中国水稻科学 ›› 2022, Vol. 36 ›› Issue (3): 269-277.DOI: 10.16819/j.1001-7216.2022.210309
陈云1,2, 刘昆1, 李婷婷1, 李思宇1, 李国明2, 张伟杨1, 张耗1, 顾骏飞1, 刘立军1,*(), 杨建昌1
收稿日期:
2021-03-19
修回日期:
2021-06-01
出版日期:
2022-05-10
发布日期:
2022-05-11
通讯作者:
刘立军
基金资助:
CHEN Yun1,2, LIU Kun1, LI Tingting1, LI Siyu1, LI Guoming2, ZHANG Weiyang1, ZHANG Hao1, GU Junfei1, LIU Lijun1,*(), YANG Jianchang1
Received:
2021-03-19
Revised:
2021-06-01
Online:
2022-05-10
Published:
2022-05-11
Contact:
LIU Lijun
摘要:
【目的】干湿交替灌溉(WMD)对水稻根系生长和产量形成有重要影响,但其对土壤性状的影响,以及与根系生长的关系尚不明确。【方法】本研究以5个不同类型的水稻品种为材料,在结实期设置常规灌溉(CI)和干湿交替灌溉(WMD)两种灌溉方式处理,研究了其对水稻产量、根系形态生理及土壤性状的影响。【结果】1)与CI相比,结实期WMD可明显提高不同品种的结实率与千粒重,从而提高水稻产量。2)结实期WMD能够提高复水后水稻根际与非根际土壤硝态氮含量和脲酶、蔗糖酶活性,降低土壤铵态氮含量。3)结实期WMD复水后水稻根系形态(根质量、根数、根长、根表面积、根体积、根系通气组织面积)及根系活力(根系氧化力)均明显高于CI处理。【结论】WMD复水后较高的根际和非根际土壤硝态氮含量、脲酶和蔗糖酶活性以及较低的土壤铵态氮含量能够改善水稻根系形态生理,促进籽粒灌浆结实,提高水稻产量。
陈云, 刘昆, 李婷婷, 李思宇, 李国明, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响[J]. 中国水稻科学, 2022, 36(3): 269-277.
CHEN Yun, LIU Kun, LI Tingting, LI Siyu, LI Guoming, ZHANG Weiyang, ZHANG Hao, GU Junfei, LIU Lijun, YANG Jianchang. Effects of Alternate Wetting and Moderate Soil Drying Irrigation on Root Traits, Grain Yield and Soil Properties in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(3): 269-277.
来源 Source of variation | 自由度 df | 产量 Grain yield | 根系干质量 Root dry weight | 根系氧化力 Root oxidation activity | 土壤硝态氮含量 Soil nitrate nitrogen content | 土壤脲酶活性 Soil urease activity |
---|---|---|---|---|---|---|
年份 Year (Y) | 1 | NS | NS | NS | NS | NS |
处理 Treatment (T) | 1 | 5.2* | 4.9* | 54.4** | 14.8** | 9.8** |
年份×处理 Y×T | 1 | NS | NS | NS | NS | NS |
表1 产量、根系和土壤主要性状的方差分析
Table 1. Analysis of variance of F-values of grain yield and main root and soil traits.
来源 Source of variation | 自由度 df | 产量 Grain yield | 根系干质量 Root dry weight | 根系氧化力 Root oxidation activity | 土壤硝态氮含量 Soil nitrate nitrogen content | 土壤脲酶活性 Soil urease activity |
---|---|---|---|---|---|---|
年份 Year (Y) | 1 | NS | NS | NS | NS | NS |
处理 Treatment (T) | 1 | 5.2* | 4.9* | 54.4** | 14.8** | 9.8** |
年份×处理 Y×T | 1 | NS | NS | NS | NS | NS |
品种 Cultivar | 处理 Treatment | 总颖花量 Total spikelets per pot | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 产量 Grain yield/(g·pot-1) |
---|---|---|---|---|---|
扬稻6号YD6 | CI | 3450.9 a | 89.1 b | 29.5 b | 90.8 b |
WMD | 3541.3 a | 92.2 a | 30.1 a | 98.2 a | |
南粳9108 NJ9108 | CI | 4189.4 a | 87.3 b | 24.1 a | 88.0 b |
WMD | 4228.8 a | 90.9 a | 24.6 a | 94.6 a | |
扬两优6号YLY6 | CI | 4018.2 a | 87.4 b | 28.7 a | 100.8 b |
WMD | 4156.6 a | 90.7 a | 29.2 a | 110.0 a | |
常优5号CY5 | CI | 4326.8 a | 86.3 b | 24.8 a | 92.4 b |
WMD | 4416.7 a | 89.6 a | 25.3 a | 100.0 a | |
甬优2640 YY2640 | CI | 5468.3 a | 80.9 b | 23.4 b | 103.4 b |
WMD | 5534.4 a | 84.5 a | 24.1 a | 112.4 a |
表2 结实期干湿交替灌溉对水稻产量及其构成因素的影响
Table 2. Effect of WMD during the grain filling stage on rice yield and its components.
品种 Cultivar | 处理 Treatment | 总颖花量 Total spikelets per pot | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 产量 Grain yield/(g·pot-1) |
---|---|---|---|---|---|
扬稻6号YD6 | CI | 3450.9 a | 89.1 b | 29.5 b | 90.8 b |
WMD | 3541.3 a | 92.2 a | 30.1 a | 98.2 a | |
南粳9108 NJ9108 | CI | 4189.4 a | 87.3 b | 24.1 a | 88.0 b |
WMD | 4228.8 a | 90.9 a | 24.6 a | 94.6 a | |
扬两优6号YLY6 | CI | 4018.2 a | 87.4 b | 28.7 a | 100.8 b |
WMD | 4156.6 a | 90.7 a | 29.2 a | 110.0 a | |
常优5号CY5 | CI | 4326.8 a | 86.3 b | 24.8 a | 92.4 b |
WMD | 4416.7 a | 89.6 a | 25.3 a | 100.0 a | |
甬优2640 YY2640 | CI | 5468.3 a | 80.9 b | 23.4 b | 103.4 b |
WMD | 5534.4 a | 84.5 a | 24.1 a | 112.4 a |
图1 结实期干湿交替灌溉复水后水稻根际(A)和非根际(B)土壤硝态氮含量 YD6–扬稻6号;NJ9108–南粳9108;YLY6–扬两优6号;CY5–常优5号;YY2640–甬优2640。CI–常规灌溉;WMD–干湿交替灌溉。对同一品种柱上不同小写字母表示在0.05水平上差异显著。
Fig. 1. Nitrate nitrogen contents in rice rhizosphere (A) and non-rhizosphere (B) soils after rewatering in WMD during the grain filling stage. YD6, Yangdao 6; NJ9108, Nanjing 9108; YLY6, Yangliangyou 6; CY5, Changyou 5; YY2640, Yongyou 2640. CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. For a variety, different lowercase letters above the column indicate statistical significance at the P = 0.05 level.
图2 结实期干湿交替灌溉复水后水稻根际(A)和非根际(B)土壤铵态氮含量 YD6–扬稻6号;NJ9108–南粳9108;YLY6–扬两优6号;CY5–常优5号;YY2640–甬优2640。CI–常规灌溉;WMD–干湿交替灌溉。同一品种柱上不同小写字母表示在0.05水平上差异显著。
Fig. 2. Ammonium nitrogen contents in rice rhizosphere (A) and non-rhizosphere (B) soils after rewatering in WMD during the grain filling stage. YD6, Yangdao 6; NJ9108, Nanjing 9108; YLY6, Yangliangyou 6; CY5, Changyou 5; YY2640, Yongyou 2640. CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. For a variety, different letters above the column indicate statistical significance at the P = 0.05 level.
图3 结实期干湿交替灌溉复水后水稻根际(A)和非根际(B)土壤脲酶活性 YD6–扬稻6号;NJ9108–南粳9108;YLY6–扬两优6号;CY5–常优5号;YY2640–甬优2640。CI–常规灌溉;WMD–干湿交替灌溉。对同一品种,不同小写字母表示在0.05水平上差异显著。
Fig. 3. Urease activities in rice rhizosphere (A) and non-rhizosphere (B) soils after rewatering in WMD during the grain filling stage. YD 6, Yangdao 6; NJ 9108, Nanjing 9108; YLY 6, Yangliangyou 6; CY 5, Changyou 5; YY2640, Yongyou 2640. CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. For variety, different lowercase letters above the column indicate statistical significance at the P = 0.05 level.
图4 结实期干湿交替灌溉复水后水稻根际(A)和非根际(B)土壤蔗糖酶活性 YD6–扬稻6号;NJ9108–南粳9108;YLY6–扬两优6号;CY5–常优5号;YY2640–甬优2640。CI–常规灌溉;WMD–干湿交替灌溉。对同一品种,不同小写字母表示在0.05水平上差异显著。
Fig. 4. Sucrase activities in rice rhizosphere (A) and non-rhizosphere (B) soils after rewatering in WMD during the grain filling stage. YD 6, Yangdao 6; NJ 9108, Nanjing 9108; YLY 6, Yangliangyou 6; CY 5, Changyou 5; YY2640, Yongyou 2640. CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. For variety, different lowercase letters above the column indicate statistical significance at 0.05 level.
品种 Cultivar | 处理 Treatment | 根干质量 Root dry weight /(g·pot-1) | 根冠比 Root-shoot ratio | 根数 Root number /(×100·pot-1) | 根长 Root length /(m·pot-1) | 根表面积 Root surface /(cm2·pot-1) | 根系直径 Root diameter /mm | 根体积 Root volume /(cm3·pot-1) |
---|---|---|---|---|---|---|---|---|
扬稻6号 | CI | 25.5 b | 0.23 a | 20.0 b | 876.9 b | 9 267.7 b | 0.51 a | 125.5 a |
YD6 | WMD | 29.8 a | 0.24 a | 23.6 a | 960.1 a | 10 623.8 a | 0.52 a | 137.3 a |
南粳9108 | CI | 22.3 b | 0.23 a | 21.3 b | 624.5 b | 10 134.7 b | 0.57 a | 98.8 b |
NJ9108 | WMD | 25.9 a | 0.24 a | 24.0 a | 661.6 a | 10 797.6 a | 0.58 a | 110.3 a |
扬两优6号 | CI | 30.4 b | 0.22 a | 23.6 b | 767.3 b | 9 993.9 b | 0.61 a | 121.3 b |
YLY6 | WMD | 36.3 a | 0.23 a | 26.6 a | 812.5 a | 10 784.1 a | 0.61 a | 133.6 a |
常优5号 | CI | 25.1 a | 0.18 a | 21.7 b | 766.9 b | 10 675.1 b | 0.49 a | 112.3 b |
CY5 | WMD | 26.4 a | 0.18 a | 23.9 a | 809.4 a | 11 580.0 a | 0.48 a | 122.2 a |
甬优2640 | CI | 24.0 b | 0.24 a | 17.6 b | 883.5 b | 11 546.6 a | 0.48 a | 102.2 b |
YY2640 | WMD | 27.6 a | 0.25 a | 18.6 a | 984.2 a | 12 600.9 a | 0.47 a | 114.6 a |
表3 结实期干湿交替灌溉复水后水稻根系形态特征
Table 3. Morphological characteristics of rice roots after rewatering in WMD during the grain filling stage.
品种 Cultivar | 处理 Treatment | 根干质量 Root dry weight /(g·pot-1) | 根冠比 Root-shoot ratio | 根数 Root number /(×100·pot-1) | 根长 Root length /(m·pot-1) | 根表面积 Root surface /(cm2·pot-1) | 根系直径 Root diameter /mm | 根体积 Root volume /(cm3·pot-1) |
---|---|---|---|---|---|---|---|---|
扬稻6号 | CI | 25.5 b | 0.23 a | 20.0 b | 876.9 b | 9 267.7 b | 0.51 a | 125.5 a |
YD6 | WMD | 29.8 a | 0.24 a | 23.6 a | 960.1 a | 10 623.8 a | 0.52 a | 137.3 a |
南粳9108 | CI | 22.3 b | 0.23 a | 21.3 b | 624.5 b | 10 134.7 b | 0.57 a | 98.8 b |
NJ9108 | WMD | 25.9 a | 0.24 a | 24.0 a | 661.6 a | 10 797.6 a | 0.58 a | 110.3 a |
扬两优6号 | CI | 30.4 b | 0.22 a | 23.6 b | 767.3 b | 9 993.9 b | 0.61 a | 121.3 b |
YLY6 | WMD | 36.3 a | 0.23 a | 26.6 a | 812.5 a | 10 784.1 a | 0.61 a | 133.6 a |
常优5号 | CI | 25.1 a | 0.18 a | 21.7 b | 766.9 b | 10 675.1 b | 0.49 a | 112.3 b |
CY5 | WMD | 26.4 a | 0.18 a | 23.9 a | 809.4 a | 11 580.0 a | 0.48 a | 122.2 a |
甬优2640 | CI | 24.0 b | 0.24 a | 17.6 b | 883.5 b | 11 546.6 a | 0.48 a | 102.2 b |
YY2640 | WMD | 27.6 a | 0.25 a | 18.6 a | 984.2 a | 12 600.9 a | 0.47 a | 114.6 a |
图5 结实期干湿交替灌溉复水后根系通气组织显微结构图(扬稻6号) R1–距根尖1 cm; R2–距根尖2 cm; R3–距根尖3 cm。
Fig. 5. Microstructure of root aerenchyma after rewatering in WMD during the grain filling stage (Yangdao 6). CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. R1, 1 cm from root tip; R2, 2 cm from root tip; R3, 3 cm from root tip.
品种 Cultivar | 部位 Site | 处理 Treatment | 横截面积(S1) Cross-section area(S1) /(×104 μm2) | 通气组织面积(S2) Aerenchyma area(S2) /(×104 μm2) | 面积比(S2/S1) Area ratio(S2/S1) /% |
---|---|---|---|---|---|
扬稻6号 | R1 | CI | 50.9 a | 0.0 a | 0.0 a |
YD6 | WMD | 62.0 a | 0.0 a | 0.0 a | |
R2 | CI | 64.6 a | 9.4 a | 14.6 a | |
WMD | 53.2 a | 8.7 a | 16.4 a | ||
R3 | CI | 54.3 b | 10 b | 18.4 b | |
WMD | 74.7 a | 16.1 a | 21.6 a | ||
南粳9108 | R1 | CI | 78.8 a | 0.0 a | 0.0 a |
NJ9108 | WMD | 73.6 a | 0.0 a | 0.0 a | |
R2 | CI | 95.5 a | 12.9 a | 13.5 b | |
WMD | 90.2 a | 13.5 a | 15.0 a | ||
R3 | CI | 86.2 a | 14.5 b | 16.8 b | |
WMD | 83.8 a | 17.5 a | 20.9 a | ||
扬两优6号 | R1 | CI | 61.5 a | 0.0 a | 0.0 a |
YLY6 | WMD | 60.6 a | 0.0 a | 0.0 a | |
R2 | CI | 57.9 a | 8.9 b | 15.4 b | |
WMD | 63.1 a | 10.9 a | 17.3 a | ||
R3 | CI | 69.5 a | 12.5 a | 18.0 b | |
WMD | 64.3 a | 12.3 a | 19.1 a | ||
常优5号 | R1 | CI | 84.5 a | 0.0 a | 0.0 a |
CY5 | WMD | 75.6 a | 0.0 a | 0.0 a | |
R2 | CI | 91.7 a | 12.2 a | 13.3 b | |
WMD | 77.7 b | 12.9 a | 16.6 a | ||
R3 | CI | 80.2 a | 15.2 b | 19.0 b | |
WMD | 84.9 a | 20.3 a | 23.9 a | ||
甬优2640 | R1 | CI | 70.7 a | 0.0 a | 0.0 a |
YY 2640 | WMD | 62.3 a | 0.0 a | 0.0 a | |
R2 | CI | 75.6 a | 10.9 a | 14.4 b | |
WMD | 71.1 a | 12.0 a | 16.9 a | ||
R3 | CI | 71.0 a | 14.1 b | 19.9 b | |
WMD | 66.8 a | 17.3 a | 25.9 a |
表4 结实期干湿交替灌溉复水后水稻根系通气组织
Table 4. Aerenchyma in rice root system after rewatering in WMD during the grain filling stage.
品种 Cultivar | 部位 Site | 处理 Treatment | 横截面积(S1) Cross-section area(S1) /(×104 μm2) | 通气组织面积(S2) Aerenchyma area(S2) /(×104 μm2) | 面积比(S2/S1) Area ratio(S2/S1) /% |
---|---|---|---|---|---|
扬稻6号 | R1 | CI | 50.9 a | 0.0 a | 0.0 a |
YD6 | WMD | 62.0 a | 0.0 a | 0.0 a | |
R2 | CI | 64.6 a | 9.4 a | 14.6 a | |
WMD | 53.2 a | 8.7 a | 16.4 a | ||
R3 | CI | 54.3 b | 10 b | 18.4 b | |
WMD | 74.7 a | 16.1 a | 21.6 a | ||
南粳9108 | R1 | CI | 78.8 a | 0.0 a | 0.0 a |
NJ9108 | WMD | 73.6 a | 0.0 a | 0.0 a | |
R2 | CI | 95.5 a | 12.9 a | 13.5 b | |
WMD | 90.2 a | 13.5 a | 15.0 a | ||
R3 | CI | 86.2 a | 14.5 b | 16.8 b | |
WMD | 83.8 a | 17.5 a | 20.9 a | ||
扬两优6号 | R1 | CI | 61.5 a | 0.0 a | 0.0 a |
YLY6 | WMD | 60.6 a | 0.0 a | 0.0 a | |
R2 | CI | 57.9 a | 8.9 b | 15.4 b | |
WMD | 63.1 a | 10.9 a | 17.3 a | ||
R3 | CI | 69.5 a | 12.5 a | 18.0 b | |
WMD | 64.3 a | 12.3 a | 19.1 a | ||
常优5号 | R1 | CI | 84.5 a | 0.0 a | 0.0 a |
CY5 | WMD | 75.6 a | 0.0 a | 0.0 a | |
R2 | CI | 91.7 a | 12.2 a | 13.3 b | |
WMD | 77.7 b | 12.9 a | 16.6 a | ||
R3 | CI | 80.2 a | 15.2 b | 19.0 b | |
WMD | 84.9 a | 20.3 a | 23.9 a | ||
甬优2640 | R1 | CI | 70.7 a | 0.0 a | 0.0 a |
YY 2640 | WMD | 62.3 a | 0.0 a | 0.0 a | |
R2 | CI | 75.6 a | 10.9 a | 14.4 b | |
WMD | 71.1 a | 12.0 a | 16.9 a | ||
R3 | CI | 71.0 a | 14.1 b | 19.9 b | |
WMD | 66.8 a | 17.3 a | 25.9 a |
图6 结实期干湿交替灌溉复水后水稻根系氧化力 YD6–扬稻6号;NJ9108–南粳9108;YLY6–扬两优6号;CY5–常优5号;YY2640–甬优2640。CI–常规灌溉;WMD–干湿交替灌溉。对同一品种,不同小写字母表示在0.05水平上差异显著。
Fig. 6. Root oxidation activity after rewatering in WMD during the grain filling stage. YD6, Yangdao 6; NJ9108, Nanjing 9108; YLY6, Yangliangyou 6; CY5, Changyou 5; YY2640, Yongyou 2640. CI, Continuously flooded irrigation; WMD, Alternate wetting and moderate soil drying irrigation. For a variety, different letters above the column indicate statistical significance at the P = 0.05 level.
[1] | Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3-8. |
[2] | Ma G H, Yuan L P. Hybrid rice achievements, development and prospect in China[J]. Journal of Integrative Agriculture, 2015, 14(2): 197-205. |
[3] | Chu G, Chen T, Chen S, Xu C, Wang D, Zhang X. Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China[J]. Crop Journal, 2018, 6(5): 482-494. |
[4] | Zhang Z, Xue Y, Wang Z, Yang J, Zhang J. The relationship of grain filling with abscisic acid and ethylene under non-flooded mulching cultivation[J]. Journal of Agricultural Science, 2009, 147(4): 423-436. |
[5] | Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research, 2016, 193: 54-69. |
[6] | 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026-1036. |
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract) | |
[7] | 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响[J]. 中国水稻科学, 2019, 33(4): 293-302. |
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots[J]. Chinese Journal of Rice Science, 2019, 33(4): 293-302. (in Chinese with English abstract) | |
[8] | Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]. Field Crops Research, 2013, 144: 212-224. |
[9] | Lampayan R, Rejesus R, Singleton G, Bouman B. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice[J]. Field Crops Research, 2015, 170: 95-108. |
[10] | Zhou Q, Ju C, Wang Z, Zhang H, Liu L, Yang J, Zhang J. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation[J]. Journal of Integrative Agriculture, 2017, 16(5): 1028-1043. |
[11] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1): 36-46. |
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the utrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese with English abstract) | |
[12] | Liu K, Li T, Chen Y, Huang J, Qiu Y, Li S, Wang H, Zhu A, Zhuo X, Yu F, Zhang H, Gu J, Liu L, Yang J. Effects of root morphology and physiology on the formation and regulation of large panicles in rice[J]. Field Crops Research, 2020, 258: 1-12. |
[13] | Sun L, Liu Q, Xue Y, Xu C, Peng C, Yuan X, Shi J. Dynamic influence of S fertilizer on Cu bioavailability in rice (Oryza sativa L.) rhizosphere soil during the whole life cycle of rice plants[J]. Ecotoxicology and Environmental Safety, 2019, 19: 198-210. |
[14] | M. Valé, Nguyen C, Dambrine E, Dupouey J L. Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations[J]. Soil Biology and Biochemistry, 2005, 37(12): 2329-2333. |
[15] | Xu H, Qu Q, Chen Y, Liu G, Xue S. Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China[J]. Catena, 2021, 196: 1-13. |
[16] | Xu G W, Lu D K, Wang H Z, Li Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate[J]. Agricultural Water Management, 2018, 203: 385-394. |
[17] | Edwards J, Johnson C, Santos-MedellÃn C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V, Jeffery L D. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 911-920. |
[18] | 桂娟, 陈小云, 刘满强, 庄喜平, 孙震, 胡锋. 节水与减氮措施对稻田土壤微生物和微动物群落的影响[J]. 应用生态学报, 2016, 27(1): 107-116. |
Gui J, Chen X Y, Liu M Q, Zhuang X P, Sun Z, Hu Feng. Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 107-116. (in Chinese with English abstract) | |
[19] | 巩闪闪, 刘晓静, 张志勇, 马新明, 孔玉华. 不同施氮措施对冬小麦农田土壤酶活性和氮转化的影响[J]. 生态环境学报, 2020, 29(11): 2215-2222. |
Gong S S, Liu X J, Zhang Z Y, Ma X M, Kong Y H. Effect of different nitrogen application measures on soil enzyme activities and nitrogen turnover in winter wheat cropland[J]. Ecology and Environmental Sciences, 2020, 29(11): 2215-2222. (in Chinese with English abstract) | |
[20] | Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis[J]. Field Crops Research, 2017, 203: 173-180. |
[21] | Yang J, Zhou Q, Zhang J. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission[J]. Crop Journal, 2017, 5(2): 151-158. |
[22] | Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, Gu J, Zhang H, Lü B, Wu X, Wang Z, Yang J, Zhang J, Liu L. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields[J]. Soil Biology and Biochemistry, 2019, 129: 191-200. |
[23] | Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application[J]. Field Crops Research, 1997, 51(1-2): 65-82. |
[24] | 曹慧, 孙辉, 杨浩, 孙波, 赵其国. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003(1): 105-109. |
Cao H, Sun H, Yang H, Sun B, Zhao Q G. A review sil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied and Environmental Biology, 2003(1): 105-109. (in Chinese with English abstract) | |
[25] | 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋. 长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应[J]. 浙江农林大学学报, 2021, 38(1): 21-30. |
Chen W B, Wang X D, Shi S B, Ji S Y, Ye Z Q, Ren Z T, Liu Z. Effects of long-term combined application of fungus residue and chemical fertilizer on soil enzyme activities in paddy field[J]. Journal of Zhejiang A & F University, 2021, 38(1): 21-30. (in Chinese with English abstract) | |
[26] | 刘艳, 孙文涛, 宫亮, 蔡广兴. 水分调控对水稻根际土壤及产量的影响[J]. 灌溉排水学报, 2014, 33(2): 98-100. |
Liu Y, Sun W T, Gong L, Cai G X. Effects of water regulation on rhizosphere soils and yield of rice[J]. Journal of Irrigation and Drainage, 2014, 33(2): 98-100. (in Chinese with English abstract) | |
[27] | Huang S, Pant H K, Lu J. Effects of water regimes on nitrous oxide emission from soils[J]. Ecological Engineering, 2007, 31(1): 9-15. |
[28] | Sepaskhah A R, Tafteh A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation[J]. Agricultural Water Management, 2012, 112: 55-62. |
[29] | 张亚丽, 董园园, 沈其荣, 段英华. 不同水稻品种对铵态氮和硝态氮吸收特性的研究[J]. 土壤学报, 2004(6): 918-923. |
Zhang Y L, Dong Y Y, Shen Q R, Duan Y H. Characteristics of NH4+ and NO3- uptake by rices of different genotypes[J]. Acta Pedologica Sinica, 2004(6): 918-923. (in Chinese with English abstract) | |
[30] | 段英华, 张亚丽, 沈其荣. 水稻根际的硝化作用与水稻的硝态氮营养[J]. 土壤学报, 2004, 41(5): 803-809. |
Duan Y H, Zhang Y L, Shen Q R. Nitrification in rice rhizosphere and the nitrate nutrition of rice[J]. Acta Pedologica Sinica, 2004, 41(5): 803-809. (in Chinese with English abstract) | |
[31] | Saetre P, Stark J M. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species[J]. Oecologia, 2005, 142: 247-260. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[7] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[8] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[9] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[10] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[11] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[12] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||