中国水稻科学 ›› 2021, Vol. 35 ›› Issue (5): 513-518.DOI: 10.16819/j.1001-7216.2021.210107
• 研究报告 • 上一篇
李艳大*(), 叶春, 曹中盛, 孙滨峰, 舒时富, 陈立才
收稿日期:
2021-01-11
修回日期:
2021-04-03
出版日期:
2021-09-10
发布日期:
2021-09-10
通讯作者:
李艳大
基金资助:
Yanda LI*(), Chun YE, Zhongsheng CAO, Binfeng SUN, Shifu SHU, Licai CHEN
Received:
2021-01-11
Revised:
2021-04-03
Online:
2021-09-10
Published:
2021-09-10
Contact:
Yanda LI
摘要:
【目的】旨在阐明无人机和人工喷施雾滴在水稻冠层内沉积分布特征,比较其稻瘟病防效、水稻产量及经济效益。【方法】选用电动四旋翼植保无人机,设置3个不同飞行高度和3个不同施药量,于孕穗期观测喷施雾滴在水稻冠层内沉积分布状况,并和人工喷施处理防治稻瘟病的效果、产量及经济效益进行比较。【结果】雾滴沉积量随飞行高度的升高而减少,雾滴沉积均匀性和穿透性随飞行高度的升高而增大。无人机和人工喷施的雾滴沉积量、均匀性和穿透性随施药量的增加而增大,雾滴沉积量和均匀性均呈水稻冠层上部>中部>下部的分布特征。无人机喷施的雾滴均匀性和穿透性大于人工喷施。无人机喷施在防效和产量不降低的情况下,用工成本减少165元/hm2,净收益提高164元/hm2,产投比提高20.9。【结论】与人工喷施相比,无人机喷施可在保证丰产的基础上,提高作业效率,降低生产成本,获得更高经济效益,在水稻精确管理和丰产高效栽培中具有应用价值。
李艳大, 叶春, 曹中盛, 孙滨峰, 舒时富, 陈立才. 无人机与人工喷施雾滴在水稻冠层内沉积特征及效益比较[J]. 中国水稻科学, 2021, 35(5): 513-518.
Yanda LI, Chun YE, Zhongsheng CAO, Binfeng SUN, Shifu SHU, Licai CHEN. Comparison of Droplet Deposition Characteristics in Rice Canopy and Benefit Between Unmanned Aerial Vehicle Spray and Artificial Spray[J]. Chinese Journal OF Rice Science, 2021, 35(5): 513-518.
喷施方式 Spraying way | 飞行高度 Flying height / m | 施药量 Pesticide dosage / (g·hm-2) | 雾滴沉积量 Deposition amount of droplet / (µL·cm-2) | ||||
---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | |||||
无人机 | 1.5 | 140 | 0.0921 b | 0.1423 c | 0.2480 b | ||
Unmanned aerial vehicle | 180 | 0.1335 a | 0.1635 b | 0.3225 a | |||
220 | 0.1424 a | 0.1862 a | 0.3409 a | ||||
2.0 | 140 | 0.0545 c | 0.1097 b | 0.1616 c | |||
180 | 0.0973 b | 0.1622 a | 0.2695 b | ||||
220 | 0.1306 a | 0.1661 a | 0.3072 a | ||||
2.5 | 140 | 0.0347 c | 0.0650 c | 0.0991 c | |||
180 | 0.0670 b | 0.1270 b | 0.1898 b | ||||
220 | 0.1102 a | 0.1464 a | 0.2609 a | ||||
人工Artificial | 140 | 1.3133 b | 5.9077 b | 12.0489 b | |||
180 | 1.6386 a | 6.2308 b | 13.3876 b | ||||
220 | 1.8317 a | 6.8254 a | 14.0021 a | ||||
平均Mean | 无人机Unmanned aerial vehicle | 0.0958 b | 0.1409 b | 0.2444 b | |||
人工Artificial | 1.5945 a | 6.3213 a | 13.1462 a |
表1 不同喷施方式的雾滴沉积量分布特征
Table 1 Distribution characteristic of deposition amount of droplets under different spraying ways.
喷施方式 Spraying way | 飞行高度 Flying height / m | 施药量 Pesticide dosage / (g·hm-2) | 雾滴沉积量 Deposition amount of droplet / (µL·cm-2) | ||||
---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | |||||
无人机 | 1.5 | 140 | 0.0921 b | 0.1423 c | 0.2480 b | ||
Unmanned aerial vehicle | 180 | 0.1335 a | 0.1635 b | 0.3225 a | |||
220 | 0.1424 a | 0.1862 a | 0.3409 a | ||||
2.0 | 140 | 0.0545 c | 0.1097 b | 0.1616 c | |||
180 | 0.0973 b | 0.1622 a | 0.2695 b | ||||
220 | 0.1306 a | 0.1661 a | 0.3072 a | ||||
2.5 | 140 | 0.0347 c | 0.0650 c | 0.0991 c | |||
180 | 0.0670 b | 0.1270 b | 0.1898 b | ||||
220 | 0.1102 a | 0.1464 a | 0.2609 a | ||||
人工Artificial | 140 | 1.3133 b | 5.9077 b | 12.0489 b | |||
180 | 1.6386 a | 6.2308 b | 13.3876 b | ||||
220 | 1.8317 a | 6.8254 a | 14.0021 a | ||||
平均Mean | 无人机Unmanned aerial vehicle | 0.0958 b | 0.1409 b | 0.2444 b | |||
人工Artificial | 1.5945 a | 6.3213 a | 13.1462 a |
喷施方式 Spraying way | 飞行高度 Flying height/m | 施药量 Pesticide dosage / (g·hm-2) | 均匀性 Uniformity / % | 穿透性 Penetrability / % | ||||
---|---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | ||||||
无人机 Unmanned aerial vehicle | 1.5 | 140 | 16.72 a | 10.40 a | 10.07 a | 49.49 a | ||
180 | 12.89 b | 10.32 a | 9.88 a | 49.19 a | ||||
220 | 10.92 b | 9.84 b | 9.41 b | 46.72 b | ||||
2.0 | 140 | 12.48 a | 10.19 a | 9.05 a | 49.33 a | |||
180 | 10.70 b | 9.86 b | 6.15 b | 49.31 a | ||||
220 | 10.63 b | 9.43 c | 6.04 b | 46.41 b | ||||
2.5 | 140 | 10.75 a | 9.68 a | 5.93 a | 48.65 a | |||
180 | 9.71 a | 9.28 a | 5.45 b | 47.99 a | ||||
220 | 6.20 b | 6.05 b | 5.27 c | 45.62 b | ||||
人工 Artificial | 140 | 42.96 a | 24.84 a | 13.90 a | 83.86 a | |||
180 | 35.22 b | 19.53 b | 12.65 b | 83.56 a | ||||
220 | 34.31 b | 16.43 c | 11.57 b | 81.00 b | ||||
平均Mean | 无人机 Unmanned aerial vehicle | 11.22 b | 9.45 b | 7.47 b | 48.08 b | |||
人工Artificial | 37.49 a | 20.27 a | 12.70 a | 82.81 a |
表2 不同喷施方式的雾滴均匀性与穿透性分布特征
Table 2 Distribution characteristics of uniformity and penetration of droplets under different spraying ways.
喷施方式 Spraying way | 飞行高度 Flying height/m | 施药量 Pesticide dosage / (g·hm-2) | 均匀性 Uniformity / % | 穿透性 Penetrability / % | ||||
---|---|---|---|---|---|---|---|---|
冠层下部 Basal canopy | 冠层中部 Middle canopy | 冠层上部 Upper canopy | ||||||
无人机 Unmanned aerial vehicle | 1.5 | 140 | 16.72 a | 10.40 a | 10.07 a | 49.49 a | ||
180 | 12.89 b | 10.32 a | 9.88 a | 49.19 a | ||||
220 | 10.92 b | 9.84 b | 9.41 b | 46.72 b | ||||
2.0 | 140 | 12.48 a | 10.19 a | 9.05 a | 49.33 a | |||
180 | 10.70 b | 9.86 b | 6.15 b | 49.31 a | ||||
220 | 10.63 b | 9.43 c | 6.04 b | 46.41 b | ||||
2.5 | 140 | 10.75 a | 9.68 a | 5.93 a | 48.65 a | |||
180 | 9.71 a | 9.28 a | 5.45 b | 47.99 a | ||||
220 | 6.20 b | 6.05 b | 5.27 c | 45.62 b | ||||
人工 Artificial | 140 | 42.96 a | 24.84 a | 13.90 a | 83.86 a | |||
180 | 35.22 b | 19.53 b | 12.65 b | 83.56 a | ||||
220 | 34.31 b | 16.43 c | 11.57 b | 81.00 b | ||||
平均Mean | 无人机 Unmanned aerial vehicle | 11.22 b | 9.45 b | 7.47 b | 48.08 b | |||
人工Artificial | 37.49 a | 20.27 a | 12.70 a | 82.81 a |
施药量 Pesticide dosage /(g·hm-2) | 喷施方式 Spraying way | 防治效果 Control efficacy/% | 稻谷产量 Grain yield /(kg·hm-2) | 用药成本 Pesticide /(Yuan·hm-2) | 用工成本 Labor cost /(Yuan·hm-2) | 稻谷收益 Output /(Yuan·hm-2) | 净收益 Net income /(Yuan·hm-2) | 产投比 Output-input ratio |
---|---|---|---|---|---|---|---|---|
140 | 无人机S1 | 56.82 a | 8130.96 a | 154 a | 135 b | 20 327 a | 20 038 a | 70.3 a |
人工S2 | 57.59 a | 8130.43 a | 154 a | 300 a | 20 326 a | 19 872 b | 44.8 b | |
180 | 无人机S1 | 66.52 a | 8210.45 a | 198 a | 135 b | 20 526 a | 20 193 a | 61.6 a |
人工S2 | 67.21 a | 8212.58 a | 198 a | 300 a | 20 531 a | 20 033 b | 41.2 b | |
220 | 无人机S1 | 86.44 a | 8279.13 a | 242 a | 135 b | 20 698 a | 20 321 a | 54.9 a |
人工S2 | 86.72 a | 8279.13 a | 242 a | 300 a | 20 698 a | 20 156 b | 38.2 b | |
平均Mean | 无人机S1 | 69.93 a | 8206.85 a | 198 a | 135 b | 20 517 a | 20 184 a | 62.3 a |
人工S2 | 70.51 a | 8207.38 a | 198 a | 300 a | 20 518 a | 20 020 b | 41.4 b |
表3 不同喷施方式的防治效果、产量及经济效益比较
Table 3 Comparison of the control efficacy, grain yield and economic benefit under different spraying ways.
施药量 Pesticide dosage /(g·hm-2) | 喷施方式 Spraying way | 防治效果 Control efficacy/% | 稻谷产量 Grain yield /(kg·hm-2) | 用药成本 Pesticide /(Yuan·hm-2) | 用工成本 Labor cost /(Yuan·hm-2) | 稻谷收益 Output /(Yuan·hm-2) | 净收益 Net income /(Yuan·hm-2) | 产投比 Output-input ratio |
---|---|---|---|---|---|---|---|---|
140 | 无人机S1 | 56.82 a | 8130.96 a | 154 a | 135 b | 20 327 a | 20 038 a | 70.3 a |
人工S2 | 57.59 a | 8130.43 a | 154 a | 300 a | 20 326 a | 19 872 b | 44.8 b | |
180 | 无人机S1 | 66.52 a | 8210.45 a | 198 a | 135 b | 20 526 a | 20 193 a | 61.6 a |
人工S2 | 67.21 a | 8212.58 a | 198 a | 300 a | 20 531 a | 20 033 b | 41.2 b | |
220 | 无人机S1 | 86.44 a | 8279.13 a | 242 a | 135 b | 20 698 a | 20 321 a | 54.9 a |
人工S2 | 86.72 a | 8279.13 a | 242 a | 300 a | 20 698 a | 20 156 b | 38.2 b | |
平均Mean | 无人机S1 | 69.93 a | 8206.85 a | 198 a | 135 b | 20 517 a | 20 184 a | 62.3 a |
人工S2 | 70.51 a | 8207.38 a | 198 a | 300 a | 20 518 a | 20 020 b | 41.4 b |
[1] | 程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰. 中国水稻生产的时空动态分析[J]. 中国农业科学, 2012, 45(17): 3473-3485. |
Cheng Y X, Wang X Z, Guo J P, Zhao Y X, Huang J F. The temporal-spatial dynamic analysis of China rice production[J]. Scientia Agricultura Sinica, 2012, 45(17): 3473-3485. (in Chinese with English abstract) | |
[2] | 李艳大, 黄俊宝, 叶春, 舒时富, 孙滨峰, 陈立才, 王康军, 曹中盛. 不同氮素水平下双季稻株型与冠层内光截获特征研究[J]. 作物学报, 2019, 45(9): 1375-1385. |
Li Y D, Huang, J B, Ye C, Shu S F, Sun B F, Chen L C, Wang K J, Cao Z S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates[J]. Acta Agronomica Sinica, 2019, 45(9): 1375-1385. (in Chinese with English abstract) | |
[3] | Ghosh T, Pradhan C, Das A B. Control of stem-rot disease of rice caused by Sclerotium oryzae Catt and its cellular defense mechanism: A review[J]. Physiological and Molecular Plant Pathology, 2020, 112: 101536. |
[4] | 何勇, 肖舒裴, 方慧, 董涛, 唐宇, 聂鹏程, 吴剑坚, 骆少明. 植保无人机施药喷嘴的发展现状及其施药决策[J]. 农业工程学报, 2018, 34(13): 113-124. |
He Y, Xiao S P, Fang H, Dong T, Tang Y, Nie P C, Wu J J, Luo S M. Development situation and spraying decision of spray nozzle for plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 113-124. (in Chinese with English abstract) | |
[5] | 周志艳, 明锐, 臧禹, 何新刚, 罗锡文, 兰玉彬. 中国农业航空发展现状及对策建议[J]. 农业工程学报, 2017, 33(20): 1-13. |
Zhou Z Y, Ming R, Zang Y, He X G, Lou X W, Lan Y B. Development status and countermeasures of agricultural aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 1-13. (in Chinese with English abstract) | |
[6] | 张东彦, 兰玉彬, 陈立平, 王秀, 梁栋. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. |
Zhang D Y, Lan Y B, Chen L P, Wang X, Liang D. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract) | |
[7] | 薛新宇, 兰玉彬. 美国农业航空技术现状和发展趋势分析[J]. 农业机械学报, 2013, 44(5): 194-201. |
Xue X Y, Lan Y B. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract) | |
[8] | 陈盛德, 兰玉彬, 李继宇, 周志艳, 刘爱民, 徐小杰. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017, 38(4): 103-109. |
Chen S D, Lan Y B, Li J Y, Zhou Z Y, Liu A M, Xu X J. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. (in Chinese with English abstract) | |
[9] | 韩冲冲, 李飞, 李保同, 石绪根, 熊忠华. 无人机喷施雾滴在水稻群体内的沉积分布及防效研究[J]. 江西农业大学学报, 2019, 41(1): 58-67. |
Han C C, Li F, Li B T, Shi X G, Xiong Z H. A study on deposition distribution of droplets by UAV spray in rice population and its efficacy[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(1): 58-67. (in Chinese with English abstract) | |
[10] | 朱祖武. 无人机农药喷洒与人工作业的比较试验[J]. 农机化研究, 2018, 40(5): 264-268. |
Zhu Z W. Comparative experiments between the unmanned aerial vehicle pesticide-spraying and artificial operation[J]. Journal of Agricultural Mechanization Research, 2018, 40(5): 264-268. (in Chinese) | |
[11] | 张京, 何雄奎, 宋坚利, 曾爱军, 刘亚佳, 李学锋. 无人驾驶直升机航空喷雾参数对雾滴沉积的影响[J]. 农业机械学报, 2012, 43(12): 94-96. |
Zhang J, He X K, Song J L, Zeng A J, Liu Y J, Li X F. Influence of spraying parameters of unmanned aircraft on droplets deposition[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(12): 94-96. (in Chinese with English abstract) | |
[12] | 邱白晶, 王立伟, 蔡东林, 吴建浩, 丁国荣, 管贤平. 无人直升机飞行高度与速度对喷雾沉积分布的影响[J]. 农业工程学报, 2013, 29(24): 25-32. |
Qiu B J, Wang L W, Cai D L, Wu J H, Ding G R, Guan X P. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 25-32. (in Chinese with English abstract) | |
[13] | 秦维彩, 薛新宇, 周立新, 张宋超, 孙竹, 孔伟, 王宝坤. 无人直升机喷雾参数对玉米冠层雾滴沉积分布的影响[J]. 农业工程学报, 2014, 30(5): 50-56. |
Qin W C, Xue X Y, Zhou L X, Zhang S C, Sun Z, Kong W, Wang B K. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56. (in Chinese with English abstract) | |
[14] | Zhang D Y, Chen L P, Zhang R R, Xu G, Lan Y B, Wesley C H, Wang X, Xu M. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(2): 21-30. |
[15] | Fritz B K, Hoffmann W C. Update to the USDA-ARS fixed-wing spray nozzle models[J]. Transactions of the ASABE, 2015, 58(2): 281-295. |
[16] | 王昌陵, 宋坚利, 何雄奎, 王志翀, 王士林, 蒙艳华. 植保无人机飞行参数对施药雾滴沉积分布特性的影响[J]. 农业工程学报, 2017, 33(23): 109-116. |
Wang C L, Song J L, He X K, Wang Z C, Wang S L, Meng Y H. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 109-116. (in Chinese with English abstract) | |
[17] | Bradley K F, Hoffmann W C, Bagley W E, Kruger G R, Czaczyk Z, Henry R S. Measuring droplet size of agricultural spray nozzles-measurement distance and airspeed effects[J]. Atomization and Sprays, 2014, 24(9): 747-760. |
[18] | 王志翀, Herbst A, Bonds J, 曾爱军, 赵铖, 何雄奎. 植保无人机低空低量施药雾滴沉积飘移分布立体测试方法[J]. 农业工程学报, 2020, 36(4): 54-62. |
Wang Z C, Herbst A, Bonds J, Zeng A J, Zhao C, He X K. Stereoscopic test method for low-altitude and low-volume spraying deposition and drift distribution of plant protection UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 54-62. (in Chinese with English abstract) | |
[19] | Huang Y, Zhan W, Fritz B K, Thomson S J. Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays[J]. Applied Engineering in Agriculture, 2012, 28(3): 307-314. |
[20] | 田志伟, 薛新宇, 崔龙飞, 陈晨, 彭斌, 刘兵. 植保无人机昼夜作业的雾滴沉积特性及棉蚜防效对比[J]. 农业工程学报, 2020, 36(5): 69-77. |
Tian Z W, Xue X Y, Cui L F, Chen C, Peng B, Liu B. Comparison of droplet deposition characteristics and cotton aphid control effect of plant protection UAV working during the day and night[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 69-77. (in Chinese with English abstract) | |
[21] | 何勇, 吴剑坚, 方慧, 郑启帅, 肖舒裴, 岑海燕. 植保无人机雾滴沉积效果研究综述[J]. 浙江大学学报: 农业与生命科学版, 2018, 44(4): 392-398. |
He Y, Wu J J, Fang H, Zheng Q S, Xiao S P, Cen H Y. Research on deposition effect of droplets based on plant protection unmanned aerial vehicle: A review[J]. Journal of Zhejiang University (Agriculture & Life Science), 2018, 44(4): 392-398. (in Chinese with English abstract) | |
[22] | Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Computers and Electronics in Agriculture, 2011, 76(1): 38-43. |
[23] | 王亚梁, 朱德峰, 向镜, 陈惠哲, 张玉屏, 徐一成, 张义凯. 杂交稻低播量精量播种育秧及机插取秧特性[J]. 中国水稻科学, 2020, 34(4): 332-338. |
Wang Y L, Zhu D F, Xiang J, Chen H H, Zhang Y P, Xu Y C, Zhang Y K. Characteristics of seedling raising and mechanized transplanting of hybrid rice with a low seeding rate by precise seeding method[J]. Chinese Journal of Rice Science, 2020, 34(4): 332-338. (in Chinese with English abstract) | |
[24] | Lan Y B, Chen S D, Fritz B K. Current status and future trends of precision agricultural aviation technologies[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 1-17. |
[25] | 陈盛德, 兰玉彬, 李继宇, 周志艳, 金济, 刘爱民. 小型无人直升机喷雾参数对杂交水稻冠层雾滴沉积分布的影响[J]. 农业工程学报, 2016, 32(17): 40-46. |
Chen S D, Lan Y B, Li J Y, Zhou Z Y, Jin J, Liu A M. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 40-46. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||