中国水稻科学 ›› 2022, Vol. 36 ›› Issue (6): 572-578.DOI: 10.16819/j.1001-7216.2022.211205
张元野1, 尹丽颖1, 李荣田1,*(), 何明良2, 刘欣欣3, 潘婷婷4, 田晓杰2, 卜庆云2, 李秀峰2,*()
收稿日期:
2021-12-07
修回日期:
2022-03-10
出版日期:
2022-11-10
发布日期:
2022-11-10
通讯作者:
李荣田,李秀峰
基金资助:
ZHANG Yuanye1, YIN Liying1, LI Rongtian1,*(), HE Mingliang2, LIU Xinxin3, PAN Tingting4, TIAN Xiaojie2, BU Qingyun2, LI Xiufeng2,*()
Received:
2021-12-07
Revised:
2022-03-10
Online:
2022-11-10
Published:
2022-11-10
Contact:
LI Rongtian, LI Xiufeng
摘要:
【目的】将栽培稻品种恢复为米质优、抗逆性强的红稻具有较大的研究价值。利用CRISPR/Cas9基因编辑技术,编辑原花青素转录调节因子Rc基因,恢复红种皮特性,以改良水稻米质,提升抗逆性。【方法】利用CRISPR/Cas9技术,以Rc为靶基因,构建突变载体pYLCRISPR/Cas9-Rc-gRNA,以空育180、上育453为材料,转化获得转基因植株,通过测序手段和表型观察验证成果。【结果】分子水平检测获得Rc突变材料2种,其中KY-1在1414―1417 bp缺失4个碱基,终止子突变为苯丙氨酸;SY-1在1411 bp处缺失1个碱基,终止子突变为天冬氨酸。2种编辑材料均恢复为红米表型,且具有一定耐盐碱能力。【结论】利用CRISPR/Cas9基因编辑技术成功获得恢复红种皮表型的纯合株系,为红米改良提供基础材料。
张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578.
ZHANG Yuanye, YIN Liying, LI Rongtian, HE Mingliang, LIU Xinxin, PAN Tingting, TIAN Xiaojie, BU Qingyun, LI Xiufeng. Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing[J]. Chinese Journal OF Rice Science, 2022, 36(6): 572-578.
图1 Rc基因结构和靶点位置 黑色序列为靶点序列,灰色下划线序列为PAM序列。
Fig. 1. Gene structure and target site of Rc. The black sequence is the target sequence and the gray underlined sequence is the PAM sequence.
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
表1 本研究中所用的引物
Table 1. Primers used in this research.
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
图2 T0代植株转基因检测 M―DM2000 DNA 标记; 1~14―T0 代植株; 15―阳性对照; 16―阴性对照。
Fig. 2. Transgenic detection of T0 generation plants. M, DM2000 DNA marker; 1-14, T0 generation plants; 15, Positive control; 16, Negative control.
图3 T1代转基因植株表型及测序结果鉴定 A―红米性状恢复株系与野生型表型对比(标尺=1 cm);B―红米性状恢复株系与野生型碱基序列比对;C―红米性状恢复株系与野生型氨基酸序列比对; D―红米性状恢复株系与野生型bHLH结构域比对(红框内为bHLH结构域)。
Fig. 3. Phenotype and sequencing identification of T1 transgenic plants. A, Phenotype comparison of red rice and wild type(bar=1 cm); B, Sequence comparison between red rice and wild type; C, Comparison of amino acid sequences between red rice and wild type; D, Comparison of bHLH domains between red rice and wild type(the bHLH domain is in the red box).
图4 T2代转基因植株耐盐碱能力鉴定 A~D分别为0、30、100、200 mmol/L NaCl溶液处理下各组的芽长;E~F分别为20和10 mmol/L Na2CO3下各组的芽长;G―200 mmol/L NaCl处理的芽长(标尺=2 cm);H―20 mmol/L Na2CO3处理的幼苗生长情况(标尺=2 cm)。
Fig. 4. Identification of salt and alkali tolerance of T2 generation transgenic plants. A, Bud length in each group under different concentrations of salt treatment; E-F, Bud length in each group under different concentrations of alkali treatment; G, Growth of seedlings treated with 200 mmol/L NaCl (scale=2 cm); H, Growth of seedlings treated with 20 mmol/L Na2CO3 (scale =2 cm).
图5 T2代转基因植株耐盐碱相关基因相对表达量鉴定 A~C―200 mmol/L NaCl处理下耐盐标记基因表达量;D~F―20 mmol/L Na2CO3处理下耐碱标记基因表达量;G~I―200 mmol/L NaCl、20 mmol/L Na2CO3及空白对照Rc表达量。ns表示无显著差异、**、***、****表示分别在0.005、0.001、0.0001水平上显著差异(t检验)。KY180―空育180;SY453―上育453;KY-1―空育180的基因编辑株系;SY-1―上育453的基因编辑株系。
Fig. 5. Identification of saline-alkali tolerance related gene expression levels in T2 transgenic plants. A, Salt-tolerant gene expression level under 200 mmol/L NaCl treatment; D-F, Identification of alkali-tolerant gene expression level under 20 mmol/L Na2CO3 treatment; G-I, Rc expression level of 200 mmol/L NaCl, 20 mmol/L Na2CO3 and blank control. ns means no significant difference; **,*** and **** mean significant difference at 0.005, 0.001 and 0.0001 levels, respectively (t test). KY180, Kongyu 180;SY453, Shangyu 453;KY-1, Gene editing line of Kongyu 180; SY-1, Gene editing line of Shangyu 453.
[1] | 牛怡君. 基于大数据背景下健康管理的食品营养运用研究[J]. 现代食品, 2020(14): 129-131. |
Niu Y J. Research on the application of food nutrition in health management based on big data[J]. Modern Food, 2020(14): 129-131. (in Chinese) | |
[2] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
Hu S K, Hu P S. Research status and prospect of functional rice[J]. Chinese Journal of Rice Science, 2021, 35(4): 311-325. (in Chinese with English abstract) | |
[3] | 李玉纯, 毕宝山, 郑美花. 特种稻米及开发前景[J]. 吉林农业, 2001(10): 10-11. |
Li Y C, Bi B S, Zheng M H. Special rice and its development prospects[J]. Agriculture of Jilin, 2001(10): 10-11. (in Chinese) | |
[4] | 王子平. 中国红米资源的研究与利用进展[J]. 湖南农业科学, 2008, 36(4): 32-34. |
Wang Z P. Research and utilization of red rice resources in China[J]. Hunan Agricultural Sciences, 2008, 36(4): 32-34. (in Chinese) | |
[5] | Finocchiaro F, Ferrari B, Gianinetti A, Dall'Asta C, Pellegrini N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing[J]. Molecular Nutrition & Food Research, 2010, 51(8): 1006-1019. |
[6] | 吴建, 余显权. 水稻红米色素基因的初步定位[J]. 山地农业生物学报, 2017, 36(3): 75-77. |
Wu J, Yu X Q. Preliminary mapping of pigment genes in rice red rice[J]. Journal of Mountain Agriculture and Biology, 2017, 36(3): 75-77. (in Chinese with English abstract) | |
[7] | Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. The Plant Journal, 2007, 49(1): 91-102. |
[8] | Sweeney Megan T, Michael J T, Bernard E P, Susan M C. Caught Red-Handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell, 2006, 18(2): 283-294. |
[9] | Sweeney M T, Thomson M J, Cho Y G, Park Y J, Williamson S H, Bustamante C D. Global dissemination of a single mutation conferring white pericarp in rice[J]. PloS Genetics, 2007, 3(8): e133. |
[10] | Wang W J, Zhao M H, Zhang G C, Liu Z M, Hua Y C, Jia X T, Song J Y, Ma D R, Sun J. Weedy rice as a novel gene resource: A genome-wide association study of anthocyanin biosynthesis and an evaluation of nutritional quality[J]. Frontiers in Plant Science, 2020, 11: 878. |
[11] | Juan C L, Sun L D, Ping S Z, Soo S H, Lu B R. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives[J]. Annals of Botany, 2004(1): 67. |
[12] | Lang H, He Y T, Zeng F L, Xu F, Zhao M, Ma D. Comparative transcriptomic and physiological analyses of weedy rice and cultivated rice to identify vital differentially expressed genes and pathways regulating the ABA response[J]. Scientific Reports, 2021, 11(1): 12881. |
[13] | Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu, J K. Multiplex gene editing in rice with simplified CRISPR- Cpf1 and CRISPR-Cas9 systems[J]. Journal of Integrative Plant Biology, 2018, 60(8): 626-631. |
[14] | Li X F, Zhou W J, Ren Y K, Tian X J, Lü T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. High-efficiency breeding of early-maturing rice cultivars via CRISPR/ Cas9-mediated genome editing[J]. Journal of Genetics and Genomics, 2017, 44: 175-178. |
[15] | Zhang Q, Zhang Y, Lu M H, Chai Y P, Jiang Y Y, Zhou Y, Wang X C, Chen Q J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize[J]. Plant Physiology, 2019, 181(4): 1441-1448. |
[16] | Al Amin N, Ahmad N, Wu N, Pu X M, Ma T, Du Y Y, Bo X X, Wang N, Sharif R, Wang P W. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max. L)[J]. BMC Biotechnology, 2019, 19(1): 9. |
[17] | 徐善斌, 郑洪亮, 刘利峰, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻[J]. 中国水稻科学, 2020, 34(5): 406-412. |
Xu S B, Zhen H L, Liu L F, Bu Q Y, Li X F, Zou D T. Using CRISPR/Cas9 technology to efficiently create long grain fragrant rice[J]. Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese with English abstract) | |
[18] | 周文甲, 田晓杰, 任月坤, 魏祥进, 高扬, 谢黎虹, 刘华招, 卜庆云, 李秀峰. 利用CRISPR/Cas9创造早熟香味水稻[J]. 土壤与作物, 2017, 6(2): 146-152. |
Zhou W J, Tian X J, Ren Y K, Wei X J, Gao Y, Xie L H, Liu H Z, Bu Q Y, Li X F. CRISPR/Cas9 technology was used to create early-maturing fragrant rice[J]. Soils and Crops, 2017, 6(2): 146-152. (in Chinese with English abstract) | |
[19] | Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fang J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. Fin-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[20] | 苏正亮. 特种稻红米品种红稻8号选育及栽培技术[J]. 乡村科技, 2020(21): 2. |
Su Z L. Breeding and cultivation techniques of special rice red rice variety Hongdao 8[J]. Rural Science and Technology, 2020(21): 2. (in Chinese) | |
[21] | 宗伟勋, 林建勇, 温灶婵, 梁克勤, 梁结彩, 荣建星, 邓汉儒. 特优质红米杂交水稻新组合清红优1号[J]. 杂交水稻, 2022, 37(2): 53-55. |
Zong W X, Lin J Y, Wen Z C, Liang K Q, Liang C J, Ron J X, Deng H R. High quality hybrid red rice Qinghongyou 1[J]. Hybrid Rice, 2022, 37(2): 53-55. (in Chinese with English abstract) | |
[22] | 李文绍, 许鸿江, 廖荣周. 红米稻开发前景及其遗传育种研究进展[J]. 福建农业科技, 2013(4): 4 |
Li W Z, Xu H J, Liao R Z, Development prospect and genetic breeding of red rice[J]. Fujian Agricultural Science and Technology, 2013(4): 4. (in Chinese) | |
[23] | Zhu Y W, Lin Y R, Chen S B, Liu H Q, Chen Z J, Fan M Y, Hu T J, Mei F T, Chen J M, Chen L, Wang F. CRISPR/Cas9 edited functional recovery of the recessive RC allele to develop red rice[J]. Plant Biotechnology Journal, 2019, 17(11): 2096-2105. |
[24] | 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J]. 中国科学: 生命科学, 2018, 48(7): 783-794. |
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. Operational methods for plant CRISPR/Cas9 multi-gene editing vector construction and mutation analysis[J]. Science in China: Life Sciences, 2018, 48(7): 783-794. (in Chinese with English abstract) | |
[25] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[26] | Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Gittler J, Kempa S, Krischke M, Dietrich K, Mueller M J, Vicente-Carbajosa J, Hanson J, Droge-Laser W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots[J]. Plant Cell, 2015, 27: 2244-2260. |
[27] | Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188. |
[28] | Passricha N, Saifi S K, Kharb P, Tuteja N. Rice lectin receptor-like kinase provides salinity tolerance by ion homeostasis[J]. Biotechnology and Bioengineering, 2020, 117(2): 498-510. |
[29] | Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. Plant Journal, 2010, 51(3): 366-377. |
[30] | Kobayashi T, Ogo Y, Itai R N, Nakanishi H, Takahashi M, Mori S, Nishizawa N K. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 19150-19155. |
[31] | Tan S, Yin L P. Research of the iron-regulated transporter 1 (IRT1) in the past decades and its latest development[J]. Chinese Science Bulletin, 2017, 62(5): 350-359. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||