中国水稻科学 ›› 2022, Vol. 36 ›› Issue (3): 308-317.DOI: 10.16819/j.1001-7216.2022.210712
曹中盛1, 李艳大1,*(), 黄俊宝1, 叶春1, 孙滨峰1, 舒时富1, 朱艳2, 何勇3
收稿日期:
2021-07-29
修回日期:
2021-11-04
出版日期:
2022-05-10
发布日期:
2022-05-11
通讯作者:
李艳大
基金资助:
CAO Zhongsheng1, LI Yanda1,*(), HUANG Junbao1, YE Chun1, SUN Binfeng1, SHU Shifu1, ZHU Yan2, HE Yong3
Received:
2021-07-29
Revised:
2021-11-04
Online:
2022-05-10
Published:
2022-05-11
Contact:
LI Yanda
摘要:
【目的】为探究无人机数码影像监测水稻叶面积指数(Leaf area index, LAI)的可行性,明确利用无人机数码影像监测水稻LAI的最佳时期,构建基于无人机数码影像的水稻LAI监测模型。【方法】本研究基于不同品种和施氮量的水稻田间试验,于分蘖期、拔节期、孕穗期、抽穗期和灌浆期测定水稻LAI,同步使用无人机搭载数码相机获取水稻无人机数码影像并提取颜色指数及纹理特征,分析其在不同生育时期与水稻LAI之间的相关性,构建定量监测模型,并用独立试验数据对所建模型进行检验。【结果】无人机数码影像中颜色指数及纹理特征与水稻LAI之间的相关性在生育前期(分蘖期+拔节期)最高,高于所有单生育期、生育后期(孕穗期+抽穗期+灌浆期)和全生育期,可确定为监测的最佳时期;在颜色指数和纹理特征当中,纹理特征方差(Variance, VAR)在监测水稻生育前期LAI时表现最优,可构建监测模型LAI = 1.1656×exp(0.0174×VAR)实现监测,模型构建时的决定系数(Determination coefficient, R2)为0.7980,模型检验时的相对均方根误差(Relative root mean square error, RRMSE)和偏差(bias, θ)分别为0.1658和0.1306。【结论】与人工测量LAI相比,基于无人机数码影像的水稻LAI监测方法可提高作业效率,降低成本,在水稻长势快速准确监测和丰产高效栽培中具有应用价值。
曹中盛, 李艳大, 黄俊宝, 叶春, 孙滨峰, 舒时富, 朱艳, 何勇. 基于无人机数码影像的水稻叶面积指数监测[J]. 中国水稻科学, 2022, 36(3): 308-317.
CAO Zhongsheng, LI Yanda, HUANG Junbao, YE Chun, SUN Binfeng, SHU Shifu, ZHU Yan, HE Yong. Monitoring Rice Leaf Area Index Based on Unmanned Aerial Vehicle (UAV) Digital Images[J]. Chinese Journal OF Rice Science, 2022, 36(3): 308-317.
参数 Parameter | 数值 Value |
---|---|
传感器 Sensor | 1/2.3 英寸CMOS |
有效像素 Effective pixels | 1 235 万 |
最大分辨率 Maximum resolution | 4000 × 3000 |
质量 Quality | 734 g |
续航时间 Battery terms | 21 min |
表1 无人机及数码相机主要参数
Table 1. Parameters of unmanned aerial vehicle (UAV) and digital camera.
参数 Parameter | 数值 Value |
---|---|
传感器 Sensor | 1/2.3 英寸CMOS |
有效像素 Effective pixels | 1 235 万 |
最大分辨率 Maximum resolution | 4000 × 3000 |
质量 Quality | 734 g |
续航时间 Battery terms | 21 min |
序号 Number | 颜色指数 Color index | 计算公式 Equation | 参考文献 Reference |
---|---|---|---|
1 | 红光标准化值NRI Normalized redness intensity | r/(r+g+b) | [ |
2 | 绿光标准化值NGI Normalized greenness intensity | g/(r+g+b) | [ |
3 | 蓝光标准化值NBI Normalized blueness intensity | b/(r+g+b) | [ |
4 | 归一化绿红差值指数NGRDI Normalized green minus red difference index | (g-r)/(g+r) | [ |
5 | 超绿植被指数ExG Excess green vegetation index | 2g-r-b | [ |
6 | 超红植被指数ExR Excess red vegetation index | 1.4r-b | [ |
7 | 超绿超红差分植被指数ExGR Excess green minus excess red vegetation index | ExG-ExR | [ |
8 | 可见光大气阻抗植被指数VARI Visible light atmospheric resistant vegetation index | (g-r)/(g+r-b) | [ |
9 | 绿叶植被指数GLI Green leaf vegetation index | (2g-b-r)/(2g+b+r) | [ |
表2 颜色指数及其计算公式
Table 2. Equations of color indices.
序号 Number | 颜色指数 Color index | 计算公式 Equation | 参考文献 Reference |
---|---|---|---|
1 | 红光标准化值NRI Normalized redness intensity | r/(r+g+b) | [ |
2 | 绿光标准化值NGI Normalized greenness intensity | g/(r+g+b) | [ |
3 | 蓝光标准化值NBI Normalized blueness intensity | b/(r+g+b) | [ |
4 | 归一化绿红差值指数NGRDI Normalized green minus red difference index | (g-r)/(g+r) | [ |
5 | 超绿植被指数ExG Excess green vegetation index | 2g-r-b | [ |
6 | 超红植被指数ExR Excess red vegetation index | 1.4r-b | [ |
7 | 超绿超红差分植被指数ExGR Excess green minus excess red vegetation index | ExG-ExR | [ |
8 | 可见光大气阻抗植被指数VARI Visible light atmospheric resistant vegetation index | (g-r)/(g+r-b) | [ |
9 | 绿叶植被指数GLI Green leaf vegetation index | (2g-b-r)/(2g+b+r) | [ |
序号 Number | 纹理特征 Texture feature | 简写 Abbreviation | 说明 Description |
---|---|---|---|
1 | 均值 Mean | MEA | 反映纹理的平均值 |
2 | 方差 Variance | VAR | 反映纹理的变化情况 |
3 | 均一性 Homogeneity | HOM | 反映纹理的同质性 |
4 | 对比度 Contrast | CON | 反映纹理的清晰度 |
5 | 异质性 Dissimilarity | DIS | 反映纹理的相似性 |
6 | 熵 Entropy | ENT | 反映纹理的复杂程度 |
7 | 角二阶矩 Second moment | SEC | 反映纹理粗细度 |
8 | 相关性 Correlation | COR | 反映纹理的一致性 |
表 3 纹理特征描述
Table 3. Description of texture features.
序号 Number | 纹理特征 Texture feature | 简写 Abbreviation | 说明 Description |
---|---|---|---|
1 | 均值 Mean | MEA | 反映纹理的平均值 |
2 | 方差 Variance | VAR | 反映纹理的变化情况 |
3 | 均一性 Homogeneity | HOM | 反映纹理的同质性 |
4 | 对比度 Contrast | CON | 反映纹理的清晰度 |
5 | 异质性 Dissimilarity | DIS | 反映纹理的相似性 |
6 | 熵 Entropy | ENT | 反映纹理的复杂程度 |
7 | 角二阶矩 Second moment | SEC | 反映纹理粗细度 |
8 | 相关性 Correlation | COR | 反映纹理的一致性 |
颜色指数和纹理特征 Color index and texture feature | 相关系数 Correlation coefficient | |||||||
---|---|---|---|---|---|---|---|---|
分蘖期 Tillering | 拔节期 Jointing | 孕穗期 Booting | 抽穗期 Heading | 灌浆期 Filling | 分蘖期+拔节期 Tillering+Jointing | 孕穗期+抽穗期+灌浆期 Booting+Heading+Filling | 全生育期 All | |
R | -0.476** | -0.642** | -0.429** | -0.277 | 0.009 | 0.050 | -0.372** | 0.098 |
G | -0.327 | -0.478* | -0.263 | -0.160 | -0.043 | 0.074 | -0.340** | -0.021 |
B | -0.327 | -0.472* | -0.083 | 0.116 | -0.104 | 0.248 | -0.035 | 0.159 |
NGRDI | -0.072 | 0.221 | -0.108 | 0.002 | -0.066 | 0.145 | 0.117 | -0.292** |
ExG | 0.182 | 0.392 | -0.057 | -0.247 | -0.006 | -0.316* | -0.338** | -0.396** |
ExR | -0.736** | -0.712** | -0.559** | -0.402** | 0.109 | 0.004 | -0.380** | -0.301** |
ExGR | -0.176 | 0.154 | -0.252 | -0.116 | 0.042 | -0.146 | -0.222 | 0.172 |
VARI | 0.258 | 0.586** | -0.292 | -0.038 | 0.076 | 0.808** | 0.247* | 0.211** |
GLI | 0.366* | 0.080 | 0.080 | 0.121 | 0.076 | -0.336* | 0.116 | -0.346** |
MEA | -0.644** | -0.377 | -0.463* | -0.582** | 0.088 | 0.018 | -0.349** | 0.124 |
VAR | 0.768** | 0.759** | 0.628** | 0.483** | -0.096 | 0.910** | 0.400** | 0.513** |
HOM | -0.735** | -0.448* | -0.478** | -0.481** | 0.047 | 0.786** | -0.348** | -0.670** |
CON | 0.772** | 0.735** | 0.577** | 0.513** | -0.067 | 0.907** | 0.395** | 0.509** |
DIS | 0.777** | 0.723** | 0.552** | 0.521** | -0.063 | 0.894** | 0.389** | 0.607** |
ENT | 0.545** | -0.047** | 0.321 | 0.114 | -0.037 | 0.597** | 0.161 | 0.506** |
SEC | -0.466* | 0.156 | -0.259 | -0.006** | 0.064 | -0.484** | -0.036 | -0.506** |
COR | 0.528** | 0.669** | 0.298 | -0.376 | -0.054 | 0.213 | 0.061 | 0.455** |
表4 叶面积指数与颜色指数及纹理特征之间的相关关系
Table 4. Relationships between color indices/texture features and rice leaf area index.
颜色指数和纹理特征 Color index and texture feature | 相关系数 Correlation coefficient | |||||||
---|---|---|---|---|---|---|---|---|
分蘖期 Tillering | 拔节期 Jointing | 孕穗期 Booting | 抽穗期 Heading | 灌浆期 Filling | 分蘖期+拔节期 Tillering+Jointing | 孕穗期+抽穗期+灌浆期 Booting+Heading+Filling | 全生育期 All | |
R | -0.476** | -0.642** | -0.429** | -0.277 | 0.009 | 0.050 | -0.372** | 0.098 |
G | -0.327 | -0.478* | -0.263 | -0.160 | -0.043 | 0.074 | -0.340** | -0.021 |
B | -0.327 | -0.472* | -0.083 | 0.116 | -0.104 | 0.248 | -0.035 | 0.159 |
NGRDI | -0.072 | 0.221 | -0.108 | 0.002 | -0.066 | 0.145 | 0.117 | -0.292** |
ExG | 0.182 | 0.392 | -0.057 | -0.247 | -0.006 | -0.316* | -0.338** | -0.396** |
ExR | -0.736** | -0.712** | -0.559** | -0.402** | 0.109 | 0.004 | -0.380** | -0.301** |
ExGR | -0.176 | 0.154 | -0.252 | -0.116 | 0.042 | -0.146 | -0.222 | 0.172 |
VARI | 0.258 | 0.586** | -0.292 | -0.038 | 0.076 | 0.808** | 0.247* | 0.211** |
GLI | 0.366* | 0.080 | 0.080 | 0.121 | 0.076 | -0.336* | 0.116 | -0.346** |
MEA | -0.644** | -0.377 | -0.463* | -0.582** | 0.088 | 0.018 | -0.349** | 0.124 |
VAR | 0.768** | 0.759** | 0.628** | 0.483** | -0.096 | 0.910** | 0.400** | 0.513** |
HOM | -0.735** | -0.448* | -0.478** | -0.481** | 0.047 | 0.786** | -0.348** | -0.670** |
CON | 0.772** | 0.735** | 0.577** | 0.513** | -0.067 | 0.907** | 0.395** | 0.509** |
DIS | 0.777** | 0.723** | 0.552** | 0.521** | -0.063 | 0.894** | 0.389** | 0.607** |
ENT | 0.545** | -0.047** | 0.321 | 0.114 | -0.037 | 0.597** | 0.161 | 0.506** |
SEC | -0.466* | 0.156 | -0.259 | -0.006** | 0.064 | -0.484** | -0.036 | -0.506** |
COR | 0.528** | 0.669** | 0.298 | -0.376 | -0.054 | 0.213 | 0.061 | 0.455** |
颜色指数和纹理特征 Color index and texture feature | 生育期 Growth stage | 建模 Calibration | 检验 Validation | |||
---|---|---|---|---|---|---|
监测模型 Model | 决定系数 R2 | 相对均方根误差 RRMSE | 偏差 θ | |||
ExR | 分蘖 Tillering | LAI = 5.9395×exp(-0.0150×ExR) | 0.5169 | 0.5394 | 1.8288 | |
拔节 Jointing | LAI = 6.8568×exp(-0.0131×ExR) | 0.4712 | 0.3099 | 0.9632 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 6.0103×exp(-0.010×ExR) | 0.0003 | 0.2487 | 0.8406 | ||
VAR | 分蘖 Tillering | LAI = 1.1333×exp(0.0175×VAR) | 0.5511 | 0.1607 | 0.1476 | |
拔节 Jointing | LAI = 1.7101×exp(0.0121×VAR) | 0.5481 | 0.1998 | 0.3505 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 1.1656×exp(0.0174×VAR) | 0.7980 | 0.1658 | 0.1306 | ||
CON | 分蘖 Tillering | LAI = 1.1001×exp(0.0093×VAR) | 0.5557 | 0.5576 | 0.9824 | |
拔节 Jointing | LAI = 1.6875×exp(0.0063×VAR) | 0.5157 | 0.2433 | 0.2776 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 1.1375×exp(0.0091×VAR) | 0.7944 | 0.4407 | 0.5352 | ||
DIS | 分蘖 Tillering | LAI = 0.6599×exp(0.1963×VAR) | 0.5848 | 0.3614 | 0.6211 | |
拔节 Jointing | LAI = 0.8549×exp(0.1812×VAR) | 0.5099 | 0.2371 | 0.1936 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 0.5791×exp(0.2242×VAR) | 0.8064 | 0.3781 | 0.4446 |
表5 基于颜色指数和纹理特征的水稻叶面积指数监测模型构建和验证
Table 5. Calibration and validation of rice leaf area index (LAI) monitoring models based on color index and texture features.
颜色指数和纹理特征 Color index and texture feature | 生育期 Growth stage | 建模 Calibration | 检验 Validation | |||
---|---|---|---|---|---|---|
监测模型 Model | 决定系数 R2 | 相对均方根误差 RRMSE | 偏差 θ | |||
ExR | 分蘖 Tillering | LAI = 5.9395×exp(-0.0150×ExR) | 0.5169 | 0.5394 | 1.8288 | |
拔节 Jointing | LAI = 6.8568×exp(-0.0131×ExR) | 0.4712 | 0.3099 | 0.9632 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 6.0103×exp(-0.010×ExR) | 0.0003 | 0.2487 | 0.8406 | ||
VAR | 分蘖 Tillering | LAI = 1.1333×exp(0.0175×VAR) | 0.5511 | 0.1607 | 0.1476 | |
拔节 Jointing | LAI = 1.7101×exp(0.0121×VAR) | 0.5481 | 0.1998 | 0.3505 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 1.1656×exp(0.0174×VAR) | 0.7980 | 0.1658 | 0.1306 | ||
CON | 分蘖 Tillering | LAI = 1.1001×exp(0.0093×VAR) | 0.5557 | 0.5576 | 0.9824 | |
拔节 Jointing | LAI = 1.6875×exp(0.0063×VAR) | 0.5157 | 0.2433 | 0.2776 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 1.1375×exp(0.0091×VAR) | 0.7944 | 0.4407 | 0.5352 | ||
DIS | 分蘖 Tillering | LAI = 0.6599×exp(0.1963×VAR) | 0.5848 | 0.3614 | 0.6211 | |
拔节 Jointing | LAI = 0.8549×exp(0.1812×VAR) | 0.5099 | 0.2371 | 0.1936 | ||
分蘖+拔节 Tillering+ Jointing | LAI = 0.5791×exp(0.2242×VAR) | 0.8064 | 0.3781 | 0.4446 |
图4 颜色指数ExR和纹理特征VAR在小区中的空间分布 A–分蘖期原始影像;B–分蘖期ExR空间分布;C–分蘖期VAR空间分布;D–拔节期原始影像;E–拔节期ExR空间分布;F–拔节期VAR空间分布。
Fig. 4. Distribution of color index ExR and texture feature VAR in rice plot. A, Original image of tillering stage; B, Distribution of ExR at tillering stage; C, Distribution of VAR at tillering stage; D, Original image of jointing stage; E, Distribution of ExR at jointing stage; F, Distribution of VAR at jointing stage.
[1] | 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻光合物质生产与转运特征的差异[J]. 作物学报, 2014, 40(3): 497-510. |
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Difference of characteristics of photosynthesis, matter production and translocation between indica and japonica super rice[J]. Acta Agronomica Sinica, 2014, 40(3): 497-510. (in Chinese with English abstract) | |
[2] | 姜元华, 许轲, 赵可, 孙建军, 韦还和, 许俊伟, 魏海燕, 郭保卫, 霍中洋, 戴其根, 张洪程. 甬优系列籼粳杂交稻的冠层结构与光合特性[J]. 作物学报, 2015, 41(2): 286-296. |
Jiang Y H, Xu K, Zhao K, Sun J J, Wei H H, Xu J W, Wei H Y, Guo B W, Huo Z Y, Dai Q G, Zhang H C. Canopy structure and photosynthetic characteristics of Yongyou series of indica-japonica hybrid rice under high-yielding cultivation condition[J]. Acta Agronomica Sinica, 2015, 41(2): 286-296. (in Chinese with English abstract) | |
[3] | 殷尧翥, 郭长春, 孙永健, 武云霞, 余华清, 孙知白, 张桥, 王海月, 杨志远, 马均. 稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响[J]. 中国水稻科学, 2019, 33(3): 257-268. |
Yin Y Z, Guo C C, Sun Y J, Wu Y X, Yu H Q, Sun Z B, Zhang Q, Wang H Y, Yang Z Y, Ma J. Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice-rape rotation[J]. Chinese Journal of Rice Science, 2019, 33(3): 257-268. (in Chinese with English abstract) | |
[4] | 侯佳敏, 罗宁, 王溯, 孟庆锋, 王璞. 增密对我国玉米产量-叶面积指数-光合速率的影响[J]. 中国农业科学, 2021, 54(12): 2538-2546. |
Hou J M, Luo N, Wang S, Meng Q F, Wang P. Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China[J]. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546. (in Chinese with English abstract) | |
[5] | 李艳大, 孙滨峰, 曹中盛, 叶春, 舒时富, 黄俊宝, 何勇. 基于作物生长监测诊断仪的双季稻叶面积指数监测模型[J]. 农业工程学报, 2020, 36(10): 141-149. |
Li Y D, Sun B F, Cao Z S, Ye C, Shu S F, Huang J B, He Y. Model for monitoring leaf area index of double cropping rice based on crop growth monitoring and diagnosis apparatus[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE) , 2020, 36(10): 141-149. (in Chinese with English abstract) | |
[6] | Qiao K, Zhu W Q, Xie Z Y, Li, P X. Estimating the seasonal dynamics of the leaf area index using piecewise LAI-VI relationships based on phenophases[J]. Remote Sensing, 2019, 11(6): 689. |
[7] | 李艳大, 舒时富, 陈立才, 叶春, 王康军, 黄俊宝. 基于归一化法的双季稻叶面积指数动态预测模型[J]. 中国农学通报, 2017, 33(29): 77-84. |
Li Y D, Shu S F, Chen L C, Ye C, Wang K J, Huang J B. A predict model of dynamic leaf area index of double cropping rice based on normalized method[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 77-84. (in Chinese with English abstract) | |
[8] | Campos-Taberner M, García-Haro F J, Camps-Valls G, Grau-Muedra G, Nutini F, Crema A, Boschetti M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring[J]. Remote Sensing of Environment, 2016, 187: 102-118. |
[9] | 张漫, 苗艳龙, 仇瑞承, 季宇寒, 李寒, 李民赞. 基于车载三维激光雷达的玉米叶面积指数测量[J]. 农业机械学报, 2019, 50(6): 12-21. |
Zhang M, Miao Y L, Qiu R C, Ji Y H, Li H, Li M Z. Maize leaf area index measurement based on vehicle 3D LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 12-21. (in Chinese with English abstract) | |
[10] | 牛小桃, 樊军, 王胜, 王秋铭. 利用鱼眼摄像机测量植被叶面积指数动态变化[J]. 应用生态学报, 2018, 29(10): 3183-3190. |
Niu X T, Fan J, Wang S, Wang Q M. measuring the dynamic of leaf area index of vegetation using fisheye camera[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3183-3190. (in Chinese with English abstract) | |
[11] | 刘杨, 冯海宽, 黄珏, 孙乾, 杨福芹, 杨贵军. 基于无人机高光谱影像的马铃薯株高和地上生物量估算[J]. 农业机械学报, 2021, 52(2): 188-198. |
Liu Y, Feng H K, Huang J, Sun Q, Yang F Q, Yang G J. Estimation of potato plant height and above-ground biomass based on UAV hyperspectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 188-198. (in Chinese with English abstract) | |
[12] | 宋勇, 陈兵, 王琼, 苏维, 孙乐鑫, 赵静, 韩焕勇, 王方永. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306. |
Song Y, Chen B, Wang Q, Su W, Sun L X, Zhao J, Han H Y, Wang F Y. Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing[J]. Cotton Science, 2021, 33(3): 291-306. (in Chinese with English abstract) | |
[13] | Zhang L Y, Zhang H H, Niu Y X, Han W T. Mapping maize water stress based on UAV multispectral remote sensing[J]. Remote Sensing, 2019, 11(6): 605. |
[14] | 江杰, 张泽宇, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 基于消费级无人机搭载数码相机监测小麦长势状况研究[J]. 南京农业大学学报, 2019, 42(4): 622-631. |
Jiang J, Zhang Z Y, Cao Q, Tian Y C, Zhu Y, Cao W X, Liu X J. Use of a digital camera mounted on a consumer-grade unmanned aerial vehicle to monitor the growth status of wheat[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 622-631. (in Chinese with English abstract) | |
[15] | 高林, 杨贵军, 李红军, 李振海, 冯海宽, 王磊, 董锦绘, 贺鹏. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016, 24(9): 1254-1264. |
Gao L, Yang G J, Li H J, Li Z H, Feng H K, Wang L, Dong J H, He P. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1254-1264. (inChinese with English abstract) | |
[16] | Hunt E R, Cavigelli M, Daughtry C, Mcmurtrey J E, Walthall C L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 2005, 6(4): 359-378. |
[17] | 万亮, 岑海燕, 朱姜蓬, 张佳菲, 杜晓月, 何勇. 基于纹理特征与植被指数融合的水稻含水量无人机遥感监测[J]. 智慧农业(中英文), 2020, 2(1): 58-67. |
Wan L, Cen H Y, Zhu J P, Zhang J F, Du X Y, He Y. Using fusion of texture features and vegetation indices from water concentration in rice crop to UAV remote sensing monitor[J]. Smart Agriculture, 2020, 2(1): 58-67. (in Chinese with English abstract) | |
[18] | 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229. |
Chen P F, Liang F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229. (in Chinese with English abstract) | |
[19] | Konôpka B, Pajtík J, Marušák R, Boše’a M, Lukac M. Specific leaf area and leaf area index in developing stands of Fagus sylvatica L. and Piceaabies karst[J]. Forest Ecology and Management, 2016, 364: 52-59. |
[20] | Shibayama M C, Sakamoto T H, Takada E J, Inoue A H, Morita K H, Yamaguchi T K Y, Takahashi W T R, Kimura A H. Estimating rice leaf greenness (SPAD) using fixed-point continuous observations of visible red and near infrared narrow-band digital images[J]. Plant Production Science, 2012, 15(4): 293-309. |
[21] | Meyer G E, Hindman T W, Laksmi K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE: The International Society for Optical Engineering, 1999, 3543: 327-335. |
[22] | Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008, 63(2): 282-293. |
[23] | Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87. |
[24] | Louhaichi M, Borman M M, Johnson D E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat[J]. Geocarto International, 2001, 16(1): 65-70. |
[25] | Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Studies in Media and Communication, 1973, SMC-3(6): 610-621. |
[26] | Cao Z S, Cheng T, Ma X, Tian Y C, Zhu Y, Yao X, Chen Q, Liu S Y, Guo Z Y, Zhen Q M, Li X. A new three-band spectral index for mitigating the saturation in the estimation of leaf area index in wheat[J]. International Journal of Remote Sensing, 2017, 38(13): 3865-3885. |
[27] | Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp M L, Bareth G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87. |
[28] | 郑恒彪. 水稻生育期及生长参数的近地面遥感监测研究[D]. 南京: 南京农业大学, 2018. |
Zheng H B. Monitoring rice phenology and growth parameters using near-ground remote sensing platforms[D]. Nanjing: Nanjing agricultural university, 2018, Nanjing. (in Chinese with English abstract) | |
[29] | Sun B, Wang C F, Yang C H, Xu B D, Zhou G S, Li X Y, Xie J, Xu S J, Liu B, Xie T J, Kuai J, Zhang J. Retrieval of rapeseed leaf area index using the PROSAIL model with canopy coverage derived from UAV images as a correction parameter[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102373. |
[30] | Ciganda V S, Gitelson A A, Schepers J. How deep does a remote sensor sense? Expression of chlorophyll content in a maize canopy[J]. Remote Sensing of Environment, 2012, 126: 240-247. |
[31] | Mishra P, Nordon A, Mohd A, Mohd S, Lian, G P, Redfern S. Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling[J]. Journal of Food Engineering, 2019, 249: 40-47. |
[32] | Duan M Q, Zhang X G. Using remote sensing to identify soil types based on multiscale image texture features[J]. Computers and Electronics in Agriculture, 2021, 187: 106272. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||