中国水稻科学 ›› 2021, Vol. 35 ›› Issue (6): 586-594.DOI: 10.16819/j.1001-7216.2021.201213
褚光#, 徐冉#, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英*()
收稿日期:
2020-12-16
修回日期:
2021-03-17
出版日期:
2021-11-10
发布日期:
2021-11-10
通讯作者:
王丹英
作者简介:
#共同第一作者
基金资助:
Guang CHU#, Ran XU#, Song CHEN, Chunmei XU, Yuanhui LIU, Xiufu ZHANG, Danying WANG*()
Received:
2020-12-16
Revised:
2021-03-17
Online:
2021-11-10
Published:
2021-11-10
Contact:
Danying WANG
About author:
#These authors contributed equally to the work
摘要:
【目的】探明优化栽培模式对水稻根冠发育以及产量与肥水利用效率的影响。【方法】以甬优1540(三系籼/粳杂交稻)为材料,设置3个处理:0N(空白)栽培模式、当地农户习惯栽培模式(对照)以及优化栽培模式。【结果】优化栽培处理两年的平均产量为11.5 t/hm2,与对照差异不显著;但其氮肥偏生产力、产谷利用率以及水分利用率较对照显著提高。与对照相比,优化栽培处理改善了水稻根系形态与生理特征,降低了根系生物量与根-冠比,提高了深根比与比根长,增加了齐穗期与灌浆中期根系活跃吸收表面积,提高了灌浆中后期根系氧化力与根系伤流液中玉米素(Z)+玉米素核苷(ZR)的浓度。此外,与对照相比,优化栽培处理显著提高了灌浆中后期剑叶净光合速率、叶片中Z+ZR含量以及籽粒中蔗糖-淀粉代谢途径关键酶活性。【结论】优化与集成现有栽培技术,可以改善水稻根系形态与生理特征,提高地上部生理活性,进而实现肥水利用效率的提高。
褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响[J]. 中国水稻科学, 2021, 35(6): 586-594.
Guang CHU, Ran XU, Song CHEN, Chunmei XU, Yuanhui LIU, Xiufu ZHANG, Danying WANG. Effects of Improved Crop Management on Growth Characteristic of Root and Shoot, Water and Nitrogen Use Efficiency, and Grain Yield in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(6): 586-594.
年度 Year | pH | 全氮含量 Total N content /(g·kg-1 ) | 有机质含量 Organic matter content /(g·kg-1) | 速效氮磷钾 Available nitrogen, phosphorus and potassium/(mg·kg -1) | ||
---|---|---|---|---|---|---|
N | P | K | ||||
2018 | 6.3 | 2.44 | 57.5 | 218 | 21.4 | 65.9 |
2019 | 6.2 | 2.50 | 54.9 | 206 | 23.6 | 68.5 |
表1 试验地耕层土壤理化性状
Table 1 Soil physical and chemical properties in the experiment field.
年度 Year | pH | 全氮含量 Total N content /(g·kg-1 ) | 有机质含量 Organic matter content /(g·kg-1) | 速效氮磷钾 Available nitrogen, phosphorus and potassium/(mg·kg -1) | ||
---|---|---|---|---|---|---|
N | P | K | ||||
2018 | 6.3 | 2.44 | 57.5 | 218 | 21.4 | 65.9 |
2019 | 6.2 | 2.50 | 54.9 | 206 | 23.6 | 68.5 |
月份 Month | 降水量Precipitation/mm | 日照Sunshine/h | 平均气温Temperature/℃ | |||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |||
6月 June | 71 | 115 | 218 | 205 | 26.8 | 26.4 | ||
7月July | 182 | 175 | 241 | 254 | 28.9 | 28.8 | ||
8月August | 151 | 180 | 185 | 211 | 28.1 | 28.4 | ||
9月September | 84 | 72 | 178 | 185 | 26.5 | 26.9 | ||
10月October | 77 | 89 | 164 | 157 | 22.8 | 23.2 |
表2 水稻生长期降雨量、日照时长以及平均气温的变化
Table 2 Monthly total precipitation and sunshine hours, and average temperatures during the growing seasons for rice.
月份 Month | 降水量Precipitation/mm | 日照Sunshine/h | 平均气温Temperature/℃ | |||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |||
6月 June | 71 | 115 | 218 | 205 | 26.8 | 26.4 | ||
7月July | 182 | 175 | 241 | 254 | 28.9 | 28.8 | ||
8月August | 151 | 180 | 185 | 211 | 28.1 | 28.4 | ||
9月September | 84 | 72 | 178 | 185 | 26.5 | 26.9 | ||
10月October | 77 | 89 | 164 | 157 | 22.8 | 23.2 |
年度 处理 Year Treatment | 产量 Grain yield /(t·hm-2) | 穗数 No. of panicles /(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 总颖花量 Total spikelets /(×106·hm-2) | 结实率 Seed-setting rate /% | 粒重 Grain weight /mg |
---|---|---|---|---|---|---|
2018 0N | 7.97±0.25 b | 160±4.8 c | 251±7.8 b | 4.02±0.11 c | 88.2±1.2 a | 22.5±0.14 a |
LFP | 11.5±0.30 a | 215±3.5 a | 301±5.7 a | 6.47±0.20 a | 79.4±2.0 c | 22.4±0.16 a |
ICM | 11.4±0.28 a | 200±5.6 b | 297±6.4 a | 5.94±0.13 b | 85.4±1.4 b | 22.5±0.12 a |
2019 0N | 7.83±0.19 b | 155±6.2 c | 255±4.7 b | 3.95±0.15 c | 87.7±1.3 a | 22.6±0.11 a |
LFP | 11.7±0.22 a | 220±4.7 a | 310±7.2 a | 6.82±0.17 a | 76.5±1.5 b | 22.4±0.10 ab |
ICM | 11.8±0.18 a | 208±5.2 b | 300±5.8 a | 6.24±0.15 b | 84.6±2.0 a | 22.3±0.14 b |
方差分析 Analysis of variance | ||||||
年份 Year(Y) | NS | NS | NS | NS | NS | NS |
处理 Treatment(T) | ** | ** | ** | ** | ** | NS |
Y×T | NS | NS | NS | NS | NS | NS |
表3 不同栽培模式对水稻产量及其构成因素的影响
Table 3 Effects of different crop managements on grain yield and yield components.
年度 处理 Year Treatment | 产量 Grain yield /(t·hm-2) | 穗数 No. of panicles /(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 总颖花量 Total spikelets /(×106·hm-2) | 结实率 Seed-setting rate /% | 粒重 Grain weight /mg |
---|---|---|---|---|---|---|
2018 0N | 7.97±0.25 b | 160±4.8 c | 251±7.8 b | 4.02±0.11 c | 88.2±1.2 a | 22.5±0.14 a |
LFP | 11.5±0.30 a | 215±3.5 a | 301±5.7 a | 6.47±0.20 a | 79.4±2.0 c | 22.4±0.16 a |
ICM | 11.4±0.28 a | 200±5.6 b | 297±6.4 a | 5.94±0.13 b | 85.4±1.4 b | 22.5±0.12 a |
2019 0N | 7.83±0.19 b | 155±6.2 c | 255±4.7 b | 3.95±0.15 c | 87.7±1.3 a | 22.6±0.11 a |
LFP | 11.7±0.22 a | 220±4.7 a | 310±7.2 a | 6.82±0.17 a | 76.5±1.5 b | 22.4±0.10 ab |
ICM | 11.8±0.18 a | 208±5.2 b | 300±5.8 a | 6.24±0.15 b | 84.6±2.0 a | 22.3±0.14 b |
方差分析 Analysis of variance | ||||||
年份 Year(Y) | NS | NS | NS | NS | NS | NS |
处理 Treatment(T) | ** | ** | ** | ** | ** | NS |
Y×T | NS | NS | NS | NS | NS | NS |
年度 处理 Year Treatment | 吸氮量 N uptake/(g·m-2) | 氮收获指数 N harvest index | 氮肥偏生产力 PFPN/(kg·kg-1) | 产谷利用率 IEN/(kg·kg-1) | 灌溉用水量 Irrigation water/mm | 水分利用效率 WUE/(kg·m-3) |
---|---|---|---|---|---|---|
2018 0N | 121±3.8 c | 0.71±0.03 a | - | 65.7±2.2 a | 725±37 a | 0.62±0.08 c |
LFP | 197±4.2 a | 0.58±0.02 c | 57.5±2.5 b | 58.4±1.3 c | 755±45 a | 0.87±0.09 b |
ICM | 186±2.7 b | 0.62±0.02 b | 71.3±3.6 a | 61.5±1.6 b | 567±29 b | 1.01±0.10 a |
2019 0N | 123±4.0 c | 0.70±0.01 a | - | 63.8±2.5 a | 695±41 a | 0.63±0.06 c |
LFP | 202±3.1 a | 0.60±0.02 c | 58.4±4.1 b | 57.8±1.8 c | 702±32 a | 0.93±0.10 b |
ICM | 192±2.4 b | 0.65±0.02 b | 73.8±5.2 a | 61.4±1.6 b | 552±40 b | 1.07±0.03 a |
方差分析 Analysis of variance | ||||||
年份 Year(Y) | NS | NS | NS | NS | NS | NS |
处理 Treatment(T) | ** | ** | ** | ** | ** | ** |
Y×T | NS | NS | NS | NS | NS | NS |
表4 不同栽培模式对水稻肥水利用效率的影响
Table 4 Effects of different crop managements on nitrogen use efficiency and water use efficiency in rice.
年度 处理 Year Treatment | 吸氮量 N uptake/(g·m-2) | 氮收获指数 N harvest index | 氮肥偏生产力 PFPN/(kg·kg-1) | 产谷利用率 IEN/(kg·kg-1) | 灌溉用水量 Irrigation water/mm | 水分利用效率 WUE/(kg·m-3) |
---|---|---|---|---|---|---|
2018 0N | 121±3.8 c | 0.71±0.03 a | - | 65.7±2.2 a | 725±37 a | 0.62±0.08 c |
LFP | 197±4.2 a | 0.58±0.02 c | 57.5±2.5 b | 58.4±1.3 c | 755±45 a | 0.87±0.09 b |
ICM | 186±2.7 b | 0.62±0.02 b | 71.3±3.6 a | 61.5±1.6 b | 567±29 b | 1.01±0.10 a |
2019 0N | 123±4.0 c | 0.70±0.01 a | - | 63.8±2.5 a | 695±41 a | 0.63±0.06 c |
LFP | 202±3.1 a | 0.60±0.02 c | 58.4±4.1 b | 57.8±1.8 c | 702±32 a | 0.93±0.10 b |
ICM | 192±2.4 b | 0.65±0.02 b | 73.8±5.2 a | 61.4±1.6 b | 552±40 b | 1.07±0.03 a |
方差分析 Analysis of variance | ||||||
年份 Year(Y) | NS | NS | NS | NS | NS | NS |
处理 Treatment(T) | ** | ** | ** | ** | ** | ** |
Y×T | NS | NS | NS | NS | NS | NS |
图1 栽培模式对水稻地上部干物质量(A, B)、根干质量(C, D)和根-冠比(E, F)的影响 JT–拔节期;HD–齐穗期;MA–成熟期。下同。
Fig. 1. Effects of different crop managements on shoot dry weight (A, B), root dry weight (C, D), root-shoot ratio (E, F) in rice. JT, Jointing stage; HD, Heading date; MA, Maturity; The same below.
图2 栽培模式对水稻深根比(A, B)、根长密度(C, D)和比根长(E, F)的影响
Fig. 2. Effects of different crop managements on deep root distribution(A, B), root length density(C, D) and special root length(E, F) in rice.
图3 栽培模式对水稻根系总吸收表面积(A, B)和根系活跃吸收表面积(C, D)的影响
Fig. 3. Effects of different crop managements on total absorbing surface area (A, B) and active absorbing surface area (C, D) in rice.
图4 不同栽培模式下水稻在不同生育时期的根系氧化力(A, B)与剑叶净光合速率(C, D) EF–灌浆早期;MG–灌浆中期;LG–灌浆后期。
Fig. 4. Effects of different crop managements on root oxidation activity(A, B) and flag leaf photosynthetic rate(C, D) in rice. EG, Early grain filling; MG, Mid-grain filling; LF, Late grain filling.
图5 不同栽培模式下水稻在不同生育时期的根系伤流液中Z+ZR浓度(A, B)与叶片中Z+ZR含量(C, D) EF–灌浆早期;MG–灌浆中期;LG–灌浆后期。
Fig. 5. Effects of different crop managements on concentration of Z+ZR in root bleeding sap(A, B) and concentration of Z+ZR in leaves(C, D) in rice. EG, Early grain filling; MG, Mid-grain filling; LF, Late grain filling.
年度 Year | 处理 Treatment | 蔗糖合酶SuSase/(μmol·g-1 min-1) | 腺苷二磷酸葡萄糖焦磷酸化酶AGPase/(μmol·g-1 min-1) | |||||
---|---|---|---|---|---|---|---|---|
灌浆早期EG | 灌浆中期MG | 灌浆末期LG | 灌浆早期EG | 灌浆中期MG | 灌浆末期LG | |||
2018 | 0N | 8.78 b | 5.27 c | 3.08 c | 6.22 b | 4.22 c | 2.08 c | |
LFP | 13.50 a | 6.88 b | 4.25 b | 8.45 a | 5.35 b | 3.52 b | ||
ICM | 13.80 a | 8.94 a | 6.77 a | 8.95 a | 6.89 a | 5.11 a | ||
2019 | 0N | 8.54 b | 5.14 c | 3.22 c | 5.79 b | 3.98 c | 2.15 c | |
LFP | 13.10 a | 6.54 b | 4.80 b | 8.97 a | 5.78 b | 3.88 b | ||
ICM | 12.90 a | 8.85 a | 6.84 a | 9.11 a | 7.08 a | 4.98 a | ||
方差分析 Analysis of variance | 年份 Year(Y) | NS | NS | NS | NS | NS | NS | |
处理 Treatment(T) | ** | ** | ** | ** | * | * | ||
Y×T | NS | NS | NS | NS | NS | NS |
表5 栽培模式对水稻籽粒中蔗糖-淀粉代谢途径灌浆酶活性的影响
Table 5 Effects of different crop managements on the activities of SuSase and AGPase in grains.
年度 Year | 处理 Treatment | 蔗糖合酶SuSase/(μmol·g-1 min-1) | 腺苷二磷酸葡萄糖焦磷酸化酶AGPase/(μmol·g-1 min-1) | |||||
---|---|---|---|---|---|---|---|---|
灌浆早期EG | 灌浆中期MG | 灌浆末期LG | 灌浆早期EG | 灌浆中期MG | 灌浆末期LG | |||
2018 | 0N | 8.78 b | 5.27 c | 3.08 c | 6.22 b | 4.22 c | 2.08 c | |
LFP | 13.50 a | 6.88 b | 4.25 b | 8.45 a | 5.35 b | 3.52 b | ||
ICM | 13.80 a | 8.94 a | 6.77 a | 8.95 a | 6.89 a | 5.11 a | ||
2019 | 0N | 8.54 b | 5.14 c | 3.22 c | 5.79 b | 3.98 c | 2.15 c | |
LFP | 13.10 a | 6.54 b | 4.80 b | 8.97 a | 5.78 b | 3.88 b | ||
ICM | 12.90 a | 8.85 a | 6.84 a | 9.11 a | 7.08 a | 4.98 a | ||
方差分析 Analysis of variance | 年份 Year(Y) | NS | NS | NS | NS | NS | NS | |
处理 Treatment(T) | ** | ** | ** | ** | * | * | ||
Y×T | NS | NS | NS | NS | NS | NS |
参数 Parameter | 叶片中Z+ZR含量 Z+ZR in leaves | 剑叶净光合速率 Photosynthetic rate | 蔗糖合酶 SuSase | 腺苷二磷酸葡萄糖焦磷酸化酶 AGPase | |
---|---|---|---|---|---|
2018 | 根系氧化力 ROA | 0.71** | 0.91** | 0.70** | 0.78** |
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding | 0.90** | 0.74** | 0.74** | 0.74** | |
2019 | 根系氧化力 ROA | 0.80** | 0.88** | 0.77** | 0.81** |
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding | 0.83** | 0.79** | 0.73** | 0.70** |
表6 水稻根-冠部分生理指标的相关性
Table 6 Correlation coefficients of physiological traits in shoot and root.
参数 Parameter | 叶片中Z+ZR含量 Z+ZR in leaves | 剑叶净光合速率 Photosynthetic rate | 蔗糖合酶 SuSase | 腺苷二磷酸葡萄糖焦磷酸化酶 AGPase | |
---|---|---|---|---|---|
2018 | 根系氧化力 ROA | 0.71** | 0.91** | 0.70** | 0.78** |
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding | 0.90** | 0.74** | 0.74** | 0.74** | |
2019 | 根系氧化力 ROA | 0.80** | 0.88** | 0.77** | 0.81** |
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding | 0.83** | 0.79** | 0.73** | 0.70** |
[1] | 施能浦. 近期我国稻谷(米)供求趋势分析及发展预测与对策[J]. 中国稻米, 2015, 21: 1-5. |
Shi N P.Analysis and development strategy on rice production & marketing trend in China[J]. China Rice, 2015, 21: 1-5. (in Chinese with English abstract) | |
[2] | Peng S B, Tang Q Y, Zou Y B.Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12: 3-8. |
[3] | Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dobermann A.Improving nitrogen fertilization in rice by site-specific N management[J]. Agronomy for Sustainable Development, 2010, 30: 649-656. |
[4] | Ju X, Xing G, Chen X, Zhang S, Zhang L, Liu X, Cui Z, Yin B, Christiea P, Zhu Z, Zhang F.Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2009, 106: 3041-3046. |
[5] | Nan Z, Wang X Y, Du Y, Melching C S, Shang X S.Critical period and pathways of water borne nitrogen loss from a rice paddy in northeast China[J]. Science of the Total Environment, 2021, 753: 142116. |
[6] | Liang K M, Zhong X H, Huang N R, Lampayan R M, Liu Y Z, Pan J F, Peng B L, Hu X Y, Fu Y Q. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J]. Science of the Total Environment, 2017, 609: 46-57. |
[7] | Valliere J M, Irvine I C, Santiago L, Allen E B.High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought[J]. Global Change Biology, 2017, 23: 4333-4345. |
[8] | 杨世民, 谢力, 郑顺林, 李静, 袁继超. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J]. 作物学报, 2009, 35(1): 93-103. |
Yang S M, Xie L, Zheng S L, Li J, Yuan J C.Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice[J]. Acta Agronomica Sinica, 2009, 35(1): 93-103. (in Chinese with English abstract) | |
[9] | Champagne E, Bett-Garber K, Thomson J, Fitzgerald M.Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture[J]. Cereal Chemistry, 2009, 86: 274-280. |
[10] | 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 韩宝富. 氮肥运筹对钵苗机揑优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43: 420-431. |
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Han B F.Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43: 420-431. (in Chinese with English abstract) | |
[11] | 陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明,李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1319-1328. |
Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R.Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1319-1328. (in Chinese with English abstract) | |
[12] | 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010, 16(2): 274-281. |
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F.Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 274-281. (in Chinese with English abstract) | |
[13] | Carrijo D, Lundy M, Linquist B.Rice yields and water use under alternate wetting and drying irrigation[J]. Field Crops Research, 2017, 203: 173-180. |
[14] | Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H.An alternate wetting and moderate soil drying regime improves root and shoot growth in rice[J]. Crop Science, 2009, 49: 2246-2260. |
[15] | 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响[J]. 应用生态学报, 2016, 27(2): 453-461. |
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J.Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 453-461. (in Chinese with English abstract) | |
[16] | 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42: 1026-1036. |
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C.Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42: 1026-1036. (in Chinese with English abstract) | |
[17] | Chu G, Wang Z, Zhang H, Liu L, Yang J, Zhang J.Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation[J]. Food and Energy Security, 2015, 4: 238-254. |
[18] | Xue Y G, Duan H, Liu L J, Wang Z Q, Yang J C, Zhang J H.An improved crop management increases grain yield and nitrogen and water use efficiency in rice[J]. Crop Science, 2013, 53: 271-284. |
[19] | Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H.Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice[J]. Field Crops Research, 2013, 154: 226-235. |
[20] | Chu G, Wang Z, Zhang H, Yang J, Zhang J.Agronomic and physiological performance of rice under integrative crop management[J]. Agronomy Journal, 2016, 108: 1-12. |
[21] | Yang J C, Zhang H, Zhang J H.Root morphology and physiology in relation to the yield formation of rice[J]. Journal of Integrative Agriculture, 2012, 11: 920-926. |
[22] | 陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订. 华南主栽高产籼稻根系形态特征及其与产量构成的关系[J]. 作物学报, 2013, 39: 1899-1908. |
Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D.Relationship between root morphological characteristics and yield components of major commercial indica rice in south China[J]. Acta Agronomica Sinica, 2013, 39: 1899-1908. (in Chinese with English abstract) | |
[23] | 徐国伟, 吕强, 陆大克, 王贺正, 陈明灿. 干湿交替灌溉耦合施氮对水稻根系性状及籽粒库活性的影响[J]. 作物学报, 2016, 42(10): 1495-1505. |
Xu G W, Lü Q, Lu D K, Wang H Z, Chen M C.Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity[J]. Acta Agronomica Sinica, 2016, 42(10): 1495-1505. (in Chinese with English abstract) | |
[24] | 秦华东, 江立庚, 肖巧珍, 徐世宏. 水分管理对免耕抛秧水稻根系生长及产量的影响[J]. 中国水稻科学, 2013, 27(2): 209-212. |
Qin H D, Jiang L G, Xiao Q Z, Xu S H.Effect of moisture management on rice root growth and rice grain yield at different growth stages under no tillage[J]. Chinese Journal of Rice Science, 2013, 27(2): 209-212. (in Chinese with English abstract) | |
[25] | Xu G W, Lu D K, Wang H Z, Li Y.Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate[J]. Agricultural Water Management, 2018, 203: 385-394. |
[26] | Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H.Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice[J]. Field Crops Research, 2014, 162: 108-119. |
[27] | 张志良, 瞿伟菁. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2003: 38-39. |
Zhang Z L, Qu W J.Plant physiology test guide[M]. Beijing: Higher Education Press, 2003: 38-39. | |
[28] | Li H W, Liu L J, Wang Z Q, Yang J C, Zhang J H.Agronomic and physiological performance of high- yielding wheat and rice in the lower reaches of Yangtze River of China[J]. Field Crops Research, 2012, 133: 119-129. |
[29] | Zhang H, Yu C, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C.Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice[J]. Field Crops Research, 2018, 215: 1-11. |
[30] | Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J.Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling[J]. Field Crops Research, 2003, 81: 69-81. |
[31] | Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S.Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling[J]. Plant Physiology, 2004, 135: 1621-1629. |
[32] | Yang C M, Yang L Z, Yang Y X, Zhu O Y.Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils[J]. Agricultural Water Management, 2004, 70: 67-81. |
[33] | Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y.A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice[J]. Field Crops Research, 2018, 228: 135-146. |
[34] | Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang JH.Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice[J]. Field Crops Research, 2009, 113: 31-40. |
[35] | Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M.Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines[J]. Journal of Plant Nutrition, 2005, 28: 835-850. |
[36] | Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Samejima H,.Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines[J]. Soil Science and Plant Nutrition, 2004, 50: 545-554. |
[37] | Passioura J.Roots and drought resistance[J]. Agricultural Water Management, 1983, 7: 265-280. |
[38] | Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H.Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research, 2015, 175: 47-59. |
[39] | Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T.A root-shoot interaction hypothesis for high productivity of field crops[J]. Soil Science and Plant Nutrition, 1997, 43: 1079-1084. |
[40] | Gu J F, Li Z K, Mao Y Q, Struik P, Zhang H, Liu L J, Wang Z Q, Yang J C.Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications[J]. Plant Science, 2018, 274: 320-331. |
[41] | 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系[J]. 作物学报, 2014, 40: 850-858. |
Chu G, Liu J, Zhang H, Yang J C.Morphology and physiology of roots and their relationships with yield formation in super rice[J]. Acta Agronomica Sinica, 2014, 40: 850-858. (in Chinese with English abstract) | |
[42] | Yang J C, Zhou Q, Zhang J H.Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission[J]. Crop Journal, 2017, 5: 151-158. |
[43] | 郭九信, 冯绪猛, 胡香玉, 田广丽, 王伟, 陈健, 刘田, 艾山江·赛衣丁, 郭世伟. 氮肥用量及钾肥施用对稻麦周年产量及效益的影响[J]. 作物学报, 2013, 39: 2262-2271. |
Guo J X, Feng X M, Hu X Y, Tian G L, Wang W, Chen J, Liu T, Sai H, Guo S W.Effects of nitrogen and potassium fertilizers application on annual yield and economic effect in rotation of rice and wheat[J]. Acta Agronomica Sinica, 2013, 39: 2262-2271. (in Chinese with English abstract) | |
[44] | Jiang Y, Meng J J, Zhang L L, Cai M L, Li C F, Zhang M, Wang J P, Wang B F, Mohamed I, Cao C G.Non-target effects of Bt transgenes on grain yield and related traits of an elite restorer rice line in response to nitrogen and potassium applications[J]. Field Crops Research, 2014, 169: 39-48. |
[45] | He P, Yang L P, Xu X P, Zhao S C, Chen F, Li S T, Tu S H, Jin J Y, Johnston A M.Temporal and spatial variation of soil available potassium in China (1990-2012)[J]. Field Crops Research, 2015, 173: 49-56. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点 [J]. 中国水稻科学, 2024, 38(5): 544-554. |
[7] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[8] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[9] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[10] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[11] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[12] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[13] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[14] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[15] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||