中国水稻科学 ›› 2021, Vol. 35 ›› Issue (3): 303-310.DOI: 10.16819/j.1001-7216.2021.0717
• 研究报告 • 上一篇
刘树芳1,2,#, 董丽英1,2,#, 李迅东1,2, 周伍民1,3, 杨勤忠1,2,*()
收稿日期:
2020-07-24
修回日期:
2020-11-24
出版日期:
2021-05-10
发布日期:
2021-05-10
通讯作者:
杨勤忠
作者简介:
#共同第一作者;
基金资助:
Shufang LIU1,2,#, Liying DONG1,2,#, Xundong LI1,2, Wumin ZHOU1,3, Qinzhong YANG1,2,*()
Received:
2020-07-24
Revised:
2020-11-24
Online:
2021-05-10
Published:
2021-05-10
Contact:
Qinzhong YANG
About author:
#These authors contributed equally to this work;
摘要:
【目的】Pi9是一个广谱稻瘟病抗性基因,田间病圃监测发现持有Pi9的水稻单基因系IRBL9-W在苗期高抗稻瘟病,但却感穗瘟。探明水稻单基因系IRBL9-W在苗期抗病而孕穗末期感染穗颈瘟的原因,为Pi9基因在水稻抗病育种中的有效利用提供参考。【方法】利用从IRBL9-W穗颈瘟病斑上分离的8个单孢菌株以及实验室保存的单孢菌株Y363,在温室分别对单基因系IRBL9-W苗期和孕穗末期进行接种鉴定;并利用病原菌AvrPi9基因的特异引物对9个单孢菌株进行PCR扩增及产物测序;提取水稻单基因系IRBL9-W苗期叶片和抽穗期穗部的总RNA,通过半定量RT-PCR以及实时qRT-PCR分析Pi9基因在苗期和穗期的表达。【结果】在温室人工喷雾接种条件下,IRBL9-W在苗期对从穗颈瘟上分离的8个单孢及对照菌株Y363均表现为抗病;随机选取的2个从IRBL9-W穗颈瘟病样分离的单孢菌株(YX2-7-1和YX2-15-1)及对照菌株Y363对孕穗末期IRBL9-W注射接种,接种的植株表现出典型的穗颈瘟症状;AvrPi9的等位基因分析结果表明,与AvrPi9相比,Y363中的等位基因与AvrPi9完全相同,而从IRBL9-W穗瘟分离的8个单孢菌株中编码区与AvrPi9基因完全相同,但在编码起始位置上游-264 bp处缺失16 bp的一段序列。由于IRBL9-W苗期对这些菌株均表现抗病,推测这段序列的缺失并不影响AvrPi9基因的功能;实时qRT-PCR分析结果表明,Pi9基因在穗部的表达量为苗期叶片表达量的47.3%。【结论】在水稻单基因系IRBL9-W中,与苗期叶片中Pi9基因的表达量相比,Pi9基因在穗部表达量的明显降低可能是造成IRBL9-W穗期感稻瘟病的原因。
刘树芳, 董丽英, 李迅东, 周伍民, 杨勤忠. 持有Pi9基因的水稻单基因系IRBL9-W对稻瘟病菌苗期和成株期抗性差异[J]. 中国水稻科学, 2021, 35(3): 303-310.
Shufang LIU, Liying DONG, Xundong LI, Wumin ZHOU, Qinzhong YANG. Different Reactions of Rice Monogenic Line IRBL9-W Harboring Pi9 Gene to Magnaporthe oryzae Containing AvrPi9 During Seedling and Adult-plant Stages[J]. Chinese Journal OF Rice Science, 2021, 35(3): 303-310.
单基因系 Monogenic line | 抗性基因 R gene | 稻瘟病菌株 Magnaporthe oryzae strains | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
YX2-2-1 | YX2-3-2 | YX2-5-1 | YX2-6-1 | YX2-10-1 | YX2-14-1 | YX2-7-1 | YX2-15-1 | Y363 | ||
IRBLA-A | Pia | R | R | R | R | R | R | S | S | S |
IRBLI-F5 | Pii | R | S | R | S | S | R | S | S | S |
IRBLKS-F5 | Piks | S | S | S | S | S | S | S | S | S |
KRBLK KA | Pik | S | S | S | S | S | S | S | S | S |
KRBLKP-K60 | Pikp | S | S | S | S | S | S | S | S | R |
KRBLKH-K3 | Pikh | R | R | R | R | R | R | R | S | R |
IRBLZ5-CA | Pi2 | S | S | S | S | S | S | S | S | S |
IRBLZ FU | Piz | S | S | S | S | S | S | S | S | S |
IRBLZT-T | Pizt | R | R | R | R | R | R | R | R | R |
IRBLTA-K1 | Pita | S | S | S | S | S | S | S | S | S |
IRBLB-B | Pib | S | S | S | S | S | S | S | S | S |
IRBLT-K59 | Pit | R | R | R | R | R | R | S | S | S |
IRBLSH-B | Pish | S | S | S | S | S | S | S | S | R |
IRBL1-CL | Pi1 | R | R | R | R | R | R | R | S | S |
IRBL3-CP4 | Pi3 | S | S | S | S | S | S | S | S | S |
IRBL5-M | Pi5 | R | R | R | R | R | R | R | R | R |
IRBL7-M | Pi7 | S | S | S | S | R | S | S | S | R |
IRBL12-M | Pi12 | S | S | S | S | S | S | S | S | R |
IRBL19-A | Pi19 | S | S | S | S | R | S | S | S | S |
IRBLKM-TS | Pikm | R | R | R | R | R | R | R | S | S |
IRBL20-IR24 | Pi20 | R | R | R | R | R | R | R | R | R |
IRBLTA2-PI | Pita2 | S | S | S | S | S | S | R | S | R |
IRBL11-ZH | Pi11 | S | S | S | S | S | S | S | S | S |
IRBL9-W | Pi9 | R | R | R | R | R | R | R | R | R |
LTH | - | S | S | S | S | S | S | S | S | S |
表1 稻瘟病菌单孢菌株在单基因系上的致病性测定
Table 1 Pathotyping of Magnaporthe oryzae strains on monogenic lines.
单基因系 Monogenic line | 抗性基因 R gene | 稻瘟病菌株 Magnaporthe oryzae strains | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
YX2-2-1 | YX2-3-2 | YX2-5-1 | YX2-6-1 | YX2-10-1 | YX2-14-1 | YX2-7-1 | YX2-15-1 | Y363 | ||
IRBLA-A | Pia | R | R | R | R | R | R | S | S | S |
IRBLI-F5 | Pii | R | S | R | S | S | R | S | S | S |
IRBLKS-F5 | Piks | S | S | S | S | S | S | S | S | S |
KRBLK KA | Pik | S | S | S | S | S | S | S | S | S |
KRBLKP-K60 | Pikp | S | S | S | S | S | S | S | S | R |
KRBLKH-K3 | Pikh | R | R | R | R | R | R | R | S | R |
IRBLZ5-CA | Pi2 | S | S | S | S | S | S | S | S | S |
IRBLZ FU | Piz | S | S | S | S | S | S | S | S | S |
IRBLZT-T | Pizt | R | R | R | R | R | R | R | R | R |
IRBLTA-K1 | Pita | S | S | S | S | S | S | S | S | S |
IRBLB-B | Pib | S | S | S | S | S | S | S | S | S |
IRBLT-K59 | Pit | R | R | R | R | R | R | S | S | S |
IRBLSH-B | Pish | S | S | S | S | S | S | S | S | R |
IRBL1-CL | Pi1 | R | R | R | R | R | R | R | S | S |
IRBL3-CP4 | Pi3 | S | S | S | S | S | S | S | S | S |
IRBL5-M | Pi5 | R | R | R | R | R | R | R | R | R |
IRBL7-M | Pi7 | S | S | S | S | R | S | S | S | R |
IRBL12-M | Pi12 | S | S | S | S | S | S | S | S | R |
IRBL19-A | Pi19 | S | S | S | S | R | S | S | S | S |
IRBLKM-TS | Pikm | R | R | R | R | R | R | R | S | S |
IRBL20-IR24 | Pi20 | R | R | R | R | R | R | R | R | R |
IRBLTA2-PI | Pita2 | S | S | S | S | S | S | R | S | R |
IRBL11-ZH | Pi11 | S | S | S | S | S | S | S | S | S |
IRBL9-W | Pi9 | R | R | R | R | R | R | R | R | R |
LTH | - | S | S | S | S | S | S | S | S | S |
图2 不同菌株中AvrPi9的扩增分析 M–DNA分子量标记; 条带1~9分别指稻瘟病菌菌株YX2-2-1, YX2-3-2, YX2-5-1, YX2-6-1, YX2-10-1, YX2-14-1, YX2-7-1, YX2-15-1和Y363。
Fig. 2. Amplification of AvrPi9 from different M. oryzae strains. M, DNA molecular marker; DL2000; Lane 1 to Lane 9 refer to YX2-2-1, YX2-3-2, YX2-5-1, YX2-6-1, YX2-10-1, YX2-14-1, YX2-7-1, YX2-15-1 and Y363, respectively.
稻瘟病菌株 M. oryzae strain | 发病级别 Disease scores | |||||
---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | |
YX2-7-1 | 0a | 0 | 0 | 1 | 1 | 13 |
YX2-15-1 | 0 | 0 | 0 | 0 | 1 | 13 |
Y363 | 0 | 0 | 0 | 0 | 1 | 14 |
空白对照CKb | 15 | 0 | 0 | 0 | 0 | 0 |
表2 孕穗末期利用3个稻瘟病菌菌株接种IRBL9-W后的穗瘟调查结果
Table 2 Investigating results of panicle blast of IRBL9-W inoculated with three M. oryzae strains at late-booting stage.
稻瘟病菌株 M. oryzae strain | 发病级别 Disease scores | |||||
---|---|---|---|---|---|---|
0 | 1 | 3 | 5 | 7 | 9 | |
YX2-7-1 | 0a | 0 | 0 | 1 | 1 | 13 |
YX2-15-1 | 0 | 0 | 0 | 0 | 1 | 13 |
Y363 | 0 | 0 | 0 | 0 | 1 | 14 |
空白对照CKb | 15 | 0 | 0 | 0 | 0 | 0 |
图1 单基因系IRBL9-W孕穗末期及苗期接种的症状 A~C–IRBL9-W接种菌株YX2-7-1、YX2-15-1和Y363在孕穗末期的症状; D~F–IRBL9-W(左)和丽江新团黑谷(右)苗期接种菌株YX2-7-1、YX2-15-1和Y363后的症状。
Fig. 1. Symptoms of monogenic line IRBL9-W inoculated with M. oryzae fungus at late-booting stage and seedling stage. A–C, Symptoms of monogenic line IRBL9-W inoculated with M. oryze strains YX2-7-1, YX2-15-1 and Y363 at late booting stage, respectively. D–F: Symptoms of monogenic line IRBL9-W (left) and Lijiangxintuanheigu (right) inoculated with M. oryzae strains YX2-7-1, YX2-15-1 and Y363 at seedling stage, respectively.
图3 Pi9基因的表达分析 A–Pi9基因的半定量分析。从成株期穗部(P)及苗期叶片(L)制备的cDNA用作PCR模板进行扩增,Actin1 用作内参基因;B–实时荧光定量RT-PCR比较分析Pi9基因在苗期和穗期的表达量。
Fig. 3. Expression level of Pi9 gene. A, Expression analysis of Pi9 gene by semi-quantitative RT-PCR method. The cDNA prepared from panicles (P) of adult plants and seedling leaves (L) of IRBL9-W carrying Pi9 gene was used as template for PCR amplification, with Actin 1 as reference gene; B, Comparative analysis of relative expression level of Pi9 gene in panicle and seedling leaves of IRBL9-W by real-time quantitative RT-PCR.
[1] | Couch B C, Kohn L M.A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea[J]. Mycologia, 2002, 94(4): 683-693. |
[2] | Wilson R A, Talbot N J.Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009, 7: 185-195. |
[3] | Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430-439. |
[4] | Sesma A, Osbourn A E.The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.Nature, 2004, 431(7008): 582-586. |
[5] | Skamnioti P, Gurr S J.Against the grain: Safeguarding rice from rice blast disease[J]. Trends in Biotechnology, 2008, 27(3): 141-150. |
[6] | Dean R, van Kan J A L, Pretorius Z A, Hammond-kosack K E, Pietro A D, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430. |
[7] | Puri K D, Shreshta S M, Chhetri G B K, Joshi K D. Leaf and neck blast resistance reaction in tropical rice lines under greenhouse condition[J]. Euphytica, 2009, 165(3): 523-532. |
[8] | Flor H H.Current status of the gene-for-gene concept[J]. Annual Review of Phytopathology, 1971, 9(1): 275-296. |
[9] | Silué D, Notteghem J L, Tharreau D.Evidence of a gene-for-gene relationship in the Oryza sativa- Magnaporthe grisea pathosystem[J]. Phytopathology, 1992, 82: 577-580. |
[10] | Jia Y, McAdams S A, Bryan G T, Hershey H P, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19: 4004-4014. PMID: 10921881. |
[11] | Ebbole D J.Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phytopathology, 2007, 45(1): 437-456. |
[12] | Kalia S, Rathour R.Current status on mapping of genes for resistance to leaf and neck-blast disease in rice[J]. 3 Biotech, 2019, 9: 209. |
[13] | Zhuang J Y, Ma W B, Wu J L, Chai R Y, Lu J, Fan Y Y, Jin M Z, Leung H, Zheng K L.Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice[J]. Euphytica , 2002, 128: 363-370. |
[14] | Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Wan J.Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice[J]. Molecular Plant-Microbe Interactions, 2015, 28(5): 558-568. |
[15] | Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M.Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice[J]. Breeding Science, 2000, 50: 183-188. |
[16] | Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L.A Pid3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe oryzae[J]. Journal of Genetics and Genomics, 2011, 38: 209-216. |
[17] | Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H.Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J]. The Plant Journal, 2010, 64(3): 498-510. |
[18] | Fang N, Wei X, Shen L, Yu Y, Li M, Yin C, He W, Guan C, Chen H, Zhang H, Bao Y.Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding[J]. Rice, 2019, 12(1): 18. |
[19] | Wang R, Fang N, Guan C, He W, Bao Y, Zhang H.Characterization and fine mapping of a blast resistant gene Pi-jnw1 from the japonica rice landrace Jiangnanwan[J]. PLOS ONE,2016, 11(12): e0169417. doi: 10.1371/journal.pone.0169417. |
[20] | Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3): 1901-1914. |
[21] | Liu G, Lu G, Zeng L, Wang G L.Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6[J]. Molecular Genetic and Genomics, 2002, 267(4): 472-480. |
[22] | 雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平, 王洁, 翟虎渠, 万建民. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略[J]. 作物学报, 2011, 37(1): 18-27. |
Lei C L, Zhang G M, Cheng Z J, Ma J T, Wang J L, Xin A H, Chen P, Xiao J L, Zhang X, Liu Y X, Guo X P, Wang J, Zhai H Q, Wan J M.Pathogenic races and virulence gene structure of Magnaporthe oryzae population and rice breeding strategy for blast resistance in Heilongjiang Province[J]. Acta Agronomica Sinica, 2011, 37(1): 18-27. (in Chinese with English abstract) | |
[23] | 董丽英, 王群, 刘树芳, 郑凤萍, 李迅东, 杨勤忠. 云南省稻瘟病菌群体对稻瘟病抗性单基因系的致病性分析[J]. 西南农业学报, 2012, 25(2): 467-473. |
Dong L, Wang Q, Liu S, Zheng F, Li X, Yang Q.Pathogenicity analysis of Magnaporthe oryzae populations of Yunnan on monogenic lines for resistance to rice blast[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(2): 467-473. (in Chinese with English abstract) | |
[24] | 汪文娟, 苏菁, 杨健源, 韦小燕, 陈凯玲, 陈珍, 陈深, 朱小源. 源于广8A 杂交稻组合的稻瘟病菌无毒基因型分析[J]. 中国农业科学, 2018, 51(24): 4633-4646. |
Wang W J, Su Q, Yang J Y, Wei X Y, Chen K L, Chen Z, Chen S, Zhu X Y.Analysis of Magnaporthe oryzae avirulent genes in the infected hybrid rice combinations derived from a sterile line of Guang 8A[J]. Scientia Agricultura Sinica, 2018, 51(24): 4633-4646. (in Chinese with English abstract) | |
[25] | Wang J C, Jia Y, Wen J W, Liu W P, Liu X M, Li L, Jiang Z Y, Zhang J H, Guo X L, Ren J P.Identification of rice blast resistance genes using international monogenic differentials[J]. Crop Protection, 2013, 45: 109-116. |
[26] | 刘水芳, 杨秀荣, 孙淑琴, 刘春艳, 王勇, 张春祥, 顾红艳. 水稻品种抗稻瘟病鉴定技术[J]. 天津农业科学, 2007, 13(4): 55-58. |
Liu S, Yang X, Sun S, Liu C, Wang Y, Zhang C, Gu H.Identification technique of rice resistance to Magnaporthe grisea[J]. Tianjin Agricultural Sciences, 2007, 13(4): 55-58. (in Chinese) | |
[27] | Wu J, Kou Y J, Bao J D, Li Y, Tang M Z, Zhu X L, Ponaya A, Xiao G, Li J B, Li C Y, Song M Y, Cumagun C J R, Deng Q Y, Lu G D, Jeon J S, Naqvi N, Zhou B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector Avr-Pi9 that triggers Pi9-mediated blast resistance in rice[J]. New Phytologist, 2015, 206(4): 1463-1475. |
[28] | Wu Y Y, Yu L, Pan C H, Dai Z Y, Li Y H, Xiao N, Zhang X X, Ji H J, Huang N S, Zhao B H, Zhou C H, Liu G Q, Liu X J, Pan X B, Liang C Z, Li A H.Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background[J]. Molecular Breeding, 2016, 36: 12. |
[29] | Wu Y Y, Chen Y, Pan C H, Xiao N, Yu L, Li Y H, Zhang X X, Pan X B, Chen X J, Dai Z Y, Li A H.Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze River, China[J]. Plant Disease, 2017, 101: 1283-1291. |
[30] | Collard B C Y, Mackill D J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century.Philosophical Transactions of the Royal Society of London: Series B, 2008, 363: 557-572. |
[31] | 倪大虎, 易成新, 李莉, 汪秀峰, 王文相, 杨剑波. 利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J]. 分子植物育种, 2005, 3(3): 329-334. |
Ni D H, Yi C X, Li L, Wang X F, Wang W X, Yang J B.Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection[J]. Molecular Plant Breeding, 2005, 3(3): 329-334. (in Chinese with English abstract) | |
[32] | 殷得所, 夏明元, 李进波, 万丙良, 査中萍, 杜雪树, 戚华雄. 抗稻瘟病基因Pi9的STS连锁标记开发及在分子标记辅助育种中的应用[J]. 中国水稻科学, 2011, 25(1): 25-30. |
Yin D S, Xia M Y, Li J B, Wan B L, Zha Z P, Du X S, Qi H X.Development of STS marker linked to rice blast resistance gene Pi9 in marker-assisted selection breeding[J]. Chinese Journal of Rice Science, 2011, 25(1): 25-30. (in Chinese with English abstract) | |
[33] | 陈建民, 付志英, 权宝权, 田大刚, 李刚, 王锋. 分子标记辅助培育双抗稻瘟病和白叶枯病杂交稻恢复系[J]. 分子植物育种, 2009, 7(3): 465-470. |
Chen J M, Fu Z Y, Quan B Q, Tian D G, Li G, Wang F.Breeding hybrid rice restoring line with double resistance to rice blast and bacterial blight by marker-assisted selection[J]. Molecular Plant Breeding, 2009, 7(3): 465-470. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||