中国水稻科学 ›› 2022, Vol. 36 ›› Issue (6): 579-585.DOI: 10.16819/j.1001-7216.2022.220103
毛慧1,#, 彭彦2,#, 毛毕刚1,2, 韶也2, 郑文杰1, 胡黎明1, 周凯1, 赵炳然1,2,*()
收稿日期:
2022-01-06
修回日期:
2022-03-14
出版日期:
2022-11-10
发布日期:
2022-11-10
通讯作者:
赵炳然
作者简介:
第一联系人:#共同第一作者
基金资助:
MAO Hui1,#, PENG Yan2,#, MAO Bigang1,2, SHAO Ye2, ZHENG Wenjie1, HU Liming1, ZHOU Kai1, ZHAO Bingran1,2,*()
Received:
2022-01-06
Revised:
2022-03-14
Online:
2022-11-10
Published:
2022-11-10
Contact:
ZHAO Bingran
About author:
First author contact:# These authors contributed equally to this work
摘要:
【目的】挖掘Wx新等位变异,明确Wx410新等位基因对稻米品质性状的影响。【方法】以Wxlv、Wxa和Wxb等位基因为模板,利用PCR进行第10外显子第101位碱基的A-G单点突变,分别构建了不同Wx等位背景下的Wx410定点突变植物表达载体pEGFC-Wxlv410、pEGFC-Wxa410和pEGFC-Wxb410,阳性对照组载体分别为pEGFC-Wxlv、pEGFC-Wxa和pEGFC-Wxb。通过转化糯稻品种苏御糯,分析该位点的变异对稻米品质的遗传效应。【结果】花后7 d和14 d,转基因植株pEGFC-Wxlv410,pEGFC-Wxa410及pEGFC-Wxb410的胚乳Wx基因表达量较各自的阳性对照材料无显著变化,而颗粒结合淀粉合酶活性极显著降低;转基因植株直链淀粉含量较野生型显著降低,而糊化温度无明显变化;pEGFC-Wxa410及pEGFC-Wxb410的胶稠度较各自的阳性对照材料显著升高,而pEGFC-Wxlv410的胶稠度较其阳性对照材料显著降低。【结论】pEGFC-Wx410为水稻淀粉合成的一个新的功能等位基因,控制的直链淀粉含量为4%~6%,刚好弥补了目前所鉴定的复等位基因所调控的直链淀粉含量在这个范围内的空缺,为稻米食味和加工相关品质改良提供更丰富的遗传资源。
毛慧, 彭彦, 毛毕刚, 韶也, 郑文杰, 胡黎明, 周凯, 赵炳然. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析[J]. 中国水稻科学, 2022, 36(6): 579-585.
MAO Hui, PENG Yan, MAO Bigang, SHAO Ye, ZHENG Wenjie, HU Liming, ZHOU Kai, ZHAO Bingran. Function and Effect Analysis of a New Gene Wx410 Regulating Amylose Synthesis in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(6): 579-585.
引物名称 Primer name | 正向引物序列 Forward primer sequence(5′-3′) | 反向引物序列 Reverse primer sequence(5′-3′) |
---|---|---|
Wx | WxF1: GCCGGAGGGCCGTTCGACGGCA | WxR1: TACTAAAATTGGTTGGATTCTGA |
WxF2: GCCGAGTTGGTCAAAGGAA | WxR2: TCCAGCCTGCCGATGAACGCGATC | |
WxF3: GGAACAGAAGGGCCCTGACG | WxR3: ATGGCATGGTATAATATGGAACAG | |
KASP1 | F1: GAAGGTGACCAAGTTCATGCTTTCCAGGGCCTCAAGCCCC | R1: CGCTGGTCGTCACGCTGA |
F2: GAAGGTCGGAGTCAACGGATTGTTCCAGGGCCTCAAGCCCA | ||
KASP2 | F1: GAAGGTGACCAAGTTCATGCTGCGTTCATCGGCAGGCTGGA | R1: TTTGGCATATCGTGCAAGTGTGTCT |
F2: GAAGGTCGGAGTCAACGGATTGCGTTCATCGGCAGGCTGGG | ||
qWx | qWx-F: ACCTGACACTGGAGTTGATTAC | qWx-R: GTATGGGTTGTTGTTGAGGTTTAG |
qActin | qActin-F: ACCTGACACTGGAGTTGATTAC | qActin-R: GTATGGGTTGTTGTTGAGGTTTAG |
qHyg | qHyg-F: GCTTCTGCGGGCGATTTGTGT | qHyg-R: GGTCGCGGAGGCTATGGATGC |
表1 本研究所用引物
Table 1. Sequence of primers used in the study.
引物名称 Primer name | 正向引物序列 Forward primer sequence(5′-3′) | 反向引物序列 Reverse primer sequence(5′-3′) |
---|---|---|
Wx | WxF1: GCCGGAGGGCCGTTCGACGGCA | WxR1: TACTAAAATTGGTTGGATTCTGA |
WxF2: GCCGAGTTGGTCAAAGGAA | WxR2: TCCAGCCTGCCGATGAACGCGATC | |
WxF3: GGAACAGAAGGGCCCTGACG | WxR3: ATGGCATGGTATAATATGGAACAG | |
KASP1 | F1: GAAGGTGACCAAGTTCATGCTTTCCAGGGCCTCAAGCCCC | R1: CGCTGGTCGTCACGCTGA |
F2: GAAGGTCGGAGTCAACGGATTGTTCCAGGGCCTCAAGCCCA | ||
KASP2 | F1: GAAGGTGACCAAGTTCATGCTGCGTTCATCGGCAGGCTGGA | R1: TTTGGCATATCGTGCAAGTGTGTCT |
F2: GAAGGTCGGAGTCAACGGATTGCGTTCATCGGCAGGCTGGG | ||
qWx | qWx-F: ACCTGACACTGGAGTTGATTAC | qWx-R: GTATGGGTTGTTGTTGAGGTTTAG |
qActin | qActin-F: ACCTGACACTGGAGTTGATTAC | qActin-R: GTATGGGTTGTTGTTGAGGTTTAG |
qHyg | qHyg-F: GCTTCTGCGGGCGATTTGTGT | qHyg-R: GGTCGCGGAGGCTATGGATGC |
图1 不同Wx等位背景下的Wx410定点突变植株表达载体和T0转基因单株鉴定 M―DNA标记;泳道1~17―不同Wx410转基因系潮霉素检测;泳道18~24―对照材料潮霉素检测。
Fig. 1. Schematic diagram of Wx410 targeted mutant plant expression vector under different Wx allelic backgrounds and identification of T0 transgenic plants. M, DNA marker; Lanes 1-17, Hygromycin detection of different Wx410 transgenic lines; Lanes 18-24, Hygromycin test of control material.
图2 转基因T1代材料KASP基因分型 A−分子标记KASP1鉴定转基因T1代阳性对照植株(基于wx第2外显子中的23 bp核苷酸插入);B−分子标记KASP2鉴定Wx410定点突变转基因系纯合植株(基于Wx基因第10外显子的第101位的SNP A-G);绿色、蓝色、红色和灰色点分别代表转基因受体、纯合系、杂合材料和水。
Fig. 2. KASP genotyping of transgenic T1 generation materials. A, Molecular marker KASP1 identifies transgenic T1 generation positive control plants (based on 23 bp nucleotide insertion in the second exon of Wx allele); B, Molecular marker KASP2 identifies homozygous plants of Wx410 targeted directed mutant transgenic line (based on SNP A-G at position 101 of exon 10 of Wx gene); Green, blue, red and gray dots represent transgenic receptors, homozygous lines, heterozygous materials and H2O, respectively.
材料 Material | 株高 Plant height /cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of grains per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight /g | 精米长宽比 Length to width ratio of milled rice |
---|---|---|---|---|---|---|
pEGFC | 132.7±0.6 a | 8.7±0.8 a | 82.3±4.2 a | 79.6±0.8 a | 36.1±0.3 a | 2.0±0.1 b |
pEGFC-Wxlv | 131.7±1.5 a | 8.7±0.6 a | 81.3±3.2 a | 79.8±1.0 a | 36.0±0.8 a | 2.2±0.0 a |
pEGFC-Wxlv410 | 131.0±2.0 a | 8.7±0.6 a | 80.0±4.6 a | 78.3±2.6 a | 36.6±0.3 a | 2.1±0.0 ab |
pEGFC-Wxa | 132.0±1.0 a | 8.7±0.8 a | 82.0±3.0 a | 80.4±1.9 a | 36.2±0.3 a | 2.2±0.0 a |
pEGFC-Wxa410 | 131.3±0.6 a | 8.3±0.6 a | 84.3±5.7 a | 80.4±2.0 a | 36.7±0.3 a | 2.1±0.0 ab |
pEGFC-Wxb | 130.9±1.6 a | 8.7±0.6 a | 82.0±3.5 a | 78.9±2.6 a | 36.4±0.3 a | 2.2±0.0 a |
pEGFC-Wxb410 | 129.3±1.5 a | 8.7±0.6 a | 78.0±4.4 a | 79.0±1.7 a | 35.8±0.6 a | 2.1±0.0 b |
表2 转基因材料及对照材料的农艺性状比较
Table 2. Comparison of agronomic traits between transgenic materials and control materials.
材料 Material | 株高 Plant height /cm | 有效穗数 No. of effective panicles | 每穗总粒数 No. of grains per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight /g | 精米长宽比 Length to width ratio of milled rice |
---|---|---|---|---|---|---|
pEGFC | 132.7±0.6 a | 8.7±0.8 a | 82.3±4.2 a | 79.6±0.8 a | 36.1±0.3 a | 2.0±0.1 b |
pEGFC-Wxlv | 131.7±1.5 a | 8.7±0.6 a | 81.3±3.2 a | 79.8±1.0 a | 36.0±0.8 a | 2.2±0.0 a |
pEGFC-Wxlv410 | 131.0±2.0 a | 8.7±0.6 a | 80.0±4.6 a | 78.3±2.6 a | 36.6±0.3 a | 2.1±0.0 ab |
pEGFC-Wxa | 132.0±1.0 a | 8.7±0.8 a | 82.0±3.0 a | 80.4±1.9 a | 36.2±0.3 a | 2.2±0.0 a |
pEGFC-Wxa410 | 131.3±0.6 a | 8.3±0.6 a | 84.3±5.7 a | 80.4±2.0 a | 36.7±0.3 a | 2.1±0.0 ab |
pEGFC-Wxb | 130.9±1.6 a | 8.7±0.6 a | 82.0±3.5 a | 78.9±2.6 a | 36.4±0.3 a | 2.2±0.0 a |
pEGFC-Wxb410 | 129.3±1.5 a | 8.7±0.6 a | 78.0±4.4 a | 79.0±1.7 a | 35.8±0.6 a | 2.1±0.0 b |
图4 Wx基因相对表达量测定 A―花后7 d; B―花后14 d; 均值±标准差,n=3。pEGFC―阴性对照; pEGFC-Wxlv,pEGFC-Wxa和pEGFC-Wxb―阳性对照; pEGFC-Wxlv410,pEGFC-Wxa410和pEGFC-Wxb410―不同Wx等位背景下的Wx410定点突变转基因系。下同。
Fig. 4. Determination of relative expression level of Wx gene at different time after anthesis. A, 7 days after flowering; B, 14 days after flowering; Mean±SD, n=3. pEGFC, Negative control; pEGFC-Wxlv, pEGFC-Wxa and pEGFC-Wxb, Positive control; pEGFC-Wxlv410, pEGFC-Wxa410 and pEGFC-Wxb410, Wx410 targeted mutant transgenic lines under different Wx allelic backgrounds. The same below.
图5 花后不同时间胚乳OsGBSSⅠ活性 A―花后7 d; B―花后14 d; 均值±标准差,n=3;*和**分别表示Wx410定点突变转基因系与其阳性对照在0.05和0.01水平上差异显著(t检验)。
Fig. 5. OsGBSSⅠ activity in endosperm at different time after anthesis. A, Seven days after flowering; B, 14 days after flowering; Mean±SD, n=3; * and ** represent significant difference between Wx410 targeted mutant transgenic line and its positive control at 0.05 and 0.01 levels by t-test, respectively.
图6 转基因植株胚乳理化性状测定 均值±标准差,n=3;**表示Wx410定点突变转基因系与其阳性对照在0.01水平上差异显著(t检验)。
Fig. 6. Determination of endosperm physical and chemical properties of transgenic plants. Mean±SD, n=3; ** represent significant difference between Wx410 targeted mutant transgenic line and its positive control at 0.01 level by t-test.
[1] | 方志强, 陆展华, 王石光, 刘维, 卢东柏, 王晓飞, 何秀英. 稻米品质性状研究进展与应用[J]. 广东农业科学, 2020, 47(5): 11-20. |
Fang Z Q, Lu Z H, Wang S G, Liu W, Lu D B, Wang X F, He X Y. Research advances and applications of rice grain quality traits[J]. Guangdong Agricultural Sciences, 2020, 47(5): 11-20. (in Chinese with English abstract) | |
[2] | Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Rapid identification of a new gene influencing low amylose content in rice landraces (Oryza sativa L.) using genome-wide association study with specific-locus amplified fragment sequencing[J]. Genome, 2017, 60(6): 465-472. |
[3] | Buléon A, Colonna P, Planchot V, Ball S. Starch granules: Structure and biosynthesis[J]. International Journal of Biological Macromolecules, 1998, 23(2): 85-112. |
[4] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765. |
[5] | Juliano B O, Pascual C G. Differences in physicochemical properties of commercial rice from urban markets in West Africa[J]. Journal of Food Science and Technology, 2020, 57(4): 1505-1516. |
[6] | Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. The Plant Journal, 1995, 7(4): 613-622. |
[7] | Gu M H, Liu Q Q, Yan C J, Tang S Z. Genetic variation and molecular improvement accelerating hybrid rice development// International Rice Research Institute. Grain quality of hybrid rice[M]. Los Banos (Philippines): International Rice Research Institute, 2010: 345-356. |
[8] | Ball, S G, Wal M H, Visser R G. Progress in understanding the biosynthesis of amylose[J]. Trends in Plant Science, 1998, 3(12): 462-467. |
[9] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the Allelic variation of Wx gene and its application in rice breeding[J]. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[10] | Suu T D, Hoai T T T, Hoa N T L, Loan H M, Yen D B,. Kumamaru T, Satoh H. Variation on grain quality in Vietnamese rice cultivars[J]. Journal of the Faculty of Agriculture, Kyushu University, 2012, 57(2): 365-371. |
[11] | Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rice: 5. Inter-and intraspecific differentiation in the waxy gene expression of rice[J]. Euphytica, 1986, 35(1): 1-9. |
[12] | Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at the Wx locus in landraces of Asian rice[J]. Theoretical and Applied Genetics, 2008, 116(7): 979-989. |
[13] | Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 2019, 12(8): 1157-1166. |
[14] | Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901. |
[15] | Zhou H, Xia D, Zhao D, Li Y H, Li P B, Wu B, Gao G J, Zhang Q L, Wang G W, Xiao J H, Li X H, Yu S B, Lian X M, He Y Q. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2021, 63(5): 878-888. |
[16] | Sato H, Suzuki Y, Sakai M, Imbe T. Molecular characterization of Wxmq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.)[J]. Breeding Science, 2002, 52(2): 131-135. |
[17] | Mikami I, Aikawa M, Hirano H Y, Sano Y. Altered tissue-specific expression at the Wx gene of the opaque mutants in rice[J]. Euphytica, 1999, 105(2): 91-97. |
[18] | Liu L L, Ma X D, Liu S J, Zhu C L, Jiang L, Wang Y H, Shen Y, Ren Y L, Dong H, Chen L M, Liu X, Zhao Z G, Zhai H Q, Wan J M. Identification and characterization of a novel Waxy allele from a Yunnan rice landrace[J]. Plant Molecular Biology, 2009, 71(6): 609-626. |
[19] | Shao Y, Peng Y, Mao B G, Lü Q M, Yuan D Y, Liu X, Zhao B R. Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China[J]. PloS One, 2020, 15(5): e0232279. |
[20] | Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OSGBSSⅠ activity[J]. Journal of Agricultural and Food Chemistry, 2017, 65(10): 2222-2232. |
[21] | Liu D R, Wang W, Cai X L. Modulation of amylose content by structure-based modification of OsGBSSⅠ activity in rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2014, 12(9): 1297-1307. |
[22] | 万映秀, 邓其明, 王世全, 刘明伟, 周华强, 李平. 水稻Wx基因的遗传多态性及其与主要米质指标的相关性分析[J]. 中国水稻科学, 2006, 20(6): 603-609. |
Wan Y X, Deng Q M, Wang S Q, Liu M W, Zhou H Q, Li P. Genetic polymorphism of Wx gene and its correlation with major grain quality traits in rice[J]. Chinese Journal of Rice Science, 2006, 20(6): 603-609. (in Chinese with English abstract) | |
[23] | Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5): 369-375. |
[24] | Huang L C, Li Q F, Zhang C C, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan X L, Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2164-2166. |
[25] | Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5' UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2385-2387. |
[26] | Monsur M B, Cao N, Wei X J, Xie L H, Jiao G A, Tang S Q, Nese S, Shao G N, Hu P S. Improved eating and cooking quality of indica rice cultivar YK17 via adenine base editing of Wxa allele of granule-bound starch synthase I (GBSS I)[J]. Rice Science, 2021, 28: 427-430. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 肖正午, 方升亮, 曹威, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 曹放波, 陈佳娜, 黄敏. 米粉质构特性与稻米理化性状的关系[J]. 中国水稻科学, 2024, 38(3): 316-323. |
[14] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[15] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||