中国水稻科学 ›› 2022, Vol. 36 ›› Issue (2): 207-214.DOI: 10.16819/j.1001-7216.2022.210704
• 研究报告 • 上一篇
陈奕璇1, 覃贵亮2, 周晓欣1, 黄军军2, 蒙全3, 吴俊辉1, 闫晓静1, 袁会珠1,*()
收稿日期:
2021-07-09
修回日期:
2021-12-07
出版日期:
2022-03-10
发布日期:
2022-03-11
通讯作者:
袁会珠
基金资助:
CHEN Yixuan1, QIN Guiliang2, ZHOU Xiaoxin1, HUANG Junjun2, MENG Quan3, WU Junhui1, YAN Xiaojing1, YUAN Huizhu1,*()
Received:
2021-07-09
Revised:
2021-12-07
Online:
2022-03-10
Published:
2022-03-11
Contact:
YUAN Huizhu
摘要:
【目的】 为阐明无人机与地面植保机械喷施雾滴在水稻冠层的沉积分布特征,比较其对不同冠层病虫害防治效果,科学推广及使用植保机械。【方法】 采用雾滴沉积分布检测、利用率测定以及田间调查等方法,研究6种不同植保机械在水稻田喷雾后雾滴在冠层的沉积分布、利用率以及对纹枯病和稻纵卷叶螟的防治效果。【结果】 3种无人飞机喷施雾滴在水稻冠层的沉积密度和覆盖率差异显著,在冠层上部的沉积量较其他3种地面植保机械高,但在下部的沉积量低。不同植保机械在冠层上、中、下层的沉积密度、覆盖率以及沉积量均呈递减趋势。施药后14 d,3种无人机较其他3种地面植保机械对稻纵卷叶螟的防效更高,为73.2%~84.7%。电动喷雾器和担架式喷雾机较3种无人飞机对纹枯病的防效更高,为79.6%~85.2%。【结论】 针对水稻冠层上层虫害稻纵卷叶螟使用无人飞机进行防治效果更好,针对冠层下层病害纹枯病使用施药液量较大的地面植保机械防治效果更好。
陈奕璇, 覃贵亮, 周晓欣, 黄军军, 蒙全, 吴俊辉, 闫晓静, 袁会珠. 不同植保机械喷施雾滴在水稻冠层沉积分布规律及对病虫害防效比较[J]. 中国水稻科学, 2022, 36(2): 207-214.
CHEN Yixuan, QIN Guiliang, ZHOU Xiaoxin, HUANG Junjun, MENG Quan, WU Junhui, YAN Xiaojing, YUAN Huizhu. Deposition and Distribution of Droplets Sprayed by Different Plant Protection Machinery in Rice Canopy and Comparison of Control Effects on Diseases and Pests[J]. Chinese Journal OF Rice Science, 2022, 36(2): 207-214.
植保机械 Plant protection equipment | 喷头类型 Type of nozzle | 喷头数量 Number of nozzles | 作业速度 Working speed/(m·s-1) | 作业高度 Working height /m | 用水量 Spray volume /(L·hm-2) |
---|---|---|---|---|---|
单旋翼无人飞机Single-rotor UAV | 圆锥雾Conical fog | 8 | 4 | 2 | 30 |
四旋翼无人飞机Four-rotor UAV | 离心式Centrifugal | 4 | 4 | 2 | 30 |
六旋翼无人飞机Six-rotor UAV | 圆锥雾Conical fog | 6 | 4 | 2 | 30 |
自走式喷杆喷雾机Self-propelled boom sprayer | 扇形Fan | 24 | 3 | 0.2 | 675 |
担架式喷雾机Stretcher sprayer | 圆锥雾Conical fog | 1 | 0.06 | 0.1 | 375 |
背负式电动喷雾器Knapsack electric sprayer | 圆锥雾Conical fog | 1 | 0.06 | 0.1 | 450 |
空白对照CK | / | / | / | / | / |
表1 各处理参数
Table 1 Processing parameters.
植保机械 Plant protection equipment | 喷头类型 Type of nozzle | 喷头数量 Number of nozzles | 作业速度 Working speed/(m·s-1) | 作业高度 Working height /m | 用水量 Spray volume /(L·hm-2) |
---|---|---|---|---|---|
单旋翼无人飞机Single-rotor UAV | 圆锥雾Conical fog | 8 | 4 | 2 | 30 |
四旋翼无人飞机Four-rotor UAV | 离心式Centrifugal | 4 | 4 | 2 | 30 |
六旋翼无人飞机Six-rotor UAV | 圆锥雾Conical fog | 6 | 4 | 2 | 30 |
自走式喷杆喷雾机Self-propelled boom sprayer | 扇形Fan | 24 | 3 | 0.2 | 675 |
担架式喷雾机Stretcher sprayer | 圆锥雾Conical fog | 1 | 0.06 | 0.1 | 375 |
背负式电动喷雾器Knapsack electric sprayer | 圆锥雾Conical fog | 1 | 0.06 | 0.1 | 450 |
空白对照CK | / | / | / | / | / |
植保机械 Plant protection equipment | 雾滴沉积密度Droplet deposition density per cm2 | 覆盖率Coverage rate/% | |||||
---|---|---|---|---|---|---|---|
上层 Upper | 中层 Middle | 下层 Lower | 上层 Upper | 中层 Middle | 下层 Lower | ||
单旋翼无人飞机Single-rotor UAV | 59±5 b | 23±5 b | 11±4 a | 11.0±1.4 b | 3.5±0.9 ab | 1.6±0.4 ab | |
四旋翼无人飞机Four-rotor UAV | 81±7 a | 49±14 a | 10±3 a | 17.5±4.0 a | 4.6±1.0 a | 2.2±0.5 a | |
六旋翼无人飞机Six-rotor UAV | 55±13 b | 18±1 b | 7±1 a | 7.4±1.5 b | 2.5±0.4 b | 1.0±0.1 b |
表2 不同植保机械喷施雾滴沉积密度及覆盖率的分布规律
Table 2 Distribution law of droplet deposition density and coverage rate sprayed by different plant protection equipment.
植保机械 Plant protection equipment | 雾滴沉积密度Droplet deposition density per cm2 | 覆盖率Coverage rate/% | |||||
---|---|---|---|---|---|---|---|
上层 Upper | 中层 Middle | 下层 Lower | 上层 Upper | 中层 Middle | 下层 Lower | ||
单旋翼无人飞机Single-rotor UAV | 59±5 b | 23±5 b | 11±4 a | 11.0±1.4 b | 3.5±0.9 ab | 1.6±0.4 ab | |
四旋翼无人飞机Four-rotor UAV | 81±7 a | 49±14 a | 10±3 a | 17.5±4.0 a | 4.6±1.0 a | 2.2±0.5 a | |
六旋翼无人飞机Six-rotor UAV | 55±13 b | 18±1 b | 7±1 a | 7.4±1.5 b | 2.5±0.4 b | 1.0±0.1 b |
植保机械 Plant protection equipment | 沉积量Deposition/(µg·cm-2) | 沉积利用率 Deposition utilization/% | ||
---|---|---|---|---|
上层Upper | 中层Middle | 下层Lower | ||
单旋翼无人飞机 Single-rotor UAV | 1.07±0.19 ab | 0.46±0.08 a | 0.16±0.01 c | 42±10 ab |
四旋翼无人飞机 Four-rotor UAV | 1.17±0.05 a | 0.50±0.02 a | 0.23±0.10 bc | 61±24 a |
六旋翼无人飞机 Six-rotor UAV | 1.16±0.17 a | 0.37±0.12 a | 0.16±0.03 c | 52±11 ab |
自走式喷杆喷雾机 Self-propelled boom sprayer | 0.74±0.16 b | 0.45±0.08 a | 0.36±0.01 a | 33±11 b |
担架式喷雾机 Stretcher sprayer | 0.93±0.26 ab | 0.49±0.08 a | 0.26±0.07 abc | 43±3 ab |
背负式电动喷雾器 Knapsack electric sprayer | 0.94±0.19 ab | 0.45±0.11 a | 0.34±0.03 ab | 38±21 ab |
表3 不同植保机械喷雾在水稻冠层沉积量以及农药沉积利用率的比较
Table 3 Comparison of rice canopy deposition and pesticide deposition utilization between different plant protection equipment sprays.
植保机械 Plant protection equipment | 沉积量Deposition/(µg·cm-2) | 沉积利用率 Deposition utilization/% | ||
---|---|---|---|---|
上层Upper | 中层Middle | 下层Lower | ||
单旋翼无人飞机 Single-rotor UAV | 1.07±0.19 ab | 0.46±0.08 a | 0.16±0.01 c | 42±10 ab |
四旋翼无人飞机 Four-rotor UAV | 1.17±0.05 a | 0.50±0.02 a | 0.23±0.10 bc | 61±24 a |
六旋翼无人飞机 Six-rotor UAV | 1.16±0.17 a | 0.37±0.12 a | 0.16±0.03 c | 52±11 ab |
自走式喷杆喷雾机 Self-propelled boom sprayer | 0.74±0.16 b | 0.45±0.08 a | 0.36±0.01 a | 33±11 b |
担架式喷雾机 Stretcher sprayer | 0.93±0.26 ab | 0.49±0.08 a | 0.26±0.07 abc | 43±3 ab |
背负式电动喷雾器 Knapsack electric sprayer | 0.94±0.19 ab | 0.45±0.11 a | 0.34±0.03 ab | 38±21 ab |
植保机械 Plant protection equipment | 病丛率 Disease rate/% | 病株率 Diseased plant rate/% | 病情指数 Disease index | 防效 Control effect/% |
---|---|---|---|---|
单旋翼无人飞机Single-rotor UAV | 58 | 4.36 | 1.46 | 68.5 |
四旋翼无人飞机Four-rotor UAV | 62 | 5.77 | 1.76 | 62.0 |
六旋翼无人飞机Six-rotor UAV | 82 | 4.91 | 1.78 | 61.6 |
自走式喷杆喷雾机Self-propelled boom sprayer | 70 | 5.22 | 1.77 | 61.8 |
担架式喷雾机Stretcher sprayer | 62 | 5.16 | 1.13 | 75.6 |
背负式电动喷雾器Knapsack electric sprayer | 20 | 1.57 | 0.50 | 89.2 |
对照CK | 72 | 13.49 | 4.63 | / |
表4 不同植保机械喷雾对水稻纹枯病防效的比较
Table 4 Comparison of the effects of spraying with different plant protection equipment on rice sheath blight.
植保机械 Plant protection equipment | 病丛率 Disease rate/% | 病株率 Diseased plant rate/% | 病情指数 Disease index | 防效 Control effect/% |
---|---|---|---|---|
单旋翼无人飞机Single-rotor UAV | 58 | 4.36 | 1.46 | 68.5 |
四旋翼无人飞机Four-rotor UAV | 62 | 5.77 | 1.76 | 62.0 |
六旋翼无人飞机Six-rotor UAV | 82 | 4.91 | 1.78 | 61.6 |
自走式喷杆喷雾机Self-propelled boom sprayer | 70 | 5.22 | 1.77 | 61.8 |
担架式喷雾机Stretcher sprayer | 62 | 5.16 | 1.13 | 75.6 |
背负式电动喷雾器Knapsack electric sprayer | 20 | 1.57 | 0.50 | 89.2 |
对照CK | 72 | 13.49 | 4.63 | / |
植保机械 Plant protection equipment | 药前Before application | 药后After application | 防效 Control effect/% | |||
---|---|---|---|---|---|---|
卷叶数 Curly leaf number | 卷叶率 Curly leaf rate/% | 卷叶数 Curly leaf number | 卷叶率 Curly leaf rate/% | |||
单旋翼无人飞机 Single-rotor UAV | 18 | 0.46 | 71 | 1.82 | 73.2 | |
四旋翼无人飞机 Four-rotor UAV | 12 | 0.36 | 58 | 1.73 | 74.5 | |
六旋翼无人飞机 Six-rotor UAV | 19 | 0.47 | 42 | 1.04 | 84.7 | |
自走式喷杆喷雾机 Self-propelled boom sprayer | 11 | 0.29 | 83 | 2.19 | 67.7 | |
担架式喷雾机 Stretcher sprayer | 13 | 0.36 | 79 | 2.16 | 68.1 | |
背负式电动喷雾器 Knapsack electric sprayer | 9 | 0.26 | 75 | 2.13 | 68.6 | |
对照CK | 11 | 0.27 | 275 | 6.78 | / |
表5 不同植保机械喷雾对稻纵卷叶螟防效的比较
Table 5 Comparison of the control effects of spraying with different plant protection equipment on Cnaphalocrocis medinalis.
植保机械 Plant protection equipment | 药前Before application | 药后After application | 防效 Control effect/% | |||
---|---|---|---|---|---|---|
卷叶数 Curly leaf number | 卷叶率 Curly leaf rate/% | 卷叶数 Curly leaf number | 卷叶率 Curly leaf rate/% | |||
单旋翼无人飞机 Single-rotor UAV | 18 | 0.46 | 71 | 1.82 | 73.2 | |
四旋翼无人飞机 Four-rotor UAV | 12 | 0.36 | 58 | 1.73 | 74.5 | |
六旋翼无人飞机 Six-rotor UAV | 19 | 0.47 | 42 | 1.04 | 84.7 | |
自走式喷杆喷雾机 Self-propelled boom sprayer | 11 | 0.29 | 83 | 2.19 | 67.7 | |
担架式喷雾机 Stretcher sprayer | 13 | 0.36 | 79 | 2.16 | 68.1 | |
背负式电动喷雾器 Knapsack electric sprayer | 9 | 0.26 | 75 | 2.13 | 68.6 | |
对照CK | 11 | 0.27 | 275 | 6.78 | / |
[1] | 徐广春, 徐德进, 徐鹿, 王聪博, 曹坳程, 顾中言. 有机硅助剂对氯虫苯甲酰胺防治稻纵卷叶螟的增效作用研究[J]. 农药学学报, 2020,22(2):285-292. |
Xu G C, Xu D J, Xu L, Wang C B, Cao A C, Gu Z Y. Study on the synergistic effect of organosilicon adjuvant on chlorantraniliprole in the control of rice leaffolder, Cnaphalocrocis medinalis Guenée[J]. Journal of Pesticide Science, 2020,22(2):285-292. (in Chinese with English abstract) | |
[2] | 袁会珠, 薛新宇, 闫晓静, 秦维彩, 孔肖, 周洋洋, 王明, 高赛超. 植保无人飞机低空低容量喷雾技术应用与展望[J]. 植物保护, 2018,44(5):152-158. |
Yuan H Z, Xue X Y, Yan X J, Qin W C, Kong X, Zhou Y Y, Wang M, Gao S C. Applications and prospects in the unmanned aerial system for low-altitude and low-volume spray in crop protection[J]. Plant Protection, 2018,44(5):152-158. (in Chinese with English abstract) | |
[3] | 刘霞. 植保机械应用现状及发展趋势[J]. 农业装备技术, 2019,45(3):59. |
Liu X. Application status and development trend of plant protection machinery[J]. Agricultural Equipment & Technology, 2019,45(3):59. (in Chinese with English abstract) | |
[4] | 闫晓静, 杨代斌, 薛新宇, 王国宾, 崔丽, 冯超, 秦维彩, 袁会珠. 中国农药应用工艺学20年的理论研究与技术概述[J]. 农药学学报, 2019,21(Z1):908-920. |
Yan X J, Yang D B, Xue X Y, Wang G B, Cui L, Feng C, Qin W C, Yuan H Z. Overview in theories and technologies for pesticide application in China during the last two decades[J]. Journal of Pesticide Science, 2019,21(Z1):908-920. (in Chinese with English abstract) | |
[5] | Webb K M, Claire F, Corey D B. Metabolome profiling to understand the defense response of sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB[J]. Physiological and Molecular Plant Pathology, 2016,94:108-117. |
[6] | 亓璐, 张涛, 曾娟, 李春广, 李天娇, 赵艳丽, 闫硕. 近年我国水稻五大产区主要病害发生情况分析[J]. 中国植保导刊, 2021,41(4):37-42. |
Qi L, Zhang T, Zeng J, Li G C, Li T J, Zhao Y L, Yan S. Analysis on the occurrence of main diseases in five rice producing areas in China in recent years[J]. China Plant Protection, 2021,41(4):37-42. (in Chinese with English abstract) | |
[7] | 张华梦, 郑礼煜, 王继春, 朱峰, 牛冬冬. 水稻纹枯病生防细菌筛选及其与病原菌侵染垫形成的关系[J]. 植物保护学报, 2021,48(2):289-297. |
Zhang H M, Zheng L Y, Wang J C, Zhu F, Niu D D. Screening of biocontrol bacteria for rice sheath blight and their relations with the formation of infection cushion of the pathogen[J]. Journal of Plant Protection, 2021,48(2):289-297. (in Chinese with English abstract) | |
[8] | Kawazu K, Shintani Y, Tatsuki S. Effect of multiple mating on the reproductive performance of the rice leaffolder moth, Cnaphalocrocis medinalis (Lepidoptera: Crambidae)[J]. Applied Entomology and Zoology, 2014,49(4):519-524. |
[9] | 吴降星, 郑许松, 周光华, 刘桂良, 徐红星, 杨亚军, 吕仲贤. 不同生育期剪叶对水稻生长、产量及生理的影响[J]. 应用昆虫学报, 2013,50(3):651-658. |
Wu J X, Zheng X S, Zhou G H, Liu G L, Xu H X, Yang Y J, Lv Z X. Effects of leaf cutting at different growth stages on growth, yield and physiology of rice[J]. Chinese Journal of Applied Entomology, 2013,50(3):651-658. (in Chinese with English abstract) | |
[10] | 苏小记, 王雅丽, 魏静, 黄崇春, 刘艾英, 李淑, 梁自静, 袁会珠. 9种植保机械防治小麦穗蚜的农药沉积率与效果比较[J]. 西北农业学报, 2018,27(1):149-154. |
Su X J, Wang Y L, Wei J, Huang C C, Liu A Y, Li S, Liang Z J, Yuan H Z. Comparison of pesticide deposition rate and effect of 9 plant protection machines on controlling wheat ear aphid[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018,27(1):149-154. (in Chinese with English abstract) | |
[11] | 陈奕璇. 喷雾药液性质与农药沉积利用率关系研究[D]. 北京: 中国农业科学院, 2021. |
Chen Y X. Study on the relationship between the properties of spray liquid and the utilization rate of pesticide[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese with English abstract) | |
[12] | 姚毅, 李一波, 徐福良, 邱齐均, 宋拓. 植保无人机施药对二化螟和稻纵卷叶螟的防治效果[J]. 湖南农业科学, 2021(2):74-76. |
Yao Y, Li Y B, Xu F L, Qiu Q J, Song T. Control effect of plant protection UAV on Chilo suppressalis and rice leaf roller[J]. Hunan Agricultural Sciences, 2021(2):74-76. (in Chinese with English abstract) | |
[13] | 孙亦诚, 李新宇, 孙国俊, 段云辉, 张海艳, 韩敏, 张铭. 不同植保机械施药防控水稻病虫效果差异[J]. 江苏农业科学, 2021,49(17):110-115. |
Sun Y C, Li X Y, Sun G J, Duan Y H, Zhang H Y, Han M, Zhang M. The difference of different plant protection machinery on controlling rice diseases and insect pests[J]. Jiangsu Agricultural Sciences, 2021,49(17):110-115. (in Chinese with English abstract) | |
[14] | 陈奕璇, 石鑫, 覃贵亮, 郭永旺, 闫晓静, 袁会珠. 植物油助剂Aero-mate 320对植保无人机稻田低容量喷雾沉积利用率的提升效果及其机理分析[J]. 植物保护学报, 2021,48(3):510-517. |
Chen Y X, Shi X, Qin G L, Guo Y W, Yan X J, Yuan H Z. The mechanism and effect of the vegetable oil adjuvants Aero-mate 320 in improving the deposition utilization rate of plant protection UAV in rice crop[J]. Journal of Plant Protection, 2021,48(3):510-517. (in Chinese with English abstract) | |
[15] | Gao S C, Wang G B, Zhou Y Y, Wang M, Yang D B, Yuan H Z, Yan X J. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops[J]. Pest Management Science, 2019,75(10):2592-2597. |
[16] | 农业农村部种植业管理司. 农药利用率田间测定方法第1部分: 大田作物茎叶喷雾的农药沉积利用率测定方法诱惑红指示剂法: NY/T 3630.1-2020[S]. 北京: 中国农业出版社, 2020: 1-7. |
Department of Plantation Management, Ministry of Agriculture and Rural Affairs. Technical methodology of determining pesticide utilization rate in field Part 1: Technical methodology of determining pesticide deposition rate by foliar spray in field crop-Allura Red as a tracer: NY/T 3630. 1-2020[S]. Beijing: China Agriculture Press, 2020: 1-7. (in Chinese) | |
[17] | 中华人民共和国农业部. 农药田间药效试验准则(一):杀菌剂防治水稻纹枯病: GB/T 17980. 20-2000[S]. 北京: 中国标准出版社, 2000: 83-85. |
Ministry of Agriculture, PRC. Guidelines for the field efficacy trials of pesticides(I):Fungicides against sheath blight of rice:GB/T 17980. 20-2000[S]. Beijing: Standards Press of China, 2000: 83-85. (in Chinese) | |
[18] | 中华人民共和国农业部. 农药田间药效试验准则(一): 杀虫剂防治稻纵卷叶螟: GB/T 17980. 2-2000[S]. 北京: 中国标准出版社, 2000: 349-350. |
Ministry of Agriculture, PRC. Guidelines for the field efficacy trials of pesticides(I):Insecticides against rice leaf roller:GB/T 17980. 2-2000[S]. Beijing: Standards Press of China, 2000: 349-350. (in Chinese) | |
[19] | 曾爱军, 王昌陵, 宋坚利, 王志翀, 黄铭一, 何雄奎, Andreas H. 风洞环境下喷头及助剂对植保无人飞机喷雾飘移性的影响[J]. 农药学学报, 2020,22(2):315-323. (in Chinese with English abstract) |
Zeng A J, Wang C L, Song L J, Wang Z C, Huang M Y, He X K, Andreas H. Effects of nozzle types, adjuvants and environmental conditions on spray drift potential of unmanned aerial vehicles in a wind tunnel[J]. Journal of Pesticide Science, 2020,22(2):315-323. (in Chinese with English abstract) | |
[20] | 袁会珠, 齐淑华, 杨代斌. 药液在作物叶片的流失点和最大稳定持留量研究[J]. 农药学学报, 2000(4):66-71. |
Yuan H Z, Qi S H, Yang D B. Study on the loss point and maximum stable retention of liquid medicine in crop leaves[J]. Journal of Pesticide Science, 2000(4):66-71. (in Chinese with English abstract) | |
[21] | 李艳大, 叶春, 曹中盛, 孙滨峰, 舒时富, 陈立才. 无人机与人工喷施雾滴在水稻冠层内沉积特征及效益比较[J]. 中国水稻科学, 2021,35(5):513-518. |
Li Y D, Ye C, Cao Z S, Sun B F, Shu S F, Chen L C. Comparison of droplet deposition characteristics in rice canopy and benefit between unmanned aerial vehicle spray and artificial spray[J]. Chinese Journal of Rice Science, 2021,35(5):513-518. (in Chinese with English abstract) | |
[22] | 何玲, 王国宾, 胡韬, 蒙艳华, 闫晓静, 袁会珠. 喷雾助剂及施液量对植保无人机喷雾雾滴在水稻冠层沉积分布的影响[J]. 植物保护学报, 2017,44(6):1046-1052. |
He L, Wang G B, Hu D, Meng Y H, Yan X J, Yuan H Z. Influences of spray adjuvants and spray volume on the droplet deposition distribution with unmanned aerial vehicle (UAV) spraying on rice[J]. Journal of Plant Protection, 2017,44(6):1046-1052. (in Chinese with English abstract) | |
[23] | 王明, 陈奕璇, 苏小计, 岳虎锋, 闫晓静, 袁会珠. 添加助剂对植保无人飞机低容量喷雾在矮化密植苹果园中雾滴沉积分布及苹果黄蚜防治效果的影响[J]. 植物保护学报, 2019,46(6):1316-1323. |
Wang M, Chen Y X, Su X J, Yue H F, Yan X J, Yuan H Z. Effects of adjuvant in low volume spraying by UAV on the deposition distribution of pesticide droplets and control efficiency against the Aphis ciricola in high-density dwarfing cultivation pattern apple orchard[J]. Journal of Plant Protection, 2019,46(6):1316-1323. (in Chinese with English abstract) | |
[24] | 宁清丽, 王慧芹, 陈军, 张文杰, 尹奇勋, 莫晟琼, 黄光耀. 采用不同施药器械防治稻纵卷叶螟的田间效果比较[J]. 广西植保, 2020,33(3):11-13. |
Ning Q L, Wang H Q, Chen J, Zhang W J, Yin Q X, Mo S Q, Huang W Y. Comparison of field effects of different applicators on rice leaf roller[J]. Guangxi Plant Protection, 2020,33(3):11-13. (in Chinese) | |
[25] | 顾中言, 徐德进, 徐广春. 论农药雾滴的剂量及分布对害虫防治效果的影响及其与农药损失的关系[J]. 农药学学报, 2020,22(2):193-204. |
Gu Z Y, Xu D J, Xu G C. Effects of dose and distribution of pesticide droplets on pests control efficiency and its relationship with pesticide losses[J]. Journal of Pesticide Science, 2020,22(2):193-204. (in Chinese with English abstract) |
[1] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[2] | 冯志明, 王广达, 赵剑华, 居冉, 李梦臣, 高鹏, 胡珂鸣, 陈宗祥, 左示敏. 水稻富含半胱氨酸类受体激酶家族基因对纹枯病菌和植物激素的响应特征分析[J]. 中国水稻科学, 2021, 35(5): 439-448. |
[3] | 朱华珺, 周瑚, 任佐华, 刘二明. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学, 2020, 34(5): 470-478. |
[4] | 朱名海, 彭丹丹, 舒灿伟, 周而勋. 海南南繁区水稻纹枯病菌的遗传多样性与致病力分化[J]. 中国水稻科学, 2019, 33(2): 176-185. |
[5] | 刘婷婷, 王婷, 胡林. 基于卷积神经网络的水稻纹枯病图像识别[J]. 中国水稻科学, 2019, 33(1): 90-94. |
[6] | 张清霞, 张迎, 何玲玲, 陈夕军, 童蕴慧, 纪兆林. 水稻纹枯病拮抗细菌7-5的鉴定及其生防机制初步研究[J]. 中国水稻科学, 2018, 32(3): 277-284. |
[7] | 江绍锋, 王陈骄子, 舒灿伟, 周而勋. 水稻纹枯病菌RsPhm基因的克隆及其表达分析[J]. 中国水稻科学, 2018, 1(1): 111-118. |
[8] | 陈宗祥, 冯志明, 王龙平, 冯凡, 张亚芳, 马玉银, 潘学彪, 左示敏. 水稻分蘖角基因TAC1的育种应用价值分析[J]. 中国水稻科学, 2017, 31(6): 590-598. |
[9] | 李传明, 韩光杰, 杨亚军, 祁建杭, 刘琴, 徐健, 吕仲贤. 稻纵卷叶螟对不同植物的产卵趋性与取食选择[J]. 中国水稻科学, 2017, 31(3): 315-319. |
[10] | 吴志红, 杨亚军, 徐红星, 郑许松, 田俊策, 鲁艳辉, 吕仲贤. 稻纵卷叶螟经Bt水稻低强度处理多代后幼虫生长发育和中肠主要酶活性的变化[J]. 中国水稻科学, 2015, 29(4): 417-423. |
[11] | 徐国娟, 袁正杰, 左示敏, 潘学彪, 王志龙, 瞿绍洪. 水稻苗期纹枯病抗性鉴定微室接种技术的改良[J]. 中国水稻科学, 2015, 29(1): 97-105. |
[12] | 陈宗祥1 ,左示敏1,* ,张亚芳1 ,陈红旗4 ,冯明辉1 ,姜伟1 ,冯凡1 ,马玉银3 ,华鹤良2 ,李国生2 ,潘学彪1,*. 抗纹枯病基因qSB-9TQ和分蘖角基因TAC1TQ在抗病育种中的互作效应及育种价值[J]. 中国水稻科学, 2014, 28(5): 479-486. |
[13] | 左示敏1,# ,陈夕军1,2,# ,陈红旗3 ,徐艳2 ,张家豪2 ,陈羽2 ,陈宗祥1 ,童蕴慧2 ,徐敬友2,* ,潘学彪1,*. 不同抗性水平水稻品种对纹枯病菌毒素的防卫反应与生理差异[J]. 中国水稻科学, 2014, 28(5): 551-558. |
[14] | 沈慧梅1 ,谌爱东1,* ,赵雪晴1 ,尹艳琼1 ,李向永1,韦家贵2 . 滇东南富宁稻纵卷叶螟的迁入过程与虫源地分析[J]. 中国水稻科学, 2014, 28(4): 427-434. |
[15] | 左示敏* ,张玉梅,薛芗,朱亚军,张亚芳,陈宗祥,陈夕军,潘学彪*. 水稻新种质YSBR1抗纹枯病机制的初步研究[J]. 中国水稻科学, 2014, 28(2): 132-140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||