中国水稻科学 ›› 2021, Vol. 35 ›› Issue (5): 439-448.DOI: 10.16819/j.1001-7216.2021.210305
冯志明1,2, 王广达1, 赵剑华1, 居冉1, 李梦臣1, 高鹏1, 胡珂鸣1,2, 陈宗祥1,2, 左示敏1,2,*()
收稿日期:
2021-03-06
修回日期:
2021-03-25
出版日期:
2021-09-10
发布日期:
2021-09-10
通讯作者:
左示敏
基金资助:
Zhiming FENG1,2, Guangda WANG1, Jianhua ZHAO1, Ran JU1, Mengchen LI1, Peng GAO1, Keming HU1,2, Zongxiang CHEN1,2, Shimin ZUO1,2,*()
Received:
2021-03-06
Revised:
2021-03-25
Online:
2021-09-10
Published:
2021-09-10
Contact:
Shimin ZUO
摘要:
【目的】明确水稻富含半胱氨酸类受体激酶(Cysteine-rich receptor-like kinases,CRK)家族基因对纹枯病菌侵染和植物激素的响应特征,是解析CRK在水稻纹枯病抗性中的功能的重要前期工作。【方法】利用生物信息学方法构建了水稻45个CRK的系统发育树,并利用qPCR分析了它们对纹枯病菌和对植物激素乙烯(Ethylene,ET)、茉莉酸(Jasmonic acid,JA)、水杨酸(Salicylic acid,SA)和细胞分裂素(Cytokinin,CK)等的响应特征,以及在水稻不同组织中的表达模式。【结果】水稻CRK家族可分为4个组,在染色体上成簇或紧密分布的CRK大部分来自同一组或同一分支。41个CRK响应纹枯病菌侵染,其中17个响应强烈;结合组织表达模式,发现这17个CRK基因中,CRK15、CRK23、CRK24、CRK26、CRK27、CRK28、CRK29、CRK30、CRK31和CRK33等10个基因在叶鞘和叶片中表达较强,暗示这些基因可能参与了对纹枯病的抗性;大部分同一分支的两个同源性较高的CRK对纹枯病菌的响应特征类似, 表明这些CRK基因在调控纹枯病抗性上可能存在功能冗余。40个CRK对3种或4种植物激素均有响应,它们对不同激素的响应存在差异性,说明CRK可能广泛参与这些激素介导的防御信号途径;对JA和SA响应相反的有17个,对JA和SA、ET和JA、ET和SA响应类似的分别有21、21、23个。这不仅反映了ET、JA、SA信号途径间的协同和拮抗作用,也说明这些基因可能参与ET、JA和SA间的交互作用。【结论】鉴定到一些可能参与调控水稻纹枯病抗性的CRK基因,且它们可能在植物激素介导的防御途径中起作用。这为我们进一步探索CRK在调控水稻纹枯病抗性上的功能提供了科学线索。
冯志明, 王广达, 赵剑华, 居冉, 李梦臣, 高鹏, 胡珂鸣, 陈宗祥, 左示敏. 水稻富含半胱氨酸类受体激酶家族基因对纹枯病菌和植物激素的响应特征分析[J]. 中国水稻科学, 2021, 35(5): 439-448.
Zhiming FENG, Guangda WANG, Jianhua ZHAO, Ran JU, Mengchen LI, Peng GAO, Keming HU, Zongxiang CHEN, Shimin ZUO. Response Characteristics of Rice Cysteine-rich Receptor-like Kinases Family Genes to Rhizoctonia solani and Plant Hormones[J]. Chinese Journal OF Rice Science, 2021, 35(5): 439-448.
基因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
---|---|---|---|---|---|---|---|
LOC_Os01g23970 | OsCRK1 | 423 | 45.60 | 7.57 | F: R: | TTTGGCTCCTACGGTTCTGACC GCTAGTCCAGTGCTCCCATGTAAC | 66 |
LOC_Os01g38910 | OsCRK2 | 196 | 21.37 | 5.77 | F: R: | GACAATGGCGTTGCCTCTTCTTC AACCGAATGGCATCATCCGCATC | 71 |
LOC_Os02g06160 | OsCRK3 | 649 | 71.16 | 8.71 | F: R: | TGCGAGGTCATCGAATTCTGTCG ACAACATCTGGAGTCTGCTTGC | 101 |
LOC_Os02g12130 | OsCRK4 | 179 | 20.06 | 8.60 | F: R: | GCATGGAAGACAAGTCGGAAGG TCCAGTGGGCATTACTCCCTTG | 137 |
LOC_Os02g48080 | OsCRK5 | 426 | 48.08 | 7.47 | F: R: | ACAAACCCAGATGACATTCAGAGC ACCTTCGGGAAGAACTCCCTTG | 144 |
LOC_Os03g31260 | OsCRK6 | 314 | 35.25 | 9.51 | F: R: | TGCAAGCGTTAGTGGAACACTGG CACCTCGTCCAGACTCACTCATTC | 140 |
LOC_Os04g01860 | OsCRK7 | 217 | 23.41 | 4.38 | F: R: | AAGGGCCGTTTGACTACGAACC TGAATCCCTGTGCAGAATTTGGG | 70 |
LOC_Os04g03370 | OsCRK8 | 328 | 36.04 | 7.00 | F: R: | AGCAGTGGTTCACTCAGCTTTG CATGGTCCAGTGCTCCCATACAAG | 69 |
LOC_Os04g03530 | OsCRK9 | 430 | 49.02 | 10.07 | F: R: | GCTACACGTCATCTTTGGCTGTG AGCAAGGACGATGTCTCAGTGTG | 79 |
LOC_Os04g06090 | OsCRK10 | 183 | 21.23 | 10.58 | F: R: | TCGGTATCGTCCTCCTCGAGATTG TTGGTGTTCCGGTGCCATTACC | 62 |
LOC_Os04g06210 | OsCRK11 | 196 | 22.13 | 4.57 | F: R: | TTCAGGGACGCCACGATCTACTAC GCCGGTCACGTTGTTCATGTTC | 120 |
LOC_Os04g09780 | OsCRK12 | 278 | 28.83 | 5.26 | F: R: | TACGAGTACCTCCCTAACAGAAGC ATTGAGCCCTCTTTCTGGAATCG | 64 |
LOC_Os04g25060 | OsCRK13 | 262 | 27.29 | 6.94 | F: R: | CTGCACACACATCGATCGCTAATC TTGCAATGGCAGTGATCGTTAAGC | 60 |
LOC_Os04g25650 | OsCRK14 | 281 | 29.18 | 8.02 | F: R: | CTTACATGGCCTACGAGGTACAAG CGAGCTTTGCGTTCATCTCTTCG | 145 |
LOC_Os04g30030 | OsCRK15 | 463 | 52.89 | 6.88 | F: R: | CCCACCGAATTGTTGGAACCTATG TCCTTCGTCCGCTCACAATCTC | 126 |
LOC_Os04g54190 | OsCRK16 | 379 | 42.66 | 8.20 | F: R: | ACTCACCTGGCCAGAGAGATAC GCTCCCACTCTTGATGAAGGTAAC | 77 |
LOC_Os04g56360 | OsCRK17 | 494 | 55.00 | 7.21 | F: R: | GCTCCTACTACAGCGAGCAATC TGGTCCAGTGCTCCCATATAATGC | 60 |
LOC_Os04g56430 | OsCRK18 | 258 | 27.31 | 4.73 | F: R: | GCTTGGGTGATGGCAAGAACAAC AGCTGCCCTGAACCTTTGATGG | 76 |
LOC_Os05g34950 | OsCRK19 | 644 | 68.40 | 6.89 | F: R: | TCCTGGCCTTCATCGTGATTCTC TGAAATACTCGGGTACCTCTGACG | 135 |
LOC_Os06g30130 | OsCRK20 | 434 | 47.86 | 7.04 | F: R: | CGAAGACCTCTTAACCCTTGTGTG ATCACGTCGCTCCACGAGAAAC | 102 |
LOC_Os07g26180 | OsCRK21 | 163 | 18.63 | 7.57 | F: R: | TCGCCGGAACATATGGATACATGG GCTGAACACGTCCGATTTGATTG | 77 |
LOC_Os07g35290 | OsCRK22 | 348 | 37.45 | 8.90 | F: R: | AAGTTCAGGCACTGACGAACAG TGGAGCACTGAATCCAATTGAGC | 64 |
LOC_Os07g35310 | OsCRK23 | 659 | 71.05 | 6.81 | F: R: | TGGGAGCTTTATCTTGTGTTGGTG TCTCACACAGTGAGTTTAGAAGCG | 84 |
LOC_Os07g35580 | OsCRK24 | 696 | 74.78 | 7.90 | F: R: | CGTATACAGCTTCGGTGTGTTGC TTGCCCAATGTTCCCATACGAG | 116 |
LOC_Os07g35650 | OsCRK25 | 682 | 74.58 | 6.98 | F: R: | ACTCCTCTGAATGTTGTCGATGGC TGCCTGCAGTGATGGTTGAGAC | 63 |
LOC_Os07g35660 | OsCRK26 | 711 | 77.02 | 6.70 | F: R: | TGCCTACTCGCTGACGTGCTACA CTCTTGATTCCGTGGGGAGCAAAGC | 134 |
LOC_Os07g35680 | OsCRK27 | 698 | 75.47 | 6.26 | F: R: | AGCTATGCACAAGTTGCTGACG TAGGGCGCATGGAAGCTTTAGG | 115 |
LOC_Os07g35690 | OsCRK28 | 695 | 76.47 | 6.59 | F: R: | AGATGCGACCTATGATGGAGCAAG AGTTTAGGCAACGGCCCATCAC | 64 |
LOC_Os07g35700 | OsCRK29 | 645 | 73.68 | 7.23 | F: R: | AGAACAGACGTTTCTGCCCTACG AACCATACCGAACCCTCCTCTG | 130 |
LOC_Os07g43560 | OsCRK30 | 677 | 73.68 | 6.94 | F: R: | ATAATCATGGACGTGGCGAAGGG TGATGTCCCTGTGGTAGATCGC | 76 |
因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
LOC_Os08g25430 | OsCRK31 | 591 | 65.53 | 5.15 | F: R: | AAGGTGCAAGAACAAGAAGGTTGC AAGCAGTCCCTCAGCTATCCCATC | 80 |
LOC_Os09g16590 | OsCRK32 | 333 | 37.19 | 6.85 | F: R: | AGGAAGGCACTTATAGGCCAGAGC ACATCCCTGTCCTTCTCAAATGGG | 101 |
LOC_Os09g16950 | OsCRK33 | 516 | 56.46 | 8.20 | F: R: | TGCGTGGCGCATTCAAGTGTAG TCTCTCGCTCTGCCAACCTTTG | 104 |
LOC_Os11g11780 | OsCRK34 | 305 | 34.70 | 6.99 | F: R: | CAGTGGCCAAAGAGGTTTGAACG TGGCCACTATCAGCAGTTTGCC | 92 |
LOC_Os11g26140 | OsCRK35 | 408 | 45.39 | 7.95 | F: R: | GGTGAACACCATGTAGCAGGTC ACCTCTGCACTTTGGACAGCAG | 64 |
LOC_Os11g29510 | OsCRK36 | 307 | 34.85 | 8.98 | F: R: | CAAACCAATTGCTGTCCCGATGC GGAGCTTGAGCTTAGATGGTGTGG | 95 |
LOC_Os11g39450 | OsCRK37 | 456 | 51.83 | 7.52 | F: R: | CAGTCACATTGCTGGAACATACGG TCCTTCCCGTGACAATCTCTAGG | 122 |
LOC_Os11g44690 | OsCRK38 | 479 | 53.95 | 6.82 | F: R: | GATATGCAGCTCTTCGCCAACTTC CAGTGAGTTTAGAAGCGCACCAAC | 134 |
LOC_Os11g44860 | OsCRK39 | 527 | 59.22 | 9.85 | F: R: | CGTCAACGCTAACAGCACACAC TTGATCGAGTTGCCATCCTCAAG | 78 |
LOC_Os12g14480 | OsCRK40 | 364 | 41.15 | 9.99 | F: R: | GTGGAGGCCCTAAGAAGAAAGC AGCTCTGGTAAGACTACCTGTGAC | 100 |
LOC_Os12g14610 | OsCRK41 | 485 | 53.55 | 8.20 | F: R: | TGCAAAGCTTCTCCAGGAAATCAC TTCGCAGCAATTTCTGTCCCATC | 117 |
LOC_Os12g41270 | OsCRK42 | 897 | 95.79 | 8.42 | F: R: | AGGACCTCGAAGGATTCAGAGC AGATGCCACTCCAAGCAAGATAGC | 68 |
LOC_Os12g41490 | OsCRK43 | 687 | 74.42 | 5.86 | F: R: | ATGTGCGGCTGGTGTTGGAATC ACCAATTACTCCCTCCGTGTTGG | 73 |
LOC_Os12g41510 | OsCRK44 | 839 | 91.65 | 6.31 | F: R: | GGATGGAGAGATCACAAGAAAGCC CACCATGAGAGAATGGACCACAAC | 95 |
LOC_Os12g41530 | OsCRK45 | 682 | 74.26 | 5.68 | F: R: | GTTGCTGATGGCACTGGAACTC TGCATAACCTCTGTGATGTGCAG | 63 |
表1 水稻OsCRK基因家族及其荧光定量PCR引物
Table 1 OsCRK gene family members and their qPCR primers.
基因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
---|---|---|---|---|---|---|---|
LOC_Os01g23970 | OsCRK1 | 423 | 45.60 | 7.57 | F: R: | TTTGGCTCCTACGGTTCTGACC GCTAGTCCAGTGCTCCCATGTAAC | 66 |
LOC_Os01g38910 | OsCRK2 | 196 | 21.37 | 5.77 | F: R: | GACAATGGCGTTGCCTCTTCTTC AACCGAATGGCATCATCCGCATC | 71 |
LOC_Os02g06160 | OsCRK3 | 649 | 71.16 | 8.71 | F: R: | TGCGAGGTCATCGAATTCTGTCG ACAACATCTGGAGTCTGCTTGC | 101 |
LOC_Os02g12130 | OsCRK4 | 179 | 20.06 | 8.60 | F: R: | GCATGGAAGACAAGTCGGAAGG TCCAGTGGGCATTACTCCCTTG | 137 |
LOC_Os02g48080 | OsCRK5 | 426 | 48.08 | 7.47 | F: R: | ACAAACCCAGATGACATTCAGAGC ACCTTCGGGAAGAACTCCCTTG | 144 |
LOC_Os03g31260 | OsCRK6 | 314 | 35.25 | 9.51 | F: R: | TGCAAGCGTTAGTGGAACACTGG CACCTCGTCCAGACTCACTCATTC | 140 |
LOC_Os04g01860 | OsCRK7 | 217 | 23.41 | 4.38 | F: R: | AAGGGCCGTTTGACTACGAACC TGAATCCCTGTGCAGAATTTGGG | 70 |
LOC_Os04g03370 | OsCRK8 | 328 | 36.04 | 7.00 | F: R: | AGCAGTGGTTCACTCAGCTTTG CATGGTCCAGTGCTCCCATACAAG | 69 |
LOC_Os04g03530 | OsCRK9 | 430 | 49.02 | 10.07 | F: R: | GCTACACGTCATCTTTGGCTGTG AGCAAGGACGATGTCTCAGTGTG | 79 |
LOC_Os04g06090 | OsCRK10 | 183 | 21.23 | 10.58 | F: R: | TCGGTATCGTCCTCCTCGAGATTG TTGGTGTTCCGGTGCCATTACC | 62 |
LOC_Os04g06210 | OsCRK11 | 196 | 22.13 | 4.57 | F: R: | TTCAGGGACGCCACGATCTACTAC GCCGGTCACGTTGTTCATGTTC | 120 |
LOC_Os04g09780 | OsCRK12 | 278 | 28.83 | 5.26 | F: R: | TACGAGTACCTCCCTAACAGAAGC ATTGAGCCCTCTTTCTGGAATCG | 64 |
LOC_Os04g25060 | OsCRK13 | 262 | 27.29 | 6.94 | F: R: | CTGCACACACATCGATCGCTAATC TTGCAATGGCAGTGATCGTTAAGC | 60 |
LOC_Os04g25650 | OsCRK14 | 281 | 29.18 | 8.02 | F: R: | CTTACATGGCCTACGAGGTACAAG CGAGCTTTGCGTTCATCTCTTCG | 145 |
LOC_Os04g30030 | OsCRK15 | 463 | 52.89 | 6.88 | F: R: | CCCACCGAATTGTTGGAACCTATG TCCTTCGTCCGCTCACAATCTC | 126 |
LOC_Os04g54190 | OsCRK16 | 379 | 42.66 | 8.20 | F: R: | ACTCACCTGGCCAGAGAGATAC GCTCCCACTCTTGATGAAGGTAAC | 77 |
LOC_Os04g56360 | OsCRK17 | 494 | 55.00 | 7.21 | F: R: | GCTCCTACTACAGCGAGCAATC TGGTCCAGTGCTCCCATATAATGC | 60 |
LOC_Os04g56430 | OsCRK18 | 258 | 27.31 | 4.73 | F: R: | GCTTGGGTGATGGCAAGAACAAC AGCTGCCCTGAACCTTTGATGG | 76 |
LOC_Os05g34950 | OsCRK19 | 644 | 68.40 | 6.89 | F: R: | TCCTGGCCTTCATCGTGATTCTC TGAAATACTCGGGTACCTCTGACG | 135 |
LOC_Os06g30130 | OsCRK20 | 434 | 47.86 | 7.04 | F: R: | CGAAGACCTCTTAACCCTTGTGTG ATCACGTCGCTCCACGAGAAAC | 102 |
LOC_Os07g26180 | OsCRK21 | 163 | 18.63 | 7.57 | F: R: | TCGCCGGAACATATGGATACATGG GCTGAACACGTCCGATTTGATTG | 77 |
LOC_Os07g35290 | OsCRK22 | 348 | 37.45 | 8.90 | F: R: | AAGTTCAGGCACTGACGAACAG TGGAGCACTGAATCCAATTGAGC | 64 |
LOC_Os07g35310 | OsCRK23 | 659 | 71.05 | 6.81 | F: R: | TGGGAGCTTTATCTTGTGTTGGTG TCTCACACAGTGAGTTTAGAAGCG | 84 |
LOC_Os07g35580 | OsCRK24 | 696 | 74.78 | 7.90 | F: R: | CGTATACAGCTTCGGTGTGTTGC TTGCCCAATGTTCCCATACGAG | 116 |
LOC_Os07g35650 | OsCRK25 | 682 | 74.58 | 6.98 | F: R: | ACTCCTCTGAATGTTGTCGATGGC TGCCTGCAGTGATGGTTGAGAC | 63 |
LOC_Os07g35660 | OsCRK26 | 711 | 77.02 | 6.70 | F: R: | TGCCTACTCGCTGACGTGCTACA CTCTTGATTCCGTGGGGAGCAAAGC | 134 |
LOC_Os07g35680 | OsCRK27 | 698 | 75.47 | 6.26 | F: R: | AGCTATGCACAAGTTGCTGACG TAGGGCGCATGGAAGCTTTAGG | 115 |
LOC_Os07g35690 | OsCRK28 | 695 | 76.47 | 6.59 | F: R: | AGATGCGACCTATGATGGAGCAAG AGTTTAGGCAACGGCCCATCAC | 64 |
LOC_Os07g35700 | OsCRK29 | 645 | 73.68 | 7.23 | F: R: | AGAACAGACGTTTCTGCCCTACG AACCATACCGAACCCTCCTCTG | 130 |
LOC_Os07g43560 | OsCRK30 | 677 | 73.68 | 6.94 | F: R: | ATAATCATGGACGTGGCGAAGGG TGATGTCCCTGTGGTAGATCGC | 76 |
因号 Gene ID | 基因名称 Gene name | 蛋白大小 Protein length/aa | 蛋白分子量 MW/kDa | 等电点 pI | 引物序列 Primer sequence | 产物大小 Product size/bp | |
LOC_Os08g25430 | OsCRK31 | 591 | 65.53 | 5.15 | F: R: | AAGGTGCAAGAACAAGAAGGTTGC AAGCAGTCCCTCAGCTATCCCATC | 80 |
LOC_Os09g16590 | OsCRK32 | 333 | 37.19 | 6.85 | F: R: | AGGAAGGCACTTATAGGCCAGAGC ACATCCCTGTCCTTCTCAAATGGG | 101 |
LOC_Os09g16950 | OsCRK33 | 516 | 56.46 | 8.20 | F: R: | TGCGTGGCGCATTCAAGTGTAG TCTCTCGCTCTGCCAACCTTTG | 104 |
LOC_Os11g11780 | OsCRK34 | 305 | 34.70 | 6.99 | F: R: | CAGTGGCCAAAGAGGTTTGAACG TGGCCACTATCAGCAGTTTGCC | 92 |
LOC_Os11g26140 | OsCRK35 | 408 | 45.39 | 7.95 | F: R: | GGTGAACACCATGTAGCAGGTC ACCTCTGCACTTTGGACAGCAG | 64 |
LOC_Os11g29510 | OsCRK36 | 307 | 34.85 | 8.98 | F: R: | CAAACCAATTGCTGTCCCGATGC GGAGCTTGAGCTTAGATGGTGTGG | 95 |
LOC_Os11g39450 | OsCRK37 | 456 | 51.83 | 7.52 | F: R: | CAGTCACATTGCTGGAACATACGG TCCTTCCCGTGACAATCTCTAGG | 122 |
LOC_Os11g44690 | OsCRK38 | 479 | 53.95 | 6.82 | F: R: | GATATGCAGCTCTTCGCCAACTTC CAGTGAGTTTAGAAGCGCACCAAC | 134 |
LOC_Os11g44860 | OsCRK39 | 527 | 59.22 | 9.85 | F: R: | CGTCAACGCTAACAGCACACAC TTGATCGAGTTGCCATCCTCAAG | 78 |
LOC_Os12g14480 | OsCRK40 | 364 | 41.15 | 9.99 | F: R: | GTGGAGGCCCTAAGAAGAAAGC AGCTCTGGTAAGACTACCTGTGAC | 100 |
LOC_Os12g14610 | OsCRK41 | 485 | 53.55 | 8.20 | F: R: | TGCAAAGCTTCTCCAGGAAATCAC TTCGCAGCAATTTCTGTCCCATC | 117 |
LOC_Os12g41270 | OsCRK42 | 897 | 95.79 | 8.42 | F: R: | AGGACCTCGAAGGATTCAGAGC AGATGCCACTCCAAGCAAGATAGC | 68 |
LOC_Os12g41490 | OsCRK43 | 687 | 74.42 | 5.86 | F: R: | ATGTGCGGCTGGTGTTGGAATC ACCAATTACTCCCTCCGTGTTGG | 73 |
LOC_Os12g41510 | OsCRK44 | 839 | 91.65 | 6.31 | F: R: | GGATGGAGAGATCACAAGAAAGCC CACCATGAGAGAATGGACCACAAC | 95 |
LOC_Os12g41530 | OsCRK45 | 682 | 74.26 | 5.68 | F: R: | GTTGCTGATGGCACTGGAACTC TGCATAACCTCTGTGATGTGCAG | 63 |
图2 水稻OsCRK对纹枯病菌和激素ET、JA、SA和CK的响应基因表达变化倍数(FC)为纹枯病菌接种后或各激素处理后相对于未处理对照的每个时间点的表达比值。热图是基于Log2 FC生成。红色和蓝色分别表示基因上调和下调。
Fig. 2. Responses of rice OsCRK to R. solani, ET, JA, SA and CK.Fold change(FC) is expressed as the mean expression value of R. solani-infected or plant hormones-treated relative to mock-treated at each time point. The heat map was generated using Log2 FC. Red and blue colors indicate up- and down-regulated genes, respectively.
图3 OsCRK基因在水稻不同组织中的表达模式R,S,L,LS和P分别表示根,茎,叶,叶鞘和穗组织。
Fig. 3. The expression pattern of OsCRK in different rice tissues. R, S, L, LS and P indicate root, stem, leaf, leaf sheath and panicle, respectively.
[1] | Jones J D, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. |
[2] | Liang X X, Zhou J M. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling[J]. Annual Review of Plant Biology, 2018, 69(1): 267-299. |
[3] | Chen Z A. Superfamily of proteins with novel cysteine- rich repeats[J]. Plant Physiology, 2001, 126(2): 473-476. |
[4] | Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojärvi J, Rayapuram C, Idänheimo N, Hunter K, Kimura S, et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J]. PLoS Genetics, 2015, 11(7): e1005373. |
[5] | Sawano Y, Miyakawa T, Yamazaki H, Tanokura M, Hatano K. Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds[J]. Biological Chemistry, 2007, 388(3): 273-280. |
[6] | Chen K, Du L, Chen Z. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Molecular Biology, 2003, 53(1): 61-74. |
[7] | Acharya B R, Raina S, Maqbool S B, Jagadeeswaran G, Mosher S L, Appel H M, Schultz J C. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. Plant Journal, 2007, 50(3): 488-499. |
[8] | Czernic P, Visser B, Sun W, Savoure A, Deslandes L, Marco Y, van Montagu M, Verbruggen N. Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack[J]. Plant Journal, 1999, 18(3): 321-327. |
[9] | Chen K, Fan B, Du L, Chen Z. Activation of hypersensitive cell death by pathogen-induced receptor- like protein kinases from Arabidopsis[J]. Plant Molecular Biology, 2004, 56(2): 271-283. |
[10] | Yeh Y H, Chang Y H, Huang P Y, Huang J B, Zimmerli L. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015, 6(6): 322. |
[11] | Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen A P, Kangasjärvi J. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochemical and Biophysical Research Communications, 2014, 445(2): 457-462. |
[12] | Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013, 3: 3021. |
[13] | Chern M, Xu Q, Bart R S, Bai W, Ruan D, Sze-To W H, Canlas P E, Jain R, Chen X, Ronald P C. A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice nh1 (osnpr1)-mediated immunity[J]. PLoS Genetics, 2016, 12(5): e1006049. |
[14] | Li T G, Zhang D D, Zhou L, Kong Z Q, Hussaini A S, Wang D, Li J J, Short D P, Dhar N, Klosterman S J, Wang B L, Yin C M, Subbarao K V, Chen J Y, Dai X F. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018, 9: 1266. |
[15] | Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary S M T, Poucet T, Marande W, Berges H, Xu S, Jaouannet M. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch[J]. Nature Communications, 2021, 12: 433. |
[16] | 左示敏, 张亚芳, 陈宗祥, 陈夕军, 潘学彪. 水稻抗纹枯病遗传育种研究进展[J]. 中国科学: 生命科学, 2010, 40(11): 1014-1023. |
Zuo S M, Zhang Y F, Chen Z X, Pan X B. Current progress on genetics and breeding in resistance to rice sheath blight[J]. Scientia Sinica Vitae, 2010, 40(11): 1014-1023. (in Chinese with English abstract) | |
[17] | Molla K A, Karmakar S, Molla J, Bajaj P, Varshney R K, Datta S K, Datta K. Understanding sheath blight resistance in rice: The road behind and the road ahead[J]. Plant Biotechnology Journal, 2020, 18(4): 895-915. |
[18] | Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis[J]. Plant Journal, 2020, 102(5): 948-964. |
[19] | Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1485-1498. |
[20] | Peng X, Wang H, Jang J C, Xiao T, He H, Jiang D, Tang X. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9: 63. |
[21] | Helliwell E E, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani[J]. Plant Biotechnology Journal, 2013, 11(1): 33-42. |
[22] | Sadumpati V, Kalambur M, Vudem D R, Kirti P B. Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens[J]. Journal of Biotechnology, 2013, 166(3): 114-121. |
[23] | Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon[J]. New Phytologist, 2017, 217(2): 771-783. |
[24] | Xue X, Cao Z X, Zhang X T, Wang Y, Zhang Y F, Chen Z X, Zuo S M. Overexpression of OsOSM1 enhances resistance to rice sheath blight[J]. Plant Disease, 2016, 100(8): 1634-1642. |
[25] | Zhang F, Zeng D, Zhang C S, Lu J L, Chen T J, Xie J P, Zhou Y L. Genome-wide association analysis of the genetic basis for sheath blight resistance in rice[J]. Rice, 2019, 12: 93. |
[26] | 薛芗, 冯志明, 曹文磊, 王雨, 陈宗祥, 马玉银, 张亚芳, 潘学彪, 左示敏. 乙烯信号参与调控水稻纹枯病抗性的研究[J]. 植物病理学报, 2020, 50(4): 462-470. |
Xue X, Feng Z M, Cao W L, Wang Y, Chen Z X, Ma Y Y, Zhang Y F, Pan X B, Zuo S M. A study on ethylene signaling involving in regulating resistance to rice sheath blight. Acta Phytopathologica Sinica, 2020, 50(4): 462-470. (in Chinese with English abstract) | |
[27] | 左示敏, 薛芗, 张亚芳, 陈宗祥, 潘学彪. 细胞分裂素在调控水稻对纹枯病的抗性中的应用: ZL201610643969.X[P]. 2018.08.07. |
Zuo S M, Xue X, Zhang Y F, Chen Z X, Pan X B. Application of cytokinin in regulating rice resistance to sheath blight: ZL201610643969.X[P]. 2018.08.07. | |
[28] | 左示敏, 章慧敏, 冯志明, 陈宗祥, 张亚芳. OsCKX7蛋白质及其编码基因在调控植物纹枯病抗性中的应用: CN201910071781.6[P]. 2019.01.25. |
Zuo S M, Zhang H M, Feng Z M, Chen Z X, Zhang Y F. Application of OsCKX7 in regulating rice resistance to sheath blight: CN201910071781.6[P]. 2019.01.25. (in Chinese) | |
[29] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 48-58. |
He M, Yin J J, Feng Z M, Zhu X B, Zhao J H, Zuo S M, Chen X W. Evaluation of rice resistance to blast disease and sheath blight disease[J]. Chinese Bulletin of Botany, 2020, 55(5): 48-58. (in Chinese with English abstract) | |
[30] | De Vleesschauwer D, Yang Y, Cruz C V, Höfte M. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling[J]. Plant Physiology, 2010, 152(4): 2036-2052. |
[31] | Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus[J]. Plant and Cell Physiology, 2004, 46(6): 803-809. |
[32] | Leon-Reyes A, Du Y J, Koomeef A, Proietti S, Körbes A P, Memelink J, Pieterse C M J. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid[J]. Molecular Plant-Microbe Interactions, 2010, 23(2): 187-197. |
[33] | Shinshi H. Ethylene-regulated transcription and crosstalk with jasmonic acid[J]. Plant Science, 2008, 175(1): 18. |
[34] | Yang Y X, Ahammed G J, Wu C. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein & Peptide Science, 2015, 16(5): 450-461. |
[35] | Tena G, Asai T, Chiu W L, Sheen J. Plant mitogen- activated protein kinase signaling cascades[J]. Current Opinion in Plant Biology, 2001, 4(5): 392-400. |
[36] | Yang Y X, Ahammed G, Wu C, Fan S Y, Zhou Y H. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses[J]. Current Protein and Peptide Science, 2015, 16(5): 450-461. |
[37] | Spoel S H, Johnson J S, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles[J]. Proceedings of the National Academy of Sciences of the USA, 2007, 104(47): 18842-18847. |
[38] | Bari R, Jones J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology, 2009, 69(4): 473-488. |
[39] | Jung Y H, Rakwal R. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm)[J]. Journal of Proteome Research, 2006, 5(10): 2586-2598. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||