中国水稻科学 ›› 2021, Vol. 35 ›› Issue (6): 565-572.DOI: 10.16819/j.1001-7216.2021.200803
孙雅菲#, 宋科#, 秦秦, 孙丽娟, 薛永*
收稿日期:
2020-08-03
修回日期:
2020-12-04
出版日期:
2021-11-10
发布日期:
2021-11-10
通讯作者:
薛永
作者简介:
#共同第一作者
基金资助:
Yafei SUN#, Ke SONG#, Qin QIN, Lijuan SUN, Yong XUE*
Received:
2020-08-03
Revised:
2020-12-04
Online:
2021-11-10
Published:
2021-11-10
Contact:
Yong XUE
About author:
#These authors contributed equally to this work
摘要:
【目的】磷酸盐(Pi)转运蛋白OsPT4是水稻Pht1家族成员之一,负责Pi吸收以及向地上部的转运。探究OsPT4超表达对不同Pi条件下水稻氮(N)和磷(P)积累与利用的影响及其机理具有重要意义。【方法】以日本晴背景的OsPT4超表达株系为研究材料,通过设置正常供Pi与缺Pi的水培与桶培实验,检测生殖生长阶段不同组织中OsPT4的相对表达量,探究不同Pi处理条件下不同组织(叶片、叶鞘、茎秆、稻壳、穗柄和糙米)中的N和P浓度,并计算Pi吸收率及N和P利用效率,同时分析株高、单株产量、千粒重和结实率等产量构成因素。【结果】OsPT4在水稻生殖生长阶段的根系中相对表达丰度较高,OsPT4超表达使水稻剑叶、叶鞘、茎秆、稻壳、穗柄和糙米中的总P浓度不同程度提高,并显著提高了不同Pi处理条件下的Pi吸收与利用效率。同时,OsPT4的超表达可显著提高正常供Pi与缺Pi土壤条件下的单株产量与千粒重,以及缺Pi土壤中生长的结实率。除此之外,OsPT4的超表达使缺Pi条件下瘪壳与糙米中总N浓度平均升高16.8%和19.8%,N利用效率平均升高6.6%。【结论】OsPT4超表达不仅显著提高Pi吸收与利用效率,同时对不同Pi条件下的生理氮素利用率起促进作用。
孙雅菲, 宋科, 秦秦, 孙丽娟, 薛永. 磷酸盐转运蛋白OsPT4影响水稻氮磷积累与利用的机理研究[J]. 中国水稻科学, 2021, 35(6): 565-572.
Yafei SUN, Ke SONG, Qin QIN, Lijuan SUN, Yong XUE. Research on the Mechanisim of OsPT4 Regulating the Accumulation and Utilization of Nitrogen and Phosphorus in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(6): 565-572.
基因名称 Gene name | 引物序列(5'-3') Prime sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|
OsPT4 | F: TTCTGCTAGTGTACCAAACAAAATTACA R: GTAAGTGGCATTTATAATATCAACAGTAACC | 55 |
OsActin | F: GGGTTCACAAGTCTGCCTATTGT | 55 |
R: ACGGGACACGACCAAGGA |
表1 OsActin和OsPT4的定量PCR序列
Table 1 qRT-PCR primers for OsActin and OsPT4.
基因名称 Gene name | 引物序列(5'-3') Prime sequence(5'-3') | 退火温度 Annealing temperature/℃ |
---|---|---|
OsPT4 | F: TTCTGCTAGTGTACCAAACAAAATTACA R: GTAAGTGGCATTTATAATATCAACAGTAACC | 55 |
OsActin | F: GGGTTCACAAGTCTGCCTATTGT | 55 |
R: ACGGGACACGACCAAGGA |
图1 不同生长期OsPT4在不同组织中的相对表达量数据均为平均数(n = 3)。
Fig. 1. Relative expression of OsPT4 in different organs at different growth stages of rice. Data are shown as mean (n = 3).
图2 OsPT4超表达材料分子鉴定 A–OsPT4超表达材料拷贝数鉴定;B–超表达材料中OsPT4的相对表达量。M代表标记物,P代表阳性对照。不同字母表示在5%水平上差异显著。WT–野生型;Ox1~ Ox3–三个超表达株系。数据均为平均数±标准差(n = 3);不同字母表示同一时期内各株系在0.05水平上差异显著。
Fig. 2. Molecular identification of OsPT4 overexpressing lines. A, Identification of copy number in OsPT4 overexpressing lines; B, Relative expression of OsPT4 in the overexpressing lines. Different letters indicate significant difference at 0.05 level. Data are shown as mean (n = 3); Different letters indicate significant difference in the same stage at the level of 0.05. WT, Wild type; Ox1-Ox3, Three OsPT4-overexpression lines.
图3 OsPT4的超表达提高营养生长期正常供磷和缺磷条件下生物量及总磷含量数据均为平均数(n = 4);不同字母表示同一时期内各株系在0.05水平上差异显著。下同。
Fig. 3. Overexpression of OsPT4 increases the biomass and total P concentration under both +P and -P conditions during vegetative growth stage. Data are shown as mean (n = 4); Different letters indicate significant difference in the same stage at the level of 0.05. The same below.
图4 OsPT4的超表达促进生殖生长期正常供磷和缺磷土壤条件下水稻不同组织中的磷积累
Fig. 4. Overexpression of OsPT4 facilitates the P accumulation of rice under both +P and -P soil conditions during reproductive growth stage.
图5 OsPT4的超表达提高正常供磷和缺磷土壤条件下水稻磷吸收及利用效率
Fig. 5. Overexpression of OsPT4 facilitates the Pi uptake and use efficiency of rice under both +P and -P soil conditions.
图7 正常供磷和缺磷土壤中OsPT4超表达材料繁育器官总氮含量及水稻生理氮素利用率
Fig. 7. Total N concentration in reproductive tissues and physiology N use efficiency of OsPT4 overexpressing lines under both +P and -P soil conditions.
[1] | Mimura T.Regulation of phosphate transport and homeostasis in the plant cells[J]. International Review of Cytology, 1999, 191: 149-200. |
[2] | Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157: 423-447. |
[3] | Schachtman D P, Reid R J, Ayling S M.Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116: 447-453. |
[4] | Raghothama K G.Phosphate acquisition[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 150: 665-693. |
[5] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48: 3404-3414. |
Zhu D, Zhang Y, Chen H, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China.Scientia Agricultura Sinica, 2015, 48: 3404-3414. (in Chinese with English abstract). | |
[6] | Smith F W, Mudge S R, Rae A L, Donna G.Phosphate transporter in plants[J]. Plant and Soil, 2003, 248: 71-83. |
[7] | Gu M, Chen A, Sun S, Xu G.Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: What is missing?[J] Molecular Plant, 2016, 9: 396-416. |
[8] | Poirier Y, Bucher M.Phosphate transport and homeostasis in Arabidopsis[J]. The Arabidopsis Book, 2002, (1): e0024. |
[9] | Remy E, Cabrito T R, Batista R A, Teixeira M C, Sá-Correia I, Duquel P.The Pht1; 9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation[J]. New Phytologist, 2012, 195: 356-371. |
[10] | Paszkowski U, Kroken S, Roux C, Briggs S P.Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 13324-13329. |
[11] | Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G.A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice[J]. Plant Physiology, 2012, 159: 1571-1581. |
[12] | Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller A J, Xu G.Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57: 798-809. |
[13] | Zhang F, Wu X, Zhou H, Wang D, Jiang T, Sun Y, Cao Y, Pei W, Sun S, Xu G.Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants[J]. Plant and Soil, 2014, 384: 259-270. |
[14] | Liu F, Wang Z, Ren H, Shen C, Li Y, Ling H-Q, Wu C, Lian X, Wu P.OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice[J]. The Plant Journal, 2010, 62: 508-517. |
[15] | Chang M X, Gu M, Xia Y W, Dai X L, Dai C R, Zhang J, Wang S C, Qu H Y, Yamaji N, Ma J F, Xu G H.OsPHT1;3 mediates uptake, translocation and remobilization of phosphate under extremely low phosphate regimes[J]. Plant Physiology, 2019, 179: 656-670. |
[16] | Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S.Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. The Plant Journal, 2015: 82, 556-569. |
[17] | Jia H F, Ren H Y, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G.The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice[J]. Plant Physiology, 2011, 156: 1164-1175. |
[18] | Wang Y F, Pineros M A, Wang Z Y, Wang W X, Wang W, Li C, Wu Z, Kochian L V, Wu P.Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice[J]. Plant Cell and Environment, 2014, 37: 1159-1170. |
[19] | Marschner H.Mineral Nutrition of Higher Plants[M]. London: Academic Press, 1995. |
[20] | Peng M, Hannam C, Gu H, Bi Y M, Rothstein S J.A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation[J]. The Plant Journal, 2007, 50: 320-337. |
[21] | Kant S, Peng M, Rothstein S J.Genetic regulation by NLA and microRNA827 for maintaining nitrate dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genetics, 2011, 7: e1002021. |
[22] | Lin W Y, Huang T K, Chiou T J.NITROGEN LIMITATION ADAPTATION, a target of MicroRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J]. Plant Cell, 2013, 25: 4061-4074. |
[23] | Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford N M, Ruffel S, Coruzzi G M, Krouk G.AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip[J]. Nature Communication, 2015, 6: 6274. |
[24] | Kiba T, Inaba J, Kudo T, Ueda N, Konishi M, Mitsuda N, Takiguchi Y, Kondou Y, Yoshizumi T, Ohme-Takagi M, Matsui M, Yano K, Yanagisawa S, Sakakibara H.Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J]. Plant Cell, 2018, 30: 925-945. |
[25] | Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S.A NIGT1-centred transcriptional cascade regulates nitrate signaling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9: 1376. |
[26] | Medici A, Szponarsk W, Dangeville P, Safi A, Dissanayake I M, Saenchai C, Emanuel A, Rubio V, Lacombe B, Ruffel S, Tanurdzic M, Rouached H, Krouk G.Nitrogen actively controls the phosphate starvation response in plants[J]. Plant Cell, 2019, 31: 1171-1184. |
[27] | Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P.SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26: 1586-1597. |
[28] | Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants[J]. Nature Plants, 2019, 5: 401-413. |
[29] | 张占田, 孙雅菲, 艾昊, 罗闻真, 冯冰, 孙文献, 徐国华, 孙淑斌. 水稻转录因子基因OsSHR2的时空表达特征及其在营养生长中的调控[J]. 中国水稻科学, 2018, 32: 427-436. |
Zhang Z T, Sun Y F, Ai H, Luo W Z, Feng B, Sun W X, Xu G H, Sun S B.Expression patterns and regulation of transcription factor gene OsSHR2 in vegetative growth in rice[J]. Chinese Journal of Rice Science, 2018, 32: 427-436. (in Chinese with English abstract). | |
[30] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔCT method[J]. Methods, 2001, 25: 402-408. |
[31] | Elliott G C, Lauchli A.Phosphorus efficiency and phosphate iron interactions in maize[J]. Agronomy Journal, 1985, 77: 399-403. |
[32] | Siddiqi M Y, Glass A D M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants[J]. Journal of Plant Nutrition, 1981, 4: 289-302. |
[33] | Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller A J, Xu G.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 7118-7123. |
[34] | Lynch J P.Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2007, 156: 1041-1049. |
[35] | Ye Y, Yuan J, Chang X, Yang M, Zhang L.The phosphate transporter gene OsPht1; 4 is involved in phosphate homeostasis in rice[J]. PLoS ONE, 2015, 10: e0126186. |
[1] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[2] | 唐伟杰, 陈海元, 张所兵, 唐骏, 林静, 方先文, 张抒南, 肖宁, 吴云雨, 李爱宏, 张云辉. 江苏粳稻育成品种氮响应相关性状位点分析 [J]. 中国水稻科学, 2024, 38(5): 535-543. |
[3] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[4] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 吴子牛, 何丽梅, 熊莹, 陈凯瑞, 杨志远, 孙永健, 吕旭, 马均. 氮素穗肥对杂交籼稻籽粒灌浆影响及其与淀粉合成关键酶活性间关系[J]. 中国水稻科学, 2024, 38(1): 48-56. |
[7] | 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异[J]. 中国水稻科学, 2024, 38(1): 57-71. |
[8] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[9] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[10] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[11] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[12] | 张露, 梁青铎, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减氮和增氧灌溉对水稻产量和氮素利用的影响[J]. 中国水稻科学, 2023, 37(1): 78-88. |
[13] | 王颖姮, 陈丽娟, 崔丽丽, 詹生威, 宋煜, 陈世安, 解振兴, 姜照伟, 吴方喜, 卓传营, 蔡秋华, 谢华安, 张建福. 施氮量对优质稻“福香占”光合特性、产量及品质的影响[J]. 中国水稻科学, 2023, 37(1): 89-101. |
[14] | 任维晨, 常庆霞, 张亚军, 朱宽宇, 王志琴, 杨建昌. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制[J]. 中国水稻科学, 2022, 36(6): 586-600. |
[15] | 朱春权, 魏倩倩, 党彩霞, 黄晶, 徐青山, 潘林, 朱练峰, 曹小闯, 孔亚丽, 项兴佳, 刘佳, 金千瑜, 张均华. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476-486. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||