糯153 Nuo 153 | wx | 2.34±0.20 d | 112.67±8.25 a | 8.02±0.11 a | |
糯156 Nuo 156 | wx | 2.41±0.24 d | 108.33±7.26 a | 7.93±0.14 ab |
图1 不同水稻品种精米的外观和籽粒横断面扫描电镜观察 B~I分别为武运粳30、常12、南粳5055、南粳9108、武香粳113、香软玉、糯153和糯156。
Fig. 1. Grain appearance (A) and SEM observation of rice grain cross-section (B-I) from different rice varieties. B-I indicate rice varieties Wuyunjing 30, Chang 12, Nanjing 5055, Nanjing 9108, Wuxiangjing 113, Xiangruanyu, Nuo 153, and Nuo 156.
品种 Variety | 峰值黏度 | 热浆黏度 | 崩解值 | 冷胶黏度 | 消减值 |
---|---|---|---|---|---|
PKV / cP | HPV / cP | BDV / cP | CPV / cP | SBV / cP | |
武运粳30 Wuyunjing30 | 3659±62 b | 2410±64 a | 1249±38 d | 3387±121 b | −272.5±58 a |
常12 Chang 12 | 3839±36 a | 2400±38 a | 1439±35 c | 3625±74 a | −213.5±37 a |
南粳5055 Nanjing 5055 | 3347±39 c | 2134±42 b | 1262±25 d | 2960±44 c | −435.5±14 b |
南粳9108 Nanjing 9108 | 3381±16 c | 2126±64 b | 1155±48 f | 3005±50 c | −376.5±34 b |
武香粳113 Wuxiangjing 113 | 3212±60 d | 1176±35 d | 2036±24 b | 1579±39 e | −1633.5±20 f |
香软玉 Xiangruanyu | 3919±34 a | 1394±57 c | 2525±22 a | 1908±69 d | −2011.0±34 g |
糯153 Nuo 153 | 2344±43 e | 941±22 f | 1403±20 c | 1176±28 g | −1168.0±14 e |
糯156 Nuo 156 | 2352±19 e | 1096±12 e | 1255±31 d | 1348±26 f | −1003.0±45 d |
表2 不同品种稻米的RVA特征值
Table 2. RVA characteristics of rice flours from different varieties.
品种 Variety | 峰值黏度 | 热浆黏度 | 崩解值 | 冷胶黏度 | 消减值 |
---|---|---|---|---|---|
PKV / cP | HPV / cP | BDV / cP | CPV / cP | SBV / cP | |
武运粳30 Wuyunjing30 | 3659±62 b | 2410±64 a | 1249±38 d | 3387±121 b | −272.5±58 a |
常12 Chang 12 | 3839±36 a | 2400±38 a | 1439±35 c | 3625±74 a | −213.5±37 a |
南粳5055 Nanjing 5055 | 3347±39 c | 2134±42 b | 1262±25 d | 2960±44 c | −435.5±14 b |
南粳9108 Nanjing 9108 | 3381±16 c | 2126±64 b | 1155±48 f | 3005±50 c | −376.5±34 b |
武香粳113 Wuxiangjing 113 | 3212±60 d | 1176±35 d | 2036±24 b | 1579±39 e | −1633.5±20 f |
香软玉 Xiangruanyu | 3919±34 a | 1394±57 c | 2525±22 a | 1908±69 d | −2011.0±34 g |
糯153 Nuo 153 | 2344±43 e | 941±22 f | 1403±20 c | 1176±28 g | −1168.0±14 e |
糯156 Nuo 156 | 2352±19 e | 1096±12 e | 1255±31 d | 1348±26 f | −1003.0±45 d |
品种 Variety | 起始温度 T0 / ℃ | 峰值温度 TP / ℃ | 终止温度 TC / ℃ | 热焓值 △H /(J·g−1) |
---|---|---|---|---|
武运粳30 Wuyunjing 30 | 62.52±0.14 b | 67.80±0.14 c | 75.20±0.14 c | 9.48±0.04 d |
常12 Chang 12 | 60.70±0.14 d | 66.55±0.35 d | 73.40±0.28 e | 9.37±0.04 d |
南粳5055 Nanjing 5055 | 62.15±0.07 c | 67.45±0.21 c | 74.40±0.14 d | 10.25±0.01 c |
南粳9108 Nanjing 9108 | 63.15±0.07 a | 69.05±0.07 a | 77.30±0.14 a | 10.03±0.02 c |
武香粳113 Wuxiangjing 113 | 62.65±0.21 b | 69.30±0.14 a | 77.20±0.14 a | 11.60±0.02 b |
香软玉 Xiangruanyu | 62.70±0.28 b | 68.40±0.14 b | 76.30±0.14 b | 11.46±0.00 b |
糯153 Nuo 153 | 59.55±0.07 e | 66.65±0.07 d | 75.55±0.07 c | 12.70±0.02 a |
糯156 Nuo 156 | 60.40±0.00 d | 66.60±0.14 d | 76.25±0.49 b | 12.80±0.14 a |
表3 不同品种稻米淀粉热力学特性比较
Table 3. Thermal profiles of rice starch from different rice varieties.
品种 Variety | 起始温度 T0 / ℃ | 峰值温度 TP / ℃ | 终止温度 TC / ℃ | 热焓值 △H /(J·g−1) |
---|---|---|---|---|
武运粳30 Wuyunjing 30 | 62.52±0.14 b | 67.80±0.14 c | 75.20±0.14 c | 9.48±0.04 d |
常12 Chang 12 | 60.70±0.14 d | 66.55±0.35 d | 73.40±0.28 e | 9.37±0.04 d |
南粳5055 Nanjing 5055 | 62.15±0.07 c | 67.45±0.21 c | 74.40±0.14 d | 10.25±0.01 c |
南粳9108 Nanjing 9108 | 63.15±0.07 a | 69.05±0.07 a | 77.30±0.14 a | 10.03±0.02 c |
武香粳113 Wuxiangjing 113 | 62.65±0.21 b | 69.30±0.14 a | 77.20±0.14 a | 11.60±0.02 b |
香软玉 Xiangruanyu | 62.70±0.28 b | 68.40±0.14 b | 76.30±0.14 b | 11.46±0.00 b |
糯153 Nuo 153 | 59.55±0.07 e | 66.65±0.07 d | 75.55±0.07 c | 12.70±0.02 a |
糯156 Nuo 156 | 60.40±0.00 d | 66.60±0.14 d | 76.25±0.49 b | 12.80±0.14 a |
图3 不同品种稻米淀粉的相对分子量分布 AP1、AP2和AM分别指支链淀粉短链、长链和直链淀粉组分。
Fig. 3. Relative molecular weight distribution of rice starch from different varieties. AP1, AP2, and AM correspond to the short-branch chains of amylopectin, long-branch chains of amylopectin and amylose fraction, respectively.
品种 Variety | AP1 | AP2 | AM |
---|---|---|---|
武运粳30 Wuyunjing 30 | 66.99±0.27 c | 16.16±0.26 b | 16.84±1.44 a |
常12 Chang 12 | 67.24±0.27 c | 16.38±0.41 b | 16.37±0.24 a |
南粳5055 Nanjing 5055 | 76.09±0.22 b | 17.74±0.32 a | 6.06±0.35 b |
南粳9108 Nanjing 9108 | 75.80±0.57 b | 18.77±0.23 a | 5.92±0.40 b |
武香粳113 Wuxiangjing 113 | 76.66±0.61 b | 18.61±0.59 a | 4.71±0.21 c |
香软玉 Xiangruanyu | 76.26±0.60 b | 18.99±0.46 a | 4.73±0.05 c |
糯153 Nuo 153 | 82.16±0.36 a | 17.83±0.36 a | 0.0 |
糯156 Nuo 156 | 81.96±0.17 a | 18.03±0.17 a | 0.0 |
表4 不同水稻品种淀粉的高温凝胶排阻色谱仪参数分析
Table 4. GPC parameters of rice starch from different rice varieties. %
品种 Variety | AP1 | AP2 | AM |
---|---|---|---|
武运粳30 Wuyunjing 30 | 66.99±0.27 c | 16.16±0.26 b | 16.84±1.44 a |
常12 Chang 12 | 67.24±0.27 c | 16.38±0.41 b | 16.37±0.24 a |
南粳5055 Nanjing 5055 | 76.09±0.22 b | 17.74±0.32 a | 6.06±0.35 b |
南粳9108 Nanjing 9108 | 75.80±0.57 b | 18.77±0.23 a | 5.92±0.40 b |
武香粳113 Wuxiangjing 113 | 76.66±0.61 b | 18.61±0.59 a | 4.71±0.21 c |
香软玉 Xiangruanyu | 76.26±0.60 b | 18.99±0.46 a | 4.73±0.05 c |
糯153 Nuo 153 | 82.16±0.36 a | 17.83±0.36 a | 0.0 |
糯156 Nuo 156 | 81.96±0.17 a | 18.03±0.17 a | 0.0 |
[1] | Zhou H, Xia D, He Y Q. Rice grain quality traditional traits for high quality rice and health-plus substances[J]. Molecular Breeding, 2020, 40(1): 1-17. |
[2] | Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains[J]. Food Chemistry, 2016, 196: 702-711. |
[3] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765. |
[4] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
Zhang C Q, Feng L H, Gu M H, Liu Q Q. Progress on inheritance and gene cloning for rice grain quality in Jiangsu Province[J]. Hereditas, 2021, 43(5): 425-441. (in Chinese with English abstract) | |
[5] | Shao Y, Peng Y, Mao B G, Lü Q M, Yuan D Y, Liu X L, Zhao B R. Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China[J]. Plos ONE, 2020, 15(5): 0232279. |
[6] | 王才林, 张亚东, 赵春芳, 魏晓东, 姚姝, 周丽慧, 朱镇, 陈涛, 赵庆勇, 赵凌, 路凯, 梁文化. 江苏省优良食味粳稻的遗传与育种研究[J]. 遗传, 2021, 43(5): 442-458. |
Wang C L, Zhang Y D, Zhao C F, Wei X D, Yao S, Zhou L H, Zhu Z, Chen T, Zhao Q Y, Zhao L, Lu K, Liang W H. Inheritance and breeding of japonica rice with good eating quality in Jiangsu Province[J]. Hereditas, 2021, 43(5): 442-458. (in Chinese with English abstract) | |
[7] | 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wx-mp在部分粳稻品种资源中的分布[J]. 植物遗传资源学报, 2019, 20(4): 975-981. |
Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J. The distribution of low amylose content allele Wx-mp in Japonica rice[J]. Journal of Plant Genetic Resources, 2019, 20(4): 975-981. (in Chinese with English abstract) | |
[8] | Zhang C Q, Yang Y, Chen S J, Liu X Y, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901. |
[9] | Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 2019, 12(8): 1157-1166. |
[10] | Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSⅠ activity[J]. Journal of Agricultural and Food Chemistry, 2017, 65(10): 2222-2232. |
[11] | 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉. 不同透明度水稻籽粒横断面扫描电镜分析[J]. 中国水稻科学, 2018, 32(2): 189-199. |
Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency[J]. Chinese Journal of Rice Science, 2018, 32(2): 189-199. (in Chinese with English abstract) | |
[12] | Zhang L, Zhao L L, Zhang J, Cai X L, Liu Q Q, Wei C X. Relationships between transparency, amylose content, starch cavity, and moisture of brown rice kernels[J]. Journal of Cereal Science, 2019, 90: 102854. |
[13] | 吴殿星, 舒庆尧, 夏英武. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性[J]. 中国水稻科学, 2001, 15(1): 57-59. |
Wu D X, Shu Q Y, Xia Y W. Rapid identification of starch viscosity property of early indica rice varieties with different apparent amylose content by RVA profile[J]. Chinese Journal of Rice Science, 2001, 15(1): 57-59. (in Chinese with English abstract) | |
[14] | Li C, Luo J X, Zhang C Q, Yu W W. Causal relations among starch chain-length distributions, short-term retrogradation and cooked rice texture[J]. Food Hydrocolloids, 2020, 108(6): 106064 |
[15] | Song Y, Jane J. Characterization of barley starches of waxy, normal, and high amylose varieties[J]. Carbohydrate Polymers, 2000, 41(4): 365-377 |
[16] | Zeng D L, Yan M X, Wang Y H, Liu X F, Qian Q, Li J Y. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice(Oryza sativa L.)[J]. Plant Molecular Biology, 2007, 65(4): 501-509. |
[17] | Kimiko I, Hiroko O, Kyoko O, Hidetaka H, Yasuhito T, Toshiaki M. Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice[J]. Plant and Cell Physiology, 2003(5): 473-480 |
[18] | Huang L C, Sreenivasulu N, Liu Q Q. Waxy editing: Old meets new[J]. Trends in Plant Science, 2020, 25(10): 963-966. |
[19] | Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fan F J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[20] | Takemoto-Kuno Y, Mitsueda H, Suzuki K, Hirabayashi H, Ideta O, Aoki N Umemoto T, Ishii T, Ando I, Kato H, Nemoto H, Imbe T, Takeuchi Y. qAC2, a novel QTL that interacts with Wx and controls the low amylose content in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2015, 128(4): 563-573. |
[21] | Igarashi H, Ito H, Shimada T, Kang D J, Hamada S. A novel rice dull gene, LowAC1, encodes an RNA recognition motif protein affecting Waxy pre-mRNA splicing[J]. Plant Physiology and Biochemistry, 2021, 162: 100-109. |
[22] | Zhang H, Xu H, Feng M J, Zhu Y. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress[J]. Plant Biotechnology Journal, 2018, 16(1): 18-26. |
[23] | Huang L C, Tan H Y, Zhang C Q, Li Q F, Liu Q Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade[J]. Plant Communications, 2021, 2(5): 100237. |
[24] | Butardo V M, Sreenivasulu N, Juliano B O. Improving rice grain quality: State-of-the-Art and future prospects//Clifton N J. Methods in Molecular Biology[M]. Springer, 2019: 19-55. |
[25] | Zhou H, Xia D, Zhao D, Li Y H, Li P B, Wu B, Gao G J, Zhang Q L, Wang G W, Xiao J H, Li S B, Lian X M, He Y Q. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2020, 63(5): 878-888. |
[26] | Zhang H, Zhou L H, Xu H, Wang LC, Liu H J, Zhang C Q, Li Q F, Gu M H, Wang C L, Liu Q Q, Zhu Y. The qSAC3 locus from indica rice effectively increases amylose content under a variety of conditions[J]. BMC Plant Biology, 2019, 19(1): 275. |
[27] | Li Q F, Huang L C, Chu R, Li J, Jiang M Y, Zhang C Q, Fan X L, Yu H X, Gu M H, Liu Q Q. Down-regulation of SSSII-2 gene expression results in novel low-amylose rice with soft, transparent grains[J]. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9750-9760. |
[28] | Zhang L X, Zhang C Q, Yan Y, Hu Z J, Wang K, Zhou J H, Zhou Y, Cao L M, Wu S J. Influence of starch fine structure and storage proteins on the eating quality of rice varieties with similar amylose contents[J]. Journal of the Science of Food and Agriculture, 2020, 101(9): 3811-3818. |
[29] | Chen Z Z, Lu Y, Feng L H, Hao W Z, Yang Y, Fan X L, Li Q F, Zhang C Q, Liu Q Q. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice. Rice, 2020, 13(1): 39. |
[30] | Nakata M, Miyashita T, Kimura R, Nakata Y, Takagi H, Kuroda M, Yamaguchi T, Umemoto T, Yamakawa H. MutMapPlus identified novel mutant alleles of a rice starch branching enzyme IIb gene for fine-tuning of cooked rice texture[J]. Plant Biotechnology Journal, 2017, 16(1): 111-123. |
[31] | Wang L L, Gong Y, Li Y X, Tian Y Q. Structure and properties of soft rice starch[J]. International Journal of Biological Macromolecules, 2020, 157: 10-16. |
[32] | Wang S Y, Yang Y H, Guo M, Zhong C Y, Yan C J, Sun S Y. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. The Crop Journal, 2020, 8(3): 457-464. |
[33] | Sreenivasulu N, Zhang C Q, Tiozon R N, Liu Q Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century[J]. Plant Communications, 2022, 3(3): 100271. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 肖正午, 方升亮, 曹威, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 曹放波, 陈佳娜, 黄敏. 米粉质构特性与稻米理化性状的关系[J]. 中国水稻科学, 2024, 38(3): 316-323. |
[14] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[15] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||