中国水稻科学 ›› 2018, Vol. 1 ›› Issue (1): 155-168.DOI: 10.16819/j.1001-7216.2018.7060
朱宽宇1, 展明飞1, 陈静1, 王志琴1, 杨建昌1, 赵步洪2,*()
收稿日期:
2017-05-24
出版日期:
2018-01-10
发布日期:
2018-03-01
通讯作者:
赵步洪
基金资助:
Kuanyu ZHU1, Mingfei ZHAN1, CHENJing1, Zhiqin WANG1, Jianchang YANG1, Buhong ZHAO2,*()
Received:
2017-05-24
Online:
2018-01-10
Published:
2018-03-01
Contact:
Buhong ZHAO
摘要: 旨在阐明氮肥和灌溉方式对水稻产量、籽粒灌浆及生理特性的影响。 以大穗型品种甬优2640和中穗型品种淮稻5号为供试材料进行盆钵试验,大田育秧移栽后设置3种氮肥水平,即0N(不施氮)、MN(2g N/盆)、HN(4g N/盆);抽穗至成熟期设置3种灌溉方式,即CI(保持水层灌溉)、WMD(轻干湿交替灌溉, 土壤水势 -15 kPa时复水)、WSD(重干湿交替灌溉, 土壤水势 -30 kPa时复水)。 在CI下,两个品种产量均以MN水平最高;WMD处理下,两个品种产量均以HN水平最高,但与MN下差异不显著,WSD处理下两个品种产量均以HN最高;而在籽粒灌浆上,两个品种强势粒的灌浆速率和最终粒重在各个水氮处理间无显著差异,弱势粒的灌浆速率和最终粒重在良好水势条件CI和轻度水分胁迫WMD下,分别在0 N和MN水平下表现较优;但在重度水分胁迫WSD下,0N水平表现最低,HN最高,但与MN差异不显著。以上都表明产量与弱势粒的灌浆在水氮间存在着明显的交互作用。在品种间,大穗型籼粳杂交稻甬优2640弱势粒灌浆速率及粒重都低于中穗型常规粳稻淮稻5号,其产量优势主要源自较高的每穗粒数。最后,WMD+MN处理下有较高的氮肥利用率,较少的施氮量获得较高的产量,达到节水节氮增产的效果,其次也增加了根系生理活性和叶片光合性能,非结构性碳水化合物(NSC)转运率,促进了地上部的生长发育,同时也加强了物质运转,促进了灌浆中后期弱势粒籽粒的充实,最终达到产量增加的目的,成为本研究最佳水氮运筹方式。
中图分类号:
朱宽宇, 展明飞, 陈静, 王志琴, 杨建昌, 赵步洪. 不同氮肥水平下结实期灌溉方式对水稻弱势粒灌浆及产量的影响[J]. 中国水稻科学, 2018, 1(1): 155-168.
Kuanyu ZHU, Mingfei ZHAN, CHENJing, Zhiqin WANG, Jianchang YANG, Buhong ZHAO. Effects of Irrigation Regimes DuringGrain Filling Under Different Nitrogen Rates on Inferior SpikeletsGrain-Filling and Grain Yield of Rice[J]. Chinese Journal OF Rice Science, 2018, 1(1): 155-168.
变异来源 Sourceofvariance | 自由度df | 产量 Yield | 平均灌浆速率 Mean of grain filling rate | 最终粒重 Final weight | NSC转运率 NSC remobiliza -tion rate | 根系氧化力 Root oxidation | 光合速率 Photosynthe -tic rate | 蒸腾速率 Transpiration rate | 根系IAA含量 IAA content of Root | 根系Z+ZR含量 Z+ZR content of Root | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年度Year(Y) | 1 | 7.95ns | 8.58ns | 2.45ns | 3.32ns | 4.67ns | 4.77ns | 19.81ns | 16.35ns | 12.89ns | ||
品种Cultivar(C) | 1 | 63.65** | 141.36** | 71.91** | 20.99** | 25.68** | 46.93** | 98.32** | 33.66** | 34.78** | ||
灌溉Irrigation(I) | 2 | 18.98** | 148.92** | 89.15** | 28.22** | 86.82** | 48.90** | 484.03** | 14.15** | 16.52** | ||
氮肥Nitrogen(N) | 2 | 15.09** | 24.66* | 54.88** | 11.62** | 53.53* | 54.91* | 5.66* | 40.68** | 42.26** | ||
Y×C | 1 | 138.98ns | 148.92ns | 89.15ns | 202.22ns | 486.82ns | 486.90ns | 484.03ns | 12.15ns | 616.52ns | ||
Y×I | 2 | 8.99ns | 6.08ns | 11.43ns | 102.62ns | 68.52ns | 57.14ns | 2.87ns | 59.37ns | 51.42ns | ||
Y×N | 2 | 30.90ns | 11.82ns | 96.13ns | 22.54ns | 78.65ns | 33.64ns | 49.25ns | 25.45ns | 22.06ns | ||
C×I | 2 | 99.57** | 0.35ns | 0.02ns | 0.95ns | 1.23ns | 1.22ns | 1.22ns | 64.53** | 64.56** | ||
C×N | 2 | 152.52** | 0.21ns | 3.32* | 17.55** | 140.56* | 140.58* | 139.75** | 27.71** | 27.74** | ||
I×N | 4 | 97.29** | 18.00** | 66.65** | 1.29ns | 0.51ns | 0.50ns | 0.50ns | 4.21** | 4.25** | ||
Y×C×I | 2 | 2.68ns | 0.09ns | 0.93ns | 0.82ns | 0.05ns | 0.72ns | 0.01ns | 0.23ns | 0.21ns | ||
Y×C×N | 2 | 3.62ns | 0.08ns | 0.97ns | 6.75ns | 5.23ns | 0.43ns | 0.83ns | 0.10ns | 0.09ns | ||
C×I×N | 4 | 11.38** | 0.18ns | 2.05ns | 5.54* | 10.15** | 10.16** | 10.10** | 0.02ns | 0.02ns | ||
Y×I×N | 4 | 2.11ns | 0.03ns | 0.90ns | 5.32ns | 44.24ns | 0.81ns | 0.11ns | 0.02ns | 0.01ns | ||
Y×C×I×N | 4 | 3.92ns | 0.04ns | 0.92ns | 112.52ns | 68.93ns | 42.34ns | 60.52ns | 33.21ns | 8.97ns |
表1 产量、籽粒灌浆及其生理特性在年度间、品种间及处理间的方差分析
Table 1 Analysis-of-variance (F-values) for grain yield, grain filling characteristics and physiologicaltraits of riceamong years, cultivars and treatments.
变异来源 Sourceofvariance | 自由度df | 产量 Yield | 平均灌浆速率 Mean of grain filling rate | 最终粒重 Final weight | NSC转运率 NSC remobiliza -tion rate | 根系氧化力 Root oxidation | 光合速率 Photosynthe -tic rate | 蒸腾速率 Transpiration rate | 根系IAA含量 IAA content of Root | 根系Z+ZR含量 Z+ZR content of Root | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
年度Year(Y) | 1 | 7.95ns | 8.58ns | 2.45ns | 3.32ns | 4.67ns | 4.77ns | 19.81ns | 16.35ns | 12.89ns | ||
品种Cultivar(C) | 1 | 63.65** | 141.36** | 71.91** | 20.99** | 25.68** | 46.93** | 98.32** | 33.66** | 34.78** | ||
灌溉Irrigation(I) | 2 | 18.98** | 148.92** | 89.15** | 28.22** | 86.82** | 48.90** | 484.03** | 14.15** | 16.52** | ||
氮肥Nitrogen(N) | 2 | 15.09** | 24.66* | 54.88** | 11.62** | 53.53* | 54.91* | 5.66* | 40.68** | 42.26** | ||
Y×C | 1 | 138.98ns | 148.92ns | 89.15ns | 202.22ns | 486.82ns | 486.90ns | 484.03ns | 12.15ns | 616.52ns | ||
Y×I | 2 | 8.99ns | 6.08ns | 11.43ns | 102.62ns | 68.52ns | 57.14ns | 2.87ns | 59.37ns | 51.42ns | ||
Y×N | 2 | 30.90ns | 11.82ns | 96.13ns | 22.54ns | 78.65ns | 33.64ns | 49.25ns | 25.45ns | 22.06ns | ||
C×I | 2 | 99.57** | 0.35ns | 0.02ns | 0.95ns | 1.23ns | 1.22ns | 1.22ns | 64.53** | 64.56** | ||
C×N | 2 | 152.52** | 0.21ns | 3.32* | 17.55** | 140.56* | 140.58* | 139.75** | 27.71** | 27.74** | ||
I×N | 4 | 97.29** | 18.00** | 66.65** | 1.29ns | 0.51ns | 0.50ns | 0.50ns | 4.21** | 4.25** | ||
Y×C×I | 2 | 2.68ns | 0.09ns | 0.93ns | 0.82ns | 0.05ns | 0.72ns | 0.01ns | 0.23ns | 0.21ns | ||
Y×C×N | 2 | 3.62ns | 0.08ns | 0.97ns | 6.75ns | 5.23ns | 0.43ns | 0.83ns | 0.10ns | 0.09ns | ||
C×I×N | 4 | 11.38** | 0.18ns | 2.05ns | 5.54* | 10.15** | 10.16** | 10.10** | 0.02ns | 0.02ns | ||
Y×I×N | 4 | 2.11ns | 0.03ns | 0.90ns | 5.32ns | 44.24ns | 0.81ns | 0.11ns | 0.02ns | 0.01ns | ||
Y×C×I×N | 4 | 3.92ns | 0.04ns | 0.92ns | 112.52ns | 68.93ns | 42.34ns | 60.52ns | 33.21ns | 8.97ns |
品种 Cultivar | 处理 Treatment | 每盆穗数 No.of panicle per pot | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g | 产量 Grain yield /g·pot-1 |
---|---|---|---|---|---|---|
甬优2640 Yongyou 2640 | CI+0N | 11.2c | 229.5c | 90.5c | 24.5b | 57.0g |
CI+MN | 18.7b | 276.3b | 89.5d | 24.6b | 114.3b | |
CI+HN | 21.2a | 289.4a | 75.9f | 23.6c | 110.2c | |
WMD+0N | 11.2c | 230.1c | 93.8a | 25.5a | 61.7f | |
WMD+MN | 18.6b | 276.8b | 93.2b | 25.6a | 122.7a | |
WMD+HN | 21.2a | 289.2a | 80.1e | 25.4a | 124.8a | |
WSD+0N | 11.4c | 231.9c | 74.7h | 22.9e | 44.7h | |
WSD+MN | 18.5b | 274.9b | 75.3g | 23.4d | 91.4e | |
WSD+HN | 21.1a | 288.5a | 75.5g | 23.0d | 105.7d | |
淮稻5号 Huaidao 5 | CI+0N | 13.8c | 141.5c | 91.9b | 27.1b | 48.6g |
CI+MN | 23.0b | 171.6b | 91.7b | 27.2b | 97.0b | |
CI+HN | 24.2a | 177.9a | 80.7d | 26.4c | 91.7c | |
WMD+0N | 13.9c | 141.9c | 92.9a | 27.7a | 50.7f | |
WMD+MN | 22.8b | 171.3b | 92.5a | 27.5a | 99.9a | |
WMD+HN | 24.2a | 177.0a | 85.4c | 27.6a | 100.9a | |
WSD+0N | 13.7c | 141.6c | 80.1e | 25.1e | 39.0h | |
WSD+MN | 22.6b | 169.8b | 81.9d | 25.8d | 81.1e | |
WSD+HN | 24.0a | 175.6a | 82.2d | 25.9d | 89.7d |
表2 不同氮肥水平下结实期灌溉方式对水稻产量及其构成因素的影响
Table 2 Effects of irrigation regimes during grain filling under different nitrogen rates on the yield components of rice.
品种 Cultivar | 处理 Treatment | 每盆穗数 No.of panicle per pot | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g | 产量 Grain yield /g·pot-1 |
---|---|---|---|---|---|---|
甬优2640 Yongyou 2640 | CI+0N | 11.2c | 229.5c | 90.5c | 24.5b | 57.0g |
CI+MN | 18.7b | 276.3b | 89.5d | 24.6b | 114.3b | |
CI+HN | 21.2a | 289.4a | 75.9f | 23.6c | 110.2c | |
WMD+0N | 11.2c | 230.1c | 93.8a | 25.5a | 61.7f | |
WMD+MN | 18.6b | 276.8b | 93.2b | 25.6a | 122.7a | |
WMD+HN | 21.2a | 289.2a | 80.1e | 25.4a | 124.8a | |
WSD+0N | 11.4c | 231.9c | 74.7h | 22.9e | 44.7h | |
WSD+MN | 18.5b | 274.9b | 75.3g | 23.4d | 91.4e | |
WSD+HN | 21.1a | 288.5a | 75.5g | 23.0d | 105.7d | |
淮稻5号 Huaidao 5 | CI+0N | 13.8c | 141.5c | 91.9b | 27.1b | 48.6g |
CI+MN | 23.0b | 171.6b | 91.7b | 27.2b | 97.0b | |
CI+HN | 24.2a | 177.9a | 80.7d | 26.4c | 91.7c | |
WMD+0N | 13.9c | 141.9c | 92.9a | 27.7a | 50.7f | |
WMD+MN | 22.8b | 171.3b | 92.5a | 27.5a | 99.9a | |
WMD+HN | 24.2a | 177.0a | 85.4c | 27.6a | 100.9a | |
WSD+0N | 13.7c | 141.6c | 80.1e | 25.1e | 39.0h | |
WSD+MN | 22.6b | 169.8b | 81.9d | 25.8d | 81.1e | |
WSD+HN | 24.0a | 175.6a | 82.2d | 25.9d | 89.7d |
图1 不同氮肥水平下结实期灌溉方式对水稻氮肥利用率和收获指数的影响 CI–常规灌溉;WMD–轻干湿交替灌溉;WSD–重干湿交替灌溉; MN–中氮;HN–高氮。
Fig.1. Effects of irrigation regimes during grain filling under different nitrogen rates on the nitrogen use efficiency and harvest index of rice. CI,Conventional irrigation; WMD,Alternate wetting and moderate soil drying; WSD,Alternate wetting and severe soil drying.MN,Medium nitrogen level; HN,High nitrogrn level.
图2 不同氮肥水平下结实期灌溉方式对水稻强弱势粒增重状态的影响 CI+0N–常规灌溉+不施氮;CI+MN–常规灌溉+中氮;CI+HN–常规灌溉+高氮;WMD+0N–轻干湿交替灌溉+不施氮; WMD+MN–轻干湿交替灌溉+中氮;WMD+HN–轻干湿交替灌溉+高氮;WSD+0N–重干湿交替灌溉+不施氮;WSD+MN–重干湿交替灌溉+中氮;WSD+HN–重干湿交替灌溉+高氮。S–强势粒;I–弱势粒。
Fig.2. Effects of irrigation regimes during grain filling under different nitrogen rates on grain weight of rice. CI+0N, Conventional irrigation+0 nitrogen fertilizer;CI+MN,Conventional irrigation+mediumnitrogen level;CI+HN,Conventional irrigation+high nitrogen level;WMD+0N,Alternate wetting and moderate soil drying+0 nitrogen fertilizer;WMD+MN,Alternate wetting and moderate soil drying+medium nitrogen level;WMD+HN,Alternate wetting and moderate soil drying+medium nitrogen level;WSD+0N,Alternate wetting and severe soil drying+0 nitrogen fertilizer;WSD+MN,Alternate wetting and severe soil drying+medium nitrogen level;WSD+HN,Alternate wetting and severe soil drying+high nitrogen level. S, Superior spikelets; I, Inferior spikelets.
品种 Variety | 处理 Treament | 最大灌浆速率 Gmax/(mg·grain-1d-1) | 达最大灌浆速率时间 Tmax/d | 平均灌浆速率 Gmean/(mg·grain-1d-1) | 活跃灌浆期 Active filling period/d | 最终粒重A /(mg·grain-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | S | I | S | I | S | I | S | I | ||||||
甬优2640 | CI+0N | 2.08a | 1.16ab | 14.37a | 33.42f | 1.49a | 0.54b | 18.43a | 30.13d | 27.46a | 16.27c | ||||
Yongyou 2640 | CI+MN | 2.10a | 1.13ab | 14.42a | 35.88e | 1.48a | 0.53b | 18.52a | 31.26c | 27.41a | 16.56c | ||||
CI+HN | 2.04a | 1.02ab | 14.83b | 41.86b | 1.46a | 0.46c | 18.55a | 33.63a | 27.08a | 15.46d | |||||
WMD+0N | 2.08a | 1.23a | 14.38a | 31.32g | 1.50a | 0.61a | 18.30a | 28.28e | 27.45a | 17.25b | |||||
WMD+MN | 2.10a | 1.18ab | 14.40a | 32.12g | 1.51a | 0.62a | 18.33a | 30.12d | 27.68a | 18.67a | |||||
WMD+HN | 2.08a | 1.15ab | 14.50a | 38.37d | 1.47a | 0.59a | 18.46a | 32.58b | 27.14a | 18.63a | |||||
WSD+0N | 2.05a | 0.88c | 14.95b | 37.51d | 1.47a | 0.33e | 18.35b | 22.65g | 26.97a | 7.47f | |||||
WSD+MN | 2.11a | 1.02b | 14.45a | 40.32c | 1.48a | 0.40d | 18.39a | 27.95f | 27.22a | 11.18e | |||||
WSD+HN | 2.09a | 1.04b | 14.52a | 44.68a | 1.46a | 0.41cd | 18.42a | 28.12f | 26.89a | 11.52e | |||||
淮稻5号 | CI+0N | 2.26a | 1.32ab | 15.35a | 26.56h | 1.68a | 0.80b | 17.54a | 24.26c | 29.47a | 19.40b | ||||
Huaidao 5 | CI+MN | 2.23a | 1.27ab | 15.38a | 28.48e | 1.70a | 0.76b | 17.56a | 25.71b | 29.85a | 19.53b | ||||
CI+HN | 2.20b | 1.2ab | 15.37a | 30.15b | 1.69a | 0.70c | 17.65a | 26.33a | 29.83a | 18.43c | |||||
WMD+0N | 2.28a | 1.43a | 15.38a | 26.09i | 1.70a | 0.89a | 17.52a | 23.16d | 29.78a | 21.32a | |||||
WMD+MN | 2.25a | 1.37ab | 15.40a | 27.31g | 1.69a | 0.91a | 17.58a | 24.21c | 29.71a | 22.03a | |||||
WMD+HN | 2.23a | 1.24ab | 15.42a | 29.12d | 1.67a | 0.87a | 17.68a | 25.32b | 29.53a | 22.02a | |||||
WSD+0N | 2.22a | 0.95c | 15.33a | 27.68f | 1.71a | 0.54e | 17.42a | 19.86f | 29.79a | 10.72e | |||||
WSD+MN | 2.24a | 1.13b | 15.41a | 29.66c | 1.70a | 0.63d | 17.54a | 22.56e | 29.82a | 14.21d | |||||
WSD+HN | 2.19a | 1.15b | 15.42a | 31.85a | 1.69a | 0.61d | 17.52a | 23.18d | 29.61a | 14.14d |
表3 不同氮肥水平下结实期灌溉方式对水稻籽粒灌浆参数的影响
Table 3 Effects of irrigation regimes during grain filling under different nitrogen rates on the grain filling characters of rice.
品种 Variety | 处理 Treament | 最大灌浆速率 Gmax/(mg·grain-1d-1) | 达最大灌浆速率时间 Tmax/d | 平均灌浆速率 Gmean/(mg·grain-1d-1) | 活跃灌浆期 Active filling period/d | 最终粒重A /(mg·grain-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | I | S | I | S | I | S | I | S | I | ||||||
甬优2640 | CI+0N | 2.08a | 1.16ab | 14.37a | 33.42f | 1.49a | 0.54b | 18.43a | 30.13d | 27.46a | 16.27c | ||||
Yongyou 2640 | CI+MN | 2.10a | 1.13ab | 14.42a | 35.88e | 1.48a | 0.53b | 18.52a | 31.26c | 27.41a | 16.56c | ||||
CI+HN | 2.04a | 1.02ab | 14.83b | 41.86b | 1.46a | 0.46c | 18.55a | 33.63a | 27.08a | 15.46d | |||||
WMD+0N | 2.08a | 1.23a | 14.38a | 31.32g | 1.50a | 0.61a | 18.30a | 28.28e | 27.45a | 17.25b | |||||
WMD+MN | 2.10a | 1.18ab | 14.40a | 32.12g | 1.51a | 0.62a | 18.33a | 30.12d | 27.68a | 18.67a | |||||
WMD+HN | 2.08a | 1.15ab | 14.50a | 38.37d | 1.47a | 0.59a | 18.46a | 32.58b | 27.14a | 18.63a | |||||
WSD+0N | 2.05a | 0.88c | 14.95b | 37.51d | 1.47a | 0.33e | 18.35b | 22.65g | 26.97a | 7.47f | |||||
WSD+MN | 2.11a | 1.02b | 14.45a | 40.32c | 1.48a | 0.40d | 18.39a | 27.95f | 27.22a | 11.18e | |||||
WSD+HN | 2.09a | 1.04b | 14.52a | 44.68a | 1.46a | 0.41cd | 18.42a | 28.12f | 26.89a | 11.52e | |||||
淮稻5号 | CI+0N | 2.26a | 1.32ab | 15.35a | 26.56h | 1.68a | 0.80b | 17.54a | 24.26c | 29.47a | 19.40b | ||||
Huaidao 5 | CI+MN | 2.23a | 1.27ab | 15.38a | 28.48e | 1.70a | 0.76b | 17.56a | 25.71b | 29.85a | 19.53b | ||||
CI+HN | 2.20b | 1.2ab | 15.37a | 30.15b | 1.69a | 0.70c | 17.65a | 26.33a | 29.83a | 18.43c | |||||
WMD+0N | 2.28a | 1.43a | 15.38a | 26.09i | 1.70a | 0.89a | 17.52a | 23.16d | 29.78a | 21.32a | |||||
WMD+MN | 2.25a | 1.37ab | 15.40a | 27.31g | 1.69a | 0.91a | 17.58a | 24.21c | 29.71a | 22.03a | |||||
WMD+HN | 2.23a | 1.24ab | 15.42a | 29.12d | 1.67a | 0.87a | 17.68a | 25.32b | 29.53a | 22.02a | |||||
WSD+0N | 2.22a | 0.95c | 15.33a | 27.68f | 1.71a | 0.54e | 17.42a | 19.86f | 29.79a | 10.72e | |||||
WSD+MN | 2.24a | 1.13b | 15.41a | 29.66c | 1.70a | 0.63d | 17.54a | 22.56e | 29.82a | 14.21d | |||||
WSD+HN | 2.19a | 1.15b | 15.42a | 31.85a | 1.69a | 0.61d | 17.52a | 23.18d | 29.61a | 14.14d |
图3 不同氮肥水平下结实期灌溉方式对水稻氮根系氧化力的影响 CI–常规灌溉;WMD–轻干湿交替灌溉;WSD–重干湿交替灌溉;0N–不施氮;MN–中氮;HN–高氮。
Fig.3. Effects of irrigation regimes during grain filling under different nitrogen rates on the root oxidation activity of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severedrying; 0N,Zero nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
图4 不同氮肥水平下结实期灌溉方式对水稻氮根系激素的影响 CI–常规灌溉;WMD–轻干湿交替灌溉;WSD–重干湿交替灌溉;0N–不施氮;MN–中氮;HN–高氮。
Fig.4. Effects of irrigation regimes during grain filling under different nitrogen rates on the root hormone of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
图5 不同氮肥水平下结实期灌溉方式对水稻叶片光合速率(A-F)和蒸腾速率(G-L)的影响 CI–常规灌溉;WMD–轻干湿交替灌溉;WSD–重干湿交替灌溉;0N–不施氮;MN–中氮;HN–高氮。
Fig.5. Effects of irrigation regimes during grain filling under different nitrogen rates on leaf photosynthesis(A-F) and transpiration(G-L) of rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
图6 不同氮肥水平下结实期灌溉方式对水稻茎秆中非结构性碳水化合物NSC含量(A~F)、转运率(C, G)、贡献率(D, H)的影响 CI–常规灌溉;WMD–轻干湿交替灌溉;WSD–重干湿交替灌溉;0N–不施氮;MN–中氮;HN–高氮。
Fig.6. Effects of irrigation regimes during grain filling under different nitrogen rates on non-structural carbohydrate(NSC) content(A-F), remobilization(C, G), accumulation(D, H) of stem in rice. CI,Conventional irrigation; WMD,Alternate irrigation with wetting and moderate drying; WSD,Alternate irrigation with wetting and severe drying; 0N, 0 nitrogenfertilizer; MN,Medium nitrogen level; HN,High nitrogen level.
产量构成及生理指标 Yield components and physiological traits | 直接作用 Direct contribution | 间接作用 Indirect contribution | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | ||
x1 | 0.079 | 0.645 | -0.083 | -0.002 | -0.045 | -0.005 | -0.027 | -0.049 | |
x2 | 0.647 | 0.078 | -0.081 | -0.001 | -0.036 | -0.003 | -0.019 | -0.045 | |
x3 | 0.214 | -0.031 | -0.243 | 0.029 | -0.040 | 0.030 | 0.017 | 0.084 | |
x4 | -0.036 | -0.004 | -0.031 | 0.174 | -0.002 | -0.002 | -0.013 | 0.021 | |
x5 | 0.543 | -0.007 | -0.043 | -0.072 | -0.001 | 0.026 | 0.156 | -0.018 | |
x6 | 0.038 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.225 | 0.032 | |
x7 | 0.225 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.226 | 0.032 | |
x8 | 0.172 | -0.022 | -0.171 | 0.106 | 0.005 | -0.288 | 0.007 | 0.042 |
表4 产量构成因素及生理特性对产量的贡献
Table 4 Contributions of yield components and physiological traits to grain yield.
产量构成及生理指标 Yield components and physiological traits | 直接作用 Direct contribution | 间接作用 Indirect contribution | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | ||
x1 | 0.079 | 0.645 | -0.083 | -0.002 | -0.045 | -0.005 | -0.027 | -0.049 | |
x2 | 0.647 | 0.078 | -0.081 | -0.001 | -0.036 | -0.003 | -0.019 | -0.045 | |
x3 | 0.214 | -0.031 | -0.243 | 0.029 | -0.040 | 0.030 | 0.017 | 0.084 | |
x4 | -0.036 | -0.004 | -0.031 | 0.174 | -0.002 | -0.002 | -0.013 | 0.021 | |
x5 | 0.543 | -0.007 | -0.043 | -0.072 | -0.001 | 0.026 | 0.156 | -0.018 | |
x6 | 0.038 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.225 | 0.032 | |
x7 | 0.225 | -0.009 | -0.056 | 0.016 | -0.002 | 0.376 | 0.226 | 0.032 | |
x8 | 0.172 | -0.022 | -0.171 | 0.106 | 0.005 | -0.288 | 0.007 | 0.042 |
图7 弱势粒灌浆速率和粒重与结实率和千粒重的相关性**表示在0.01水平上显著。
Fig.7. Correlations between grain filling rate, final weight of inferior spikelets and seed setting rate, 1000-grain weight. ** Significant at 0.01 level.
[1] | Kato T, Takeda K.Associations among characters related to yield sink capacity in space-planted rice.Crop Sci, 1996, 36: 1135-1139. |
[2] | Kato T, Shinmura D, Taniguchi A.Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types.Plant Prod Sci, 2007, 10: 442-450. |
[3] | Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S.Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential.Crop Sci, 1999, 39: 1552-1559. |
[4] | Cheng S, Zhuang J, Fan Y, Du J, Cao L.Progress in research and development on hybrid rice: A super-domesticate in China.Ann Bot-London, 2007, 100: 959-966. |
[5] | Peng S, Khush G S, Virk P, Tang Q, Zou Y.Progress in ideotype breeding to increase rice yield potential.Field Crop Res, 2008, 108: 32-38. |
[6] | Mohapatra P K, Patel R, Sahu S K.Time of flowering affects grain quality and spikelet partitioning within the rice panicle.Aust J Plant Physiol, 1993, 20: 231-242. |
[7] | Yang J C, Zhang J H.Grain-filling problem in ‘super’ rice.J Exp Bot, 2010, 61(1):1. |
[8] | Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J.Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates.Field Crop Res, 2016, 193:54-69. |
[9] | 张自常, 李鸿伟, 曹转勤, 王志琴, 杨建昌. 施氮量和灌溉方式的交互作用对水稻产量和品质的影响.作物学报,2013,39(1): 84-92. |
Zhang Z C, Li H W, Cao Z Q, Wang Z Q, Yang J C.Effect of interaction between nitrogen rate and irrigation regime on grain yield and quality of rice.ActaAgron Sin, 2013, 39(1):84-92.(in Chinese with English abstract) | |
[10] | Cabangon R J, Tuong T P, Castillo E G.Effect of irrigation method and N-fertilizer management on rice yield,water productivity and nutrient-use efficiencies in typical lowland rice conditions in China.Paddy&Water Environ, 2004, 2:195-206. |
[11] | 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12 产量 13.5 t·hm-2以上超高产群体的生育特征. 作物学报, 2014, 40(12):2149-2159. |
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B,Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H.Population characteristics for super-high yielding hybrid rice Yongyou 12(>13.5 t ha-1).ActaAgron Sin, 2014, 40(12): 2149-2159.(in Chinese with English abstract) | |
[12] | 姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学,2014, 28(6): 621-631. |
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y,Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River.Chin J Rice Sci, 2014, 28(6): 621-631.(in Chinese with English abstract) | |
[13] | Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J.Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.J ExpBot, 2013, 64(8):2523. |
[14] | 张伟杨, 徐云姬, 钱希旸, 李银银, 王志琴, 杨建昌. 小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系. 作物学报, 2016, 42(6):860-872. |
Zhang W Y, Xu Y J, Qian X Y, Li Y Y, Wang Z Q, Yanng J C.Free Polyamines in Grains in Response to Soil Drought and Their Relationship with Grain Filling of Wheat.ActaAgron Sin, 2016, 42(6):860-872.(in Chinese with English abstract) | |
[15] | Yang J C, Zhang J H, Huang Z, Wang Z Q, Zhu Q S, Liu L J.Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice.AnnBot-London,2002,90: 369-377. |
[16] | Kato T.Change of sucrose synthase activity in developing endosperm of rice cultivars.Crop Sci, 1995, 35: 827-831. |
[17] | Yoshida S, Forno D, Cock J, Gomez K.Determination of sugar and starch in plant tissue//Yoshida S. Laboratory Manual for Physiological Studies of Rice. Philippines: The International Rice Research Institute, 1976: 46-49. |
[18] | 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006, 32(1): 131-137. |
Wang C Y, Wang B L, Zhang W X, Zhao L, Zhao X S, Gao L W.Effects of Water Stress of Soil on Rice Yield and Quality.ActaAgron Sin, 2006, 32(1): 131-137.(in Chinese with English abstract) | |
[19] | Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia.Plant Prod Sci, 2005, 8: 231-241. |
[20] | Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H.Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential.J Integr Plant Biol, 2007, 49: 1445-1454. |
[21] | 蔡一霞,王维,朱智伟,张祖建,郎有忠,朱庆森. 结实期水分胁迫对不同氮肥水平下水稻产量及其品质的影响.应用生态学报, 2006, 17(7):1201-1206. |
Cai Y X, Wang W, Zhu Z W, Zhang Z J, Lang Y Z, Zhu Q S.Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels.Chin J ApplEcol, 2006, 17(7):1201-1206.(in Chinese with English abstract) | |
[22] | 魏海燕, 张洪程, 戴其根, 霍中洋, 许柯, 杭杰, 马群, 张胜飞, 张庆, 刘艳阳. 不同水稻氮利用效率基因型的物质生产与积累特性. 作物学报,2007(11): 1802-1809. |
Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Hang J, Ma Q, Zhang S F, Zhang Q, Liu Y Y.Characteristics of Matter Production and Accumulation in Rice Genotypes with Different N Use Efficiency.ActaAgron Sin, 2007(11): 1802-1809.(in Chinese with English abstract) | |
[23] | Jiao Z H, Hou A, Shi Y, Huang G H, Wang Y H, Chen X .Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community.CommunSci Plant, 2006, 37(13-14): 1889-1903. |
[24] | XueY, DuanH, LiuL, WangZ, YangJ, ZhangJ. An improved crop management increases grain yield and nitrogen and water use efficiency in rice.Crop Sci, 2013, 53: 271-284. |
[25] | 薛亚光,陈婷婷,杨成,王志琴,刘立军,杨建昌. 中粳稻不同栽培模式对产量及其生理特性的影响.作物学报, 2010, 36(3): 466-476. |
Xue Y G, Chen T T, Yang C, Wang Z Q, Liu L J, Yang J C.Effects of Different Cultivation Patterns on the Yield and Physiological Characteristics in Mid-Season Japonica Rice.ActaAgron Sin, 2010, 36(3): 466-476.(in Chinese with English abstract) | |
[26] | 王绍华, 曹卫星, 丁艳锋, 田永超, 姜东. 水氮互作对水稻氮吸收与利用的影响.中国农业科学, 2004, 37(4):497-501. |
Wang S H, Cao W X, Ding Y F, Tian Y C, Jiang D.Interactions of Water Management and Nitrogen Fertilizer on Nitrogen Absorption and Utilization in Rice.SciAgric Sin, 2004, 37(4):497-501.(in Chinese with English abstract) | |
[27] | 陈新红, 刘凯, 王志琴, 杨建昌. 水稻水氮互作效应与产量模型研究.西北农林科技大学学报: 自然科学版, 2006, 34(9): 141-148. |
Chen X H, Liu K, Wang Z Q, Yang J C.Studies on interactions between soil moisture and nitrogen and yield models in rice. J Northwest A&F Univ, 2006, 34(9): 141-148.(in Chinese with English abstract) | |
[28] | 陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学,2015, 48(7):1288-1299. |
Chen T T, Xu G W, Qian X Y, Wang Z Q, Zhang H, Yang J C.Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains.SciAgric Sin, 2015, 48(7): 1288-1299.(in Chinese with English abstract) | |
[29] | 徐云姬, 张伟杨, 钱希旸, 李银银, 张耗, 杨建昌.施氮量对小麦籽粒灌浆的影响及其生理机制. 麦类作物学报, 2015, 35(8): 1119-1126. |
Xu Y G, Zhang W Y, Qian X Y, Li Y Y, Zhang H, Yang J C.Effect of nitrogen on grain filling of wheat and its physiological mechanism.J Trit Crops, 2015, 35(8): 1119-1126.(in Chinese with English abstract) | |
[30] | Kato T, Sakurai N, Kuraishi S.The changes of endogenous abscisic acid in developing,grains of two rice cultivars with different grain size.Jpn J Crop Sci,1993, 62:456-461. |
[31] | 刘立军, 吴长付, 张耗, 杨建昌, 赵步洪. 实地氮肥管理对稻米品质的影响. 中国水稻科学, 2007, 21(6):625-630. |
Liu L J, Wu C F, Zhang H, Yang J C, Zhao B H.Effect of site-specific nitrogen management on rice quality. Chin J Rice Sci, 2007, 21(6): 625-630.(in Chinese with English abstract) | |
[32] | Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P.Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene.J Exp Bot, 2006, 57: 149-160. |
[33] | Yang J, Zhang J, Liu K, Wang Z, Liu L.Abscisic acid and ethyleneinteract in wheat grains in response to soil drying duringgrain filling. New Phytol, 2006, 271: 293-303. |
[34] | Javid M G, Sorooshzadeh A, Sanavy. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress.Plant Growth Regul, 2011, 65(2): 305-313. |
[35] | Saini H S, Westgate M E.Reproductive development in grain crops during drought.AdvAgron, 2000, 68: 59-96. |
[36] | Inthapan P, Fukai S.Growth and yield of rice cultivars under sprinkler irrigation in south-eastern Queensland: 2. Comparison with maize and grain sorghum under wet and dry conditions.Austr J ExpAgric, 1988, 28:243-248. |
[37] | Tao H, Brueck H, Ditten K, Kreye C, Lin S, Sattelmacher B. Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crop Res, 2006, 95(1): 1-12. |
[38] | 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳交超级稻甬优538的穗部特征及籽粒灌浆特性. 作物学报, 2015, 41(12):1858-1869. |
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W.Panicle Traits and Grain-filling Characteristics of Japonica/Indica Hybrid Super Rice Yongyou 538.ActaAgron Sin, 2015, 41(12):1858-1869.(in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[7] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[8] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[9] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[10] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[11] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[12] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||