中国水稻科学 ›› 2020, Vol. 34 ›› Issue (6): 499-511.DOI: 10.16819/j.1001-7216.2020.0408
吴婷1, 李霞1, 黄得润2, 黄凤林3, 肖宇龙1,*(), 胡标林1,*()
收稿日期:
2020-04-30
修回日期:
2020-06-03
出版日期:
2020-11-10
发布日期:
2020-11-10
通讯作者:
肖宇龙,胡标林
基金资助:
Ting WU1, Xia LI1, Derun HUANG2, Fenglin HUANG3, Yulong XIAO1,*, Biaolin HU1,*
Received:
2020-04-30
Revised:
2020-06-03
Online:
2020-11-10
Published:
2020-11-10
Contact:
Yulong XIAO, Biaolin HU
摘要: 目的 东乡野生稻低氮耐性强,是水稻耐低氮育种的重要资源。鉴定东乡野生稻耐低氮基因对研究耐低氮遗传机制、培育耐低氮水稻品种具有重要意义。方法 利用协青早B//东乡野生稻/协BBC1F12回交重组自交系及其遗传图谱,应用Windows QTL Cartographer 2.5分析施氮肥和不施氮肥下的株高和产量相关性状QTL。结果 共检测到57个控制株高和产量性状的QTL,分布于10条染色体上的33个区域,单个QTL表型贡献率为3.17%~63.40%,其中32个QTL的增效等位基因来自东乡野生稻。19个QTL在施氮和未施氮条件下均检测到,38个QTL仅在单一环境下检测到显著效应,表明不同施氮水平下水稻性状的遗传机制不同。结论 43个QTL分别聚集于7条染色体上的14个QTL簇,表明不同性状涉及到共同遗传机制,并可通过分子标记辅助选择方法进行耐低氮有利等位基因的聚合育种。
中图分类号:
吴婷, 李霞, 黄得润, 黄凤林, 肖宇龙, 胡标林. 应用东乡野生稻回交重组自交系分析水稻耐低氮产量相关性状QTL[J]. 中国水稻科学, 2020, 34(6): 499-511.
Ting WU, Xia LI, Derun HUANG, Fenglin HUANG, Yulong XIAO, Biaolin HU. QTL Analysis for Yield Traits Related to Low Nitrogen Tolerance Using Backcrossing Recombinant Inbred Lines Derived from Dongxiang Wild Rice (Oryza rufipogon Griff.)[J]. Chinese Journal OF Rice Science, 2020, 34(6): 499-511.
性状 Trait | 处理 Treatment | 亲本Parent | BIL群体 BIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
东乡野生稻 Dongxiang wild rice | 协青早B Xieqingzao B | 平均值 Mean | 标准差 Standard deviation | 变幅 Range | 偏度 Skewness | 峰度 Kurtosis | |||
穗长 PL / cm | 施氮 Nitrogen | 25.45** | 18.67 | 22.46 | 2.77 | 15.35~32.16 | 0.26 | 0.45 | |
未施氮Zero-nitrogen | 25.51** | 20.66 | 22.68 | 2.36 | 15.72~29.54 | 0.14 | 0.04 | ||
着粒密度 GD / (No.∙cm-1) | 施氮 Nitrogen | 1.92 | 3.96** | 4.32 | 1.44 | 1.18~9.90 | 1.14 | 1.91 | |
未施氮Zero-nitrogen | 2.26 | 4.10** | 4.56 | 1.41 | 1.95~9.83 | 1.14 | 1.91 | ||
千粒重 TGW / g | 施氮 Nitrogen | 20.22 | 24.90** | 23.36 | 3.00 | 15.45~34.57 | 0.17 | 0.45 | |
未施氮Zero-nitrogen | 19.86 | 25.45** | 23.53 | 2.88 | 16.33~31.47 | -0.05 | 0.02 | ||
单株产量 PY / g | 施氮 Nitrogen | 11.30 | 23.17** | 18.28 | 6.23 | 6.06~47.97 | 1.17 | 3.29 | |
未施氮Zero-nitrogen | 14.77 | 16.54 | 15.92 | 5.18 | 6.39~34.18 | 0.99 | 1.31 | ||
每穗实粒数 FGP | 施氮 Nitrogen | 40.64 | 59.89* | 76.20 | 30.86 | 15.35~191.50 | 1.07 | 1.44 | |
未施氮Zero-nitrogen | 44.40 | 63.14* | 77.89 | 27.86 | 28.66~193.14 | 1.04 | 1.91 | ||
每穗总粒数 TGP | 施氮 Nitrogen | 48.90 | 73.90** | 98.34 | 37.96 | 25.49~226.13 | 0.94 | 0.65 | |
未施氮Zero-nitrogen | 56.62 | 84.81** | 104.18 | 35.98 | 42.65~219.06 | 0.88 | 0.73 | ||
结实率 SF/ % | 施氮 Nitrogen | 83.30 | 80.94 | 77.61 | 10.23 | 46.59~94.38 | -1.07 | 0.89 | |
未施氮Zero-nitrogen | 78.87 | 74.12 | 75.32 | 9.99 | 42.61~91.87 | -0.95 | 0.68 | ||
株高 PH / cm | 施氮 Nitrogen | 178.00** | 86.00 | 110.25 | 23.60 | 73.67~179.33 | 0.65 | -0.40 | |
未施氮Zero-nitrogen | 164.83** | 88.17 | 109.78 | 21.98 | 67.00~164.67 | 0.53 | -0.76 | ||
有效穗数 EP | 施氮 Nitrogen | 14.00 | 15.67 | 11.07 | 3.29 | 4.67~26.00 | 1.18 | 2.63 | |
未施氮Zero-nitrogen | 16.83** | 10.33 | 9.19 | 2.51 | 4.67~18.67 | 1.14 | 1.91 |
Table 1 Phenotypic performance of the Xieqingzao B //Dongxiang wild rice/ Xieqingzao B BILs population and its parents under two nitrogen levels.
性状 Trait | 处理 Treatment | 亲本Parent | BIL群体 BIL population | ||||||
---|---|---|---|---|---|---|---|---|---|
东乡野生稻 Dongxiang wild rice | 协青早B Xieqingzao B | 平均值 Mean | 标准差 Standard deviation | 变幅 Range | 偏度 Skewness | 峰度 Kurtosis | |||
穗长 PL / cm | 施氮 Nitrogen | 25.45** | 18.67 | 22.46 | 2.77 | 15.35~32.16 | 0.26 | 0.45 | |
未施氮Zero-nitrogen | 25.51** | 20.66 | 22.68 | 2.36 | 15.72~29.54 | 0.14 | 0.04 | ||
着粒密度 GD / (No.∙cm-1) | 施氮 Nitrogen | 1.92 | 3.96** | 4.32 | 1.44 | 1.18~9.90 | 1.14 | 1.91 | |
未施氮Zero-nitrogen | 2.26 | 4.10** | 4.56 | 1.41 | 1.95~9.83 | 1.14 | 1.91 | ||
千粒重 TGW / g | 施氮 Nitrogen | 20.22 | 24.90** | 23.36 | 3.00 | 15.45~34.57 | 0.17 | 0.45 | |
未施氮Zero-nitrogen | 19.86 | 25.45** | 23.53 | 2.88 | 16.33~31.47 | -0.05 | 0.02 | ||
单株产量 PY / g | 施氮 Nitrogen | 11.30 | 23.17** | 18.28 | 6.23 | 6.06~47.97 | 1.17 | 3.29 | |
未施氮Zero-nitrogen | 14.77 | 16.54 | 15.92 | 5.18 | 6.39~34.18 | 0.99 | 1.31 | ||
每穗实粒数 FGP | 施氮 Nitrogen | 40.64 | 59.89* | 76.20 | 30.86 | 15.35~191.50 | 1.07 | 1.44 | |
未施氮Zero-nitrogen | 44.40 | 63.14* | 77.89 | 27.86 | 28.66~193.14 | 1.04 | 1.91 | ||
每穗总粒数 TGP | 施氮 Nitrogen | 48.90 | 73.90** | 98.34 | 37.96 | 25.49~226.13 | 0.94 | 0.65 | |
未施氮Zero-nitrogen | 56.62 | 84.81** | 104.18 | 35.98 | 42.65~219.06 | 0.88 | 0.73 | ||
结实率 SF/ % | 施氮 Nitrogen | 83.30 | 80.94 | 77.61 | 10.23 | 46.59~94.38 | -1.07 | 0.89 | |
未施氮Zero-nitrogen | 78.87 | 74.12 | 75.32 | 9.99 | 42.61~91.87 | -0.95 | 0.68 | ||
株高 PH / cm | 施氮 Nitrogen | 178.00** | 86.00 | 110.25 | 23.60 | 73.67~179.33 | 0.65 | -0.40 | |
未施氮Zero-nitrogen | 164.83** | 88.17 | 109.78 | 21.98 | 67.00~164.67 | 0.53 | -0.76 | ||
有效穗数 EP | 施氮 Nitrogen | 14.00 | 15.67 | 11.07 | 3.29 | 4.67~26.00 | 1.18 | 2.63 | |
未施氮Zero-nitrogen | 16.83** | 10.33 | 9.19 | 2.51 | 4.67~18.67 | 1.14 | 1.91 |
处理 Treatment | 性状 Trait | 穗长 PL | 着粒密度GD | 千粒重TGW | 单株产量PY | 每穗实粒数FGP | 每穗总粒数TGP | 结实率SF | 株高 PH |
---|---|---|---|---|---|---|---|---|---|
未施氮 Zero-nitrogen | 着粒密度GD | 0.24** | |||||||
千粒重TGW | 0.05 | -0.41** | |||||||
单株产量PY | 0.32** | 0.54** | 0.04 | ||||||
每穗实粒数FGP | 0.52** | 0.85** | -0.34** | 0.63** | |||||
每穗总粒数TGP | 0.50** | 0.96** | -0.35** | 0.58** | 0.91** | ||||
结实率SF | 0.09 | -0.17* | 0.00 | 0.21** | 0.28** | -0.13 | |||
株高PH | 0.61** | -0.03 | 0.09 | 0.13 | 0.27** | 0.15* | 0.31** | ||
有效穗数EP | -0.37** | -0.30** | 0.05 | 0.31** | -0.40** | -0.36** | -0.11 | -0.28** | |
施氮 Nitrogen application | 着粒密度GD | 0.28** | |||||||
千粒重TGW | 0.09 | -0.41** | |||||||
单株产量PY | 0.39** | 0.54** | -0.03 | ||||||
每穗实粒数FGP | 0.55** | 0.87** | -0.32** | 0.66** | |||||
每穗总粒数TGP | 0.55** | 0.95** | -0.32** | 0.60** | 0.93** | ||||
结实率SF | 0.08 | -0.08 | -0.05 | 0.27** | 0.30** | -0.04 | |||
株高PH | 0.25** | 0.04 | 0.01 | -0.03 | 0.14* | 0.11 | 0.08 | ||
有效穗数EP | -0.37** | -0.36** | -0.05 | 0.22** | -0.43** | -0.42** | -0.12 | -0.19** |
表2 两种氮素条件下产量相关性状间的相关性
Table 2 Relationships betweentraits related to grain yield under two nitrogen conditions.
处理 Treatment | 性状 Trait | 穗长 PL | 着粒密度GD | 千粒重TGW | 单株产量PY | 每穗实粒数FGP | 每穗总粒数TGP | 结实率SF | 株高 PH |
---|---|---|---|---|---|---|---|---|---|
未施氮 Zero-nitrogen | 着粒密度GD | 0.24** | |||||||
千粒重TGW | 0.05 | -0.41** | |||||||
单株产量PY | 0.32** | 0.54** | 0.04 | ||||||
每穗实粒数FGP | 0.52** | 0.85** | -0.34** | 0.63** | |||||
每穗总粒数TGP | 0.50** | 0.96** | -0.35** | 0.58** | 0.91** | ||||
结实率SF | 0.09 | -0.17* | 0.00 | 0.21** | 0.28** | -0.13 | |||
株高PH | 0.61** | -0.03 | 0.09 | 0.13 | 0.27** | 0.15* | 0.31** | ||
有效穗数EP | -0.37** | -0.30** | 0.05 | 0.31** | -0.40** | -0.36** | -0.11 | -0.28** | |
施氮 Nitrogen application | 着粒密度GD | 0.28** | |||||||
千粒重TGW | 0.09 | -0.41** | |||||||
单株产量PY | 0.39** | 0.54** | -0.03 | ||||||
每穗实粒数FGP | 0.55** | 0.87** | -0.32** | 0.66** | |||||
每穗总粒数TGP | 0.55** | 0.95** | -0.32** | 0.60** | 0.93** | ||||
结实率SF | 0.08 | -0.08 | -0.05 | 0.27** | 0.30** | -0.04 | |||
株高PH | 0.25** | 0.04 | 0.01 | -0.03 | 0.14* | 0.11 | 0.08 | ||
有效穗数EP | -0.37** | -0.36** | -0.05 | 0.22** | -0.43** | -0.42** | -0.12 | -0.19** |
性状 Trait | 处理 Treatment | 数量性状位点 QTL | 标记区间 Interval | LOD值 LODvalue | 加性效应a Additive effecta | 贡献率 Proportion of the variance explained/% | 文献 Reference | |
---|---|---|---|---|---|---|---|---|
穗长PL | 未施氮 Zero-nitrogen | qPL1 | RM212-InDel 1 | 5.42 | 1.14 | 11.54 | ||
qPL5 | RM164-RM188 | 6.65 | 1.49 | 21.13 | ||||
qPL6 | RM3805-RM204 | 4.12 | -0.86 | 6.66 | [13] | |||
qPL10 | RM1375-RM5620 | 4.19 | -1.00 | 10.24 | ||||
施氮 Nitrogen | qPL1 | InDel 1-RM6840 | 6.89 | 1.20 | 16.39 | |||
qPL5 | RM164-RM188 | 9.93 | 1.58 | 32.46 | ||||
qPL10 | RM1375-RM5620 | 4.33 | -0.89 | 10.72 | ||||
着粒密度 GD | 未施氮 Zero-nitrogen | qGD1.1 | RM10176-RM243 | 13.92 | 0.87 | 16.88 | [36] | |
qGD1.2 | RM3475-RM246 | 3.05 | -0.31 | 3.23 | ||||
qGD3 | RM6266-RM168 | 2.75 | 0.94 | 14.38 | [13] | |||
qGD5 | RM289-RM249 | 2.79 | 0.84 | 18.79 | ||||
qGD6 | RM508-RM3805 | 3.25 | -0.37 | 5.19 | ||||
qGD9 | RM553-RM160 | 7.13 | 1.07 | 19.52 | ||||
qGD11 | RM224-RM144 | 7.51 | 0.63 | 11.47 | ||||
qGD12 | RM235-RM17 | 3.34 | 0.49 | 5.67 | ||||
施氮 Nitrogen | qGD1.1 | RM10176-RM243 | 10.97 | 0.76 | 12.60 | [36] | ||
qGD1.2 | RM3475-RM246 | 4.16 | -0.35 | 4.24 | ||||
qGD2 | RM29-RM475 | 3.14 | -0.38 | 4.30 | ||||
qGD6 | RM508-RM3805 | 2.50 | -0.39 | 5.06 | ||||
qGD9 | RM1896-RM553 | 3.06 | 0.46 | 5.41 | ||||
qGD11 | RM224-RM144 | 5.17 | 0.48 | 6.90 | ||||
千粒重 TGW | 未施氮 Zero-nitrogen | qTGW1 | RM129-RM3475 | 2.15 | 0.82 | 5.05 | [44] | |
qTGW6 | RM253-RM276 | 2.87 | 1.05 | 9.65 | ||||
qTGW7 | RM481-InDel7.1 | 3.63 | -1.40 | 8.12 | ||||
qTGW10 | RM304-RM171 | 5.46 | -1.05 | 10.36 | ||||
施氮 Nitrogen | qTGW2 | RM262-RM13637 | 2.44 | 1.13 | 6.76 | |||
qTGW3 | RM282-RM16 | 2.48 | -0.78 | 5.61 | ||||
qTGW7 | RM481-InDel7.1 | 3.12 | -1.49 | 8.53 | ||||
qTGW10 | RM171-RM590 | 4.42 | -0.95 | 9.67 | ||||
qTGW11 | RM286-RM332 | 4.15 | -1.77 | 6.49 | ||||
单株产量 PY | 未施氮 Zero-nitrogen | qPY3 | RM22-RM569 | 3.27 | -2.29 | 5.88 | ||
qPY5.1 | RM188-RM3870 | 4.04 | 2.09 | 9.21 | [39] | |||
施氮 Nitrogen | qPY5.2 | RM289-RM249 | 3.07 | 3.10 | 19.14 | |||
qPY5.1 | RM188-RM3870 | 4.55 | 2.29 | 14.92 | [39] | |||
qPY9.1 | InDel 9.1-RM444 | 3.57 | -1.87 | 6.28 | ||||
qPY9.2 | RM1896-RM553 | 4.38 | 2.85 | 13.94 | ||||
每穗实粒数 FGP | 未施氮 Non-nitrogen | qFGP1 | RM10176-RM243 | 9.48 | 22.22 | 27.09 | [13, 35] | |
Zero-nitrogen | qFGP2 | RM71-RM300 | 3.71 | -9.39 | 6.65 | [13, 35, 38] | ||
qFGP5 | RM188-RM3870 | 5.55 | 13.39 | 13.50 | ||||
qFGP6 | RM3805-RM204 | 3.30 | -7.95 | 5.04 | ||||
qFGP9 | RM553-RM160 | 4.29 | 23.93 | 21.89 | ||||
qFGP11 | RM224-RM144 | 3.28 | 12.49 | 10.10 | ||||
施氮 Nitrogen | qFGP1 | RM10176-RM243 | 7.91 | 17.96 | 23.08 | [13, 35] | ||
Nitrogen | qFGP5 | RM188-RM3870 | 3.10 | 9.39 | 8.04 | |||
qFGP9 | RM553-RM160 | 3.07 | -8.87 | 5.28 | ||||
qFGP10 | RM1375-RM5620 | 2.69 | 9.02 | 5.43 |
表3 两个氮素条件下BIL群体产量性状的QTL
Table 3 QTL for yield traits in the BILs population under two nitrogen conditions.
性状 Trait | 处理 Treatment | 数量性状位点 QTL | 标记区间 Interval | LOD值 LODvalue | 加性效应a Additive effecta | 贡献率 Proportion of the variance explained/% | 文献 Reference | |
---|---|---|---|---|---|---|---|---|
穗长PL | 未施氮 Zero-nitrogen | qPL1 | RM212-InDel 1 | 5.42 | 1.14 | 11.54 | ||
qPL5 | RM164-RM188 | 6.65 | 1.49 | 21.13 | ||||
qPL6 | RM3805-RM204 | 4.12 | -0.86 | 6.66 | [13] | |||
qPL10 | RM1375-RM5620 | 4.19 | -1.00 | 10.24 | ||||
施氮 Nitrogen | qPL1 | InDel 1-RM6840 | 6.89 | 1.20 | 16.39 | |||
qPL5 | RM164-RM188 | 9.93 | 1.58 | 32.46 | ||||
qPL10 | RM1375-RM5620 | 4.33 | -0.89 | 10.72 | ||||
着粒密度 GD | 未施氮 Zero-nitrogen | qGD1.1 | RM10176-RM243 | 13.92 | 0.87 | 16.88 | [36] | |
qGD1.2 | RM3475-RM246 | 3.05 | -0.31 | 3.23 | ||||
qGD3 | RM6266-RM168 | 2.75 | 0.94 | 14.38 | [13] | |||
qGD5 | RM289-RM249 | 2.79 | 0.84 | 18.79 | ||||
qGD6 | RM508-RM3805 | 3.25 | -0.37 | 5.19 | ||||
qGD9 | RM553-RM160 | 7.13 | 1.07 | 19.52 | ||||
qGD11 | RM224-RM144 | 7.51 | 0.63 | 11.47 | ||||
qGD12 | RM235-RM17 | 3.34 | 0.49 | 5.67 | ||||
施氮 Nitrogen | qGD1.1 | RM10176-RM243 | 10.97 | 0.76 | 12.60 | [36] | ||
qGD1.2 | RM3475-RM246 | 4.16 | -0.35 | 4.24 | ||||
qGD2 | RM29-RM475 | 3.14 | -0.38 | 4.30 | ||||
qGD6 | RM508-RM3805 | 2.50 | -0.39 | 5.06 | ||||
qGD9 | RM1896-RM553 | 3.06 | 0.46 | 5.41 | ||||
qGD11 | RM224-RM144 | 5.17 | 0.48 | 6.90 | ||||
千粒重 TGW | 未施氮 Zero-nitrogen | qTGW1 | RM129-RM3475 | 2.15 | 0.82 | 5.05 | [44] | |
qTGW6 | RM253-RM276 | 2.87 | 1.05 | 9.65 | ||||
qTGW7 | RM481-InDel7.1 | 3.63 | -1.40 | 8.12 | ||||
qTGW10 | RM304-RM171 | 5.46 | -1.05 | 10.36 | ||||
施氮 Nitrogen | qTGW2 | RM262-RM13637 | 2.44 | 1.13 | 6.76 | |||
qTGW3 | RM282-RM16 | 2.48 | -0.78 | 5.61 | ||||
qTGW7 | RM481-InDel7.1 | 3.12 | -1.49 | 8.53 | ||||
qTGW10 | RM171-RM590 | 4.42 | -0.95 | 9.67 | ||||
qTGW11 | RM286-RM332 | 4.15 | -1.77 | 6.49 | ||||
单株产量 PY | 未施氮 Zero-nitrogen | qPY3 | RM22-RM569 | 3.27 | -2.29 | 5.88 | ||
qPY5.1 | RM188-RM3870 | 4.04 | 2.09 | 9.21 | [39] | |||
施氮 Nitrogen | qPY5.2 | RM289-RM249 | 3.07 | 3.10 | 19.14 | |||
qPY5.1 | RM188-RM3870 | 4.55 | 2.29 | 14.92 | [39] | |||
qPY9.1 | InDel 9.1-RM444 | 3.57 | -1.87 | 6.28 | ||||
qPY9.2 | RM1896-RM553 | 4.38 | 2.85 | 13.94 | ||||
每穗实粒数 FGP | 未施氮 Non-nitrogen | qFGP1 | RM10176-RM243 | 9.48 | 22.22 | 27.09 | [13, 35] | |
Zero-nitrogen | qFGP2 | RM71-RM300 | 3.71 | -9.39 | 6.65 | [13, 35, 38] | ||
qFGP5 | RM188-RM3870 | 5.55 | 13.39 | 13.50 | ||||
qFGP6 | RM3805-RM204 | 3.30 | -7.95 | 5.04 | ||||
qFGP9 | RM553-RM160 | 4.29 | 23.93 | 21.89 | ||||
qFGP11 | RM224-RM144 | 3.28 | 12.49 | 10.10 | ||||
施氮 Nitrogen | qFGP1 | RM10176-RM243 | 7.91 | 17.96 | 23.08 | [13, 35] | ||
Nitrogen | qFGP5 | RM188-RM3870 | 3.10 | 9.39 | 8.04 | |||
qFGP9 | RM553-RM160 | 3.07 | -8.87 | 5.28 | ||||
qFGP10 | RM1375-RM5620 | 2.69 | 9.02 | 5.43 |
性状 Trait | 处理 Treatment | 数量性状位点 QTL | 区间 Interval | LOD值 LOD value | 加性效应a Additiveeffecta | 贡献率 Proportion of the variance explained/% | 文献 Reference | |
---|---|---|---|---|---|---|---|---|
穗总粒数 TGP | 未施氮 Zero-nitrogen | qTGP1 | RM10176-RM243 | 12.90 | 27.76 | 28.44 | [13, 35, 36] | |
qTGP2 | RM5870-RM71 | 3.27 | -10.23 | 5.00 | [13, 35, 38] | |||
qTGP5 | RM188-RM3870 | 7.26 | 17.90 | 15.75 | ||||
qTGP6 | RM3805-RM204 | 4.64 | -10.74 | 6.11 | ||||
qTGP9.2 | RM553-RM160 | 4.85 | 26.36 | 16.73 | ||||
qTGP10 | RM1375-RM5620 | 2.25 | -8.56 | 4.46 | ||||
qTGP11 | RM224-RM144 | 4.39 | 16.59 | 11.96 | ||||
施氮 Nitrogen | qTGP1 | RM10176-RM243 | 11.96 | 23.46 | 20.22 | [13, 35, 36] | ||
qTGP5 | RM188-RM3870 | 2.92 | 10.33 | 5.96 | ||||
qTGP9.1 | InDel 9.1-RM444 | 3.33 | 16.31 | 8.57 | ||||
qTGP9.2 | RM1896-RM553 | 3.43 | -10.37 | 7.34 | ||||
结实率 SF | 未施氮 Zero-nitrogen | qSF1.1 | RM572-RM140 | 3.24 | 3.80 | 7.67 | ||
qSF2 | RM213-RM208 | 3.34 | -8.92 | 36.69 | ||||
qSF6 | RM253-RM276 | 2.54 | 3.09 | 7.26 | ||||
qSF7 | RM432-RM11 | 2.80 | -5.03 | 8.06 | ||||
qSF12 | RM20B-RM19 | 3.85 | -10.16 | 37.01 | ||||
施氮 Nitrogen | qSF1.1 | RM572-RM140 | 3.06 | 3.20 | 6.10 | |||
qSF1.2 | RM212-InDel 1 | 2.77 | 2.49 | 5.41 | ||||
qSF3 | RM7-RM218 | 4.55 | -8.88 | 27.21 | ||||
qSF9 | InDel 9.1-RM444 | 3.70 | -9.65 | 21.43 | ||||
qSF12 | RM20B-RM19 | 4.09 | -9.54 | 37.99 | ||||
株高 PH | 未施氮 Zero-nitrogen | qPH1.2 | RM572-RM140 | 2.15 | 5.32 | 3.17 | ||
qPH1.3 | RM212-InDel1 | 22.01 | 18.92 | 57.22 | [36, 37, 40] | |||
qPH6 | RM204-RM225 | 3.20 | -5.49 | 4.41 | ||||
施氮 Nitrogen | qPH1.1 | RM10176-RM243 | 4.34 | 23.13 | 63.40 | |||
有效穗数 EP | 未施氮 Zero-nitrogen | qEP9 | InDel9.1-RM444 | 3.29 | 3.00 | 33.59 | ||
施氮 Nitrogen | qEP1 | InDel1-RM6840 | 2.03 | -0.90 | 5.56 | |||
qEP3.1 | RM22-RM569 | 2.07 | 0.95 | 4.07 | ||||
qEP3.2 | RM168-RM85 | 3.49 | 2.85 | 28.69 | ||||
qEP6 | InDel6.1-InDel6.2 | 2.80 | 3.57 | 27.10 | ||||
a加性效应是指东乡野生稻等位基因取代协青早B等位基因。 aAdditive effect of replacing an Xieqingzao B allele by Dongxiang wild rice allele. |
表3 续
Table 3 Continued
性状 Trait | 处理 Treatment | 数量性状位点 QTL | 区间 Interval | LOD值 LOD value | 加性效应a Additiveeffecta | 贡献率 Proportion of the variance explained/% | 文献 Reference | |
---|---|---|---|---|---|---|---|---|
穗总粒数 TGP | 未施氮 Zero-nitrogen | qTGP1 | RM10176-RM243 | 12.90 | 27.76 | 28.44 | [13, 35, 36] | |
qTGP2 | RM5870-RM71 | 3.27 | -10.23 | 5.00 | [13, 35, 38] | |||
qTGP5 | RM188-RM3870 | 7.26 | 17.90 | 15.75 | ||||
qTGP6 | RM3805-RM204 | 4.64 | -10.74 | 6.11 | ||||
qTGP9.2 | RM553-RM160 | 4.85 | 26.36 | 16.73 | ||||
qTGP10 | RM1375-RM5620 | 2.25 | -8.56 | 4.46 | ||||
qTGP11 | RM224-RM144 | 4.39 | 16.59 | 11.96 | ||||
施氮 Nitrogen | qTGP1 | RM10176-RM243 | 11.96 | 23.46 | 20.22 | [13, 35, 36] | ||
qTGP5 | RM188-RM3870 | 2.92 | 10.33 | 5.96 | ||||
qTGP9.1 | InDel 9.1-RM444 | 3.33 | 16.31 | 8.57 | ||||
qTGP9.2 | RM1896-RM553 | 3.43 | -10.37 | 7.34 | ||||
结实率 SF | 未施氮 Zero-nitrogen | qSF1.1 | RM572-RM140 | 3.24 | 3.80 | 7.67 | ||
qSF2 | RM213-RM208 | 3.34 | -8.92 | 36.69 | ||||
qSF6 | RM253-RM276 | 2.54 | 3.09 | 7.26 | ||||
qSF7 | RM432-RM11 | 2.80 | -5.03 | 8.06 | ||||
qSF12 | RM20B-RM19 | 3.85 | -10.16 | 37.01 | ||||
施氮 Nitrogen | qSF1.1 | RM572-RM140 | 3.06 | 3.20 | 6.10 | |||
qSF1.2 | RM212-InDel 1 | 2.77 | 2.49 | 5.41 | ||||
qSF3 | RM7-RM218 | 4.55 | -8.88 | 27.21 | ||||
qSF9 | InDel 9.1-RM444 | 3.70 | -9.65 | 21.43 | ||||
qSF12 | RM20B-RM19 | 4.09 | -9.54 | 37.99 | ||||
株高 PH | 未施氮 Zero-nitrogen | qPH1.2 | RM572-RM140 | 2.15 | 5.32 | 3.17 | ||
qPH1.3 | RM212-InDel1 | 22.01 | 18.92 | 57.22 | [36, 37, 40] | |||
qPH6 | RM204-RM225 | 3.20 | -5.49 | 4.41 | ||||
施氮 Nitrogen | qPH1.1 | RM10176-RM243 | 4.34 | 23.13 | 63.40 | |||
有效穗数 EP | 未施氮 Zero-nitrogen | qEP9 | InDel9.1-RM444 | 3.29 | 3.00 | 33.59 | ||
施氮 Nitrogen | qEP1 | InDel1-RM6840 | 2.03 | -0.90 | 5.56 | |||
qEP3.1 | RM22-RM569 | 2.07 | 0.95 | 4.07 | ||||
qEP3.2 | RM168-RM85 | 3.49 | 2.85 | 28.69 | ||||
qEP6 | InDel6.1-InDel6.2 | 2.80 | 3.57 | 27.10 | ||||
a加性效应是指东乡野生稻等位基因取代协青早B等位基因。 aAdditive effect of replacing an Xieqingzao B allele by Dongxiang wild rice allele. |
[1] | 石全红,王宏,陈阜,褚庆全.中国中低产田时空分布特征及增产潜力分析[J]. 中国农学通报, 2010, 26(19): 369-373. |
Shi Q H, Wang H, Chen F, Zhu Q Q.The spatial-temporal distribution characteristics and yield potential of medium-low yielded farmland in China[J]. ChineseAgricultural Science Bulletin, 2010, 26(19): 369-373. (in Chinese with English abstract) | |
[2] | 彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,BureshR. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095-1103. |
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R.Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica,2002, 35(9): 1095-1103. | |
[3] | Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T,Vitousek P M,Zhang F S. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. |
[4] | Ju X T, Xing G X, Chen X P, Zhang S L, Liu X J, Cui Z L, Yin B, Chrietie P, Zhu Z L, Zhang F S.Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3041-3046. |
[5] | Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L.Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems[J]. Environmental Monitoring and Assessment, 2011, 177(1/4): 141-150. |
[6] | 曹桂兰,张媛媛,朴钟泽,韩龙植. 水稻不同基因型耐低氮能力差异评价[J]. 植物遗传资源学报, 2006, 7(3): 316-320. |
Cao GL, Zhang YY, Piao ZZ, Han L Z.Evaluation of tolerance to low N-fertilized level for rice type[J]. Journal of Plant Genetic Resource, 2006, 7(3): 316-320. (in Chinese with English abstract) | |
[7] | 朴钟泽,韩龙植,高熙宗. 水稻不同基因型氮素利用效率差异[J]. 中国水稻科学, 2003, 17(3): 233-238. |
Piao ZZ, Han LZ, Koh HJ.Variations of nitrogen use efficiency by rice genotype[J]. Chinese Journal of Rice Science, 2003, 17(3): 233-238. (in Chinese with English abstract) | |
[8] | 江立庚,戴廷波,韦善清,甘秀芹,徐建云,曹卫星. 南方水稻氮素吸收与利用效率的基因型差异及评价[J]. 植物生态学报, 2003, 27(4): 466-471. |
Jiang LG, Dai TB, Wei SQ, Gan X Q, Xu J Y, Cao W X.Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice[J]. Acta Phytoecologica Sinica, 2003, 27(4): 466-471. (in Chinese with English abstract) | |
[9] | Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Xing Y Z, Zhang Q F.A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4: 319-330. |
[10] | Nguyen H T T, Dang D T, van Pham C, Bertin P. QTL mapping for nitrogen use efficiency and related physiological and agronomical traits during the vegetative phase in rice under hydroponics[J]. Euphytica, 2016, 212(3): 473-500. |
[11] | Mahender A, Ali J, Prahalada GD, Sevilla M,Anna L, Balachiranjeevi CH, Md J, Maqsood U, Li Z K.Genetic dissection of developmental responses of agro-morphological traits under different doses of nutrient fertilizers using high-density SNP markers[J/OL].PLoS ONE, 2019, 14(7):e0220066. |
[12] | 冯跃,翟荣荣,林泽川,曹立勇,魏兴华,程式华. 不同施氮水平下水稻株高与抽穗期的QTL比较分析[J]. 作物学报, 2011, 37(9): 1525-1532. |
Feng Y, Zhai R R, Lin Z C, Cao L Y, Wei X H,Cheng S H.QTL analysis for plant height and heading date in rice under two nitrogen levels[J]. Acta Agronomica Sinica, 2011, 37(9): 1525-1532.(in Chinese with English abstract) | |
[13] | 冯跃,翟荣荣,林泽川,曹立勇,魏兴华,程式华. 不同供氮水平下水稻产量性状的QTL分析[J]. 中国水稻科学, 2013, 27(6): 577-584. |
Feng Y, Zhai R R, Lin Z C, Cao L Y, Wei X H,Cheng S H.QTL analysisfor yield traitsin riceunder two nitrogenlevels[J]. Chinese Journal of Rice Science, 2013, 27(6): 577-584.(in Chinese with English abstract) | |
[14] | Cho Y, Jiang W Z, Chin J H, Piao Z Z, Cho Y G, McCouch S R,Koh H J. Identification of QTLs associated with physiological nitrogen use efficiency in rice[J]. Molecules and Cells, 2007, 23(1): 72-79. |
[15] | Wei D, Cui K H, Pan J F, Ye, G Y, Xiang J,Nie L X,Huang J L. Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice[J]. Field Crops Research, 2011, 124(3): 340-346. |
[16] | Wei D, Cui K H, Ye G Y, Pan J F, Xiang J, Huang J J, Nie L X.QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice[J]. Plant and Soil,2012, 359(1/2): 281-295. |
[17] | Zhou Y, Tao Y J, Tang D N, Wang J, Zhong J, Wang Y, Yuan Q M, Yu X F, Zhang Y, Wang Y L, Liang G H, Dong G C.Identification of QTL associated with nitrogen uptake and nitrogen use efficiency using high throughput genotyped CSSLs in rice(Oryza sativa L.)[J]. Frontiers in Plant Science,2017, 8: 1-8. |
[18] | Tong H H, Chen L, Li W P, Mei H W, Xing Y Z, Yu X Q, Xu X Y, Zhang S Q, Luo L J.Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.)[J]. Molecular Breeding, 2011, 28(4): 495-509. |
[19] | 刘丹,孙玉友,柴永山,魏才强,解忠,李洪亮,程杜娟,徐德海. 水稻氮高效基因型筛选及相关基因研究进展[J].中国种业, 2018, 10:18-21. |
Liu D, Sun Y Y, Chai Y S, Wei C Q, Xie Z, Li H L, Cheng D J, Xu D H.Advances in nitrogen efficient genotype screening and related genes in rice[J]. China Seed Industry, 2018, 10:18-21.(in Chinese) | |
[20] | 蒋志敏, 王威, 储成才. 植物氮高效利用研究进展和展望[J]. 生命科学,2018,33(10): 1060-1069. |
Jiang Z M, Wang W, Chu C C.Research progress and prospect of efficient utilization of plant nitrogen[J].Life Sciences, 2018, 33(10): 1060-1069.(in Chinese with English abstract) | |
[21] | Liu C Z, Xue Z H, Tang D, Shen Y, Shi W Q, Ren L J, Du G J, Li Y F, Cheng Z K.Ornithine d-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice[J]. The Plant Journal, 2018, 96:842-854. |
[22] | Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M.Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice[J]. Nature Communications, 2019, 10:5279. |
[23] | Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q.Theindicanitrate reductase gene OsNR2allele enhances rice yield potential and nitrogen use efficiency[J]. Nature Communications, 2019, 10:5207. |
[24] | Zhang Y J, Tan L B, Zhu Z F, Yuan L X, Xie D X, Sun C Q.TOND1 confers tolerance to nitrogen deficiency in rice[J].The Plant Journal, 2015, 81(3): 367-376. |
[25] | Ma X F, Cheng Z J, Qin R Z, Qiu Y, Heng Y Q, Yang H, Ren Y L, Wang X L, Bi J C, Ma X D, Zhang X, Wang J L, Lei C L, Guo X P, Wang J, Wu F Q, Jiang L, Wang H Y, Wan J M.OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice[J]. The Plant Journal, 2013, 73: 190-200. |
[26] | Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L H, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C.Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834-838. |
[27] | Zhang J Y, Liu YX, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C,Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019:. |
[28] | Anis G B, Zhang Y X, Islam A, Zhang Y, Cao Y R, Wu W X, Cao L Y, Cheng S H.RDWN6XB, a major quantitative trait locus positively enhances root system architecture under nitrogen deficiency in rice[J]. BMC Plant Biology, 2019, 19:12. |
[29] | Yang X H, Xia X Z, Zhang Z Q, Nong B X, Zeng Y, Xiong F Q, Wu Y Y, Gao J, Deng G F, Li D T.QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice[J]. Frontiers in Plant Science, 2017, 8:1634.doi: 10.3389/fpls.2017.01634. |
[30] | Wu RJ, Jin W G, Rao J.Studies on characterization of vegetation distribution in the Dongxiang wild rice[J]. Journal of Anhui Agricultural Sciences, 2008, 36(6): 2429-2430. |
[31] | 胡标林,李霞,万勇,邱在辉,聂元元,谢建坤. 东乡野生稻BILs群体耐低氮性表型性状指标筛选及其综合评价[J]. 应用生态学报, 2015, 26(8): 2346-2352. |
Hu B L, Li X, Wan Y, Qiu Z H, Nie Y Y, Xie J K.Index screening and comprehensive evaluation of phenotypic traits of low nitrogen tolerance using BILs population derived from Dongxiang wild rice (Oryza rufipogon Griff.)[J].Chinese Journal of Applied Ecology, 2015, 26(8): 2346-2352.(in Chinese with English abstract) | |
[32] | Hu B L, Xie J K, Wan Y, Zhang J W, Zhang F T, Li X. Mapping QTLs for fertility restoration of different cytoplasmic male sterility types in rice using two Oryza sativa ×O. rufipogon backcross inbred line populations[J]. BioMed Research International, 2016, 2016: 1-8. |
[33] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[34] | 程建峰,戴廷波,蒋海燕,潘晓云,曹卫星. 水稻拔节期叶片碳氮代谢基因型差异及与氮素利用效率的关系[J].中国水稻科学, 2012, 26(1): 101-108. |
Cheng J F, Dai T B, Jiang H Y, Pan X Y, Cao W X.Characterization of leaf carbon and nitrogen assimilation in different rice genotypes at jointing stage and their relationships with nitrogen utilization efficiency[J]. Chinese Journal of Rice Science, 2012, 26(1): 101-108.(in Chinese with English abstract) | |
[35] | 郭小蛟,张涛,蒋开锋,曹应江,杨莉,游书梅,罗婧,杨乾华,万先齐,郑家奎. 水稻低氮胁迫下产量性状表现及相关QTL定位[J]. 杂交水稻, 2015, 30(2): 50-56. |
Guo X J, Zhang T, Jiang K F, Cao Y J, Yang L, You S M, Yang Q H, Wan X Q, Zheng J K.Expression of yield traits and related QTL mapping in rice under low nitrogen stress[J].Hybrid Rice, 2015, 30(2): 50-56.(in Chinese with English abstract) | |
[36] | Senthilvel S, Vinod K K, Malarvizhi P, Maheswaran M.QTL and QTL×environment effects on agronomic and nitrogen acquisition traits in rice[J]. Journal of Integrative Plant Biology, 2008, 50(9): 1108-1117. |
[37] | 唐江云,张涛,蒋开锋,杨莉,杨乾华,万先齐,曹应江,游书梅,郑家奎. 利用基础导入系群体定位氮胁迫下水稻产量性状QTL[J]. 农业生物技术学报, 2011, 19(6): 996-1002. |
Tang J Y, Zhang T, Jiang K F, Yang L, Yang Q H, Wan X Q, Cao Y J, You S M, Zheng J K.Identification of QTL for yield traits of low nitrogen stress by using introgression lines of rice[J].Journal of Agricultural Biotechnology, 2011, 19(6): 996-1002.(in Chinese with English abstract) | |
[38] | 李亚非, 黎毛毛, 曹桂兰, 韩龙植.水、旱稻氮高效QTL定位及其表达的遗传背景效应研究[J]. 中国农业科学,2010,43(21):4331-4340. |
Li Y F, Li M M, Cao G L, Han L Z.Effects of genetic background on expression of QTL for nitrogen efficiency in irrigated rice and upland rice[J]. Scientia Agricultura Sinica, 2010,43(21):4331-4340.(in Chinese with English abstract) | |
[39] | 沈雨民, 洪骏,熊焕金, 陈明亮, 吴小燕, 邓伟, 肖叶青. 利用重组自交系定位东乡野生稻在低氮胁迫下相关性状QTL[J]. 分子植物育种, 2019, 17(11): 3615-3623. |
Shen Y M, Hong J, Xiong H J, Chen M L, Wu X Y, Deng W, Xiao Y Q.Identification of related traits QTL stressed with nitrogen deficiency by recombinant inbred lines of Dongxiang wild rice[J]. Molecular Plant Breeding, 2019, 17(11): 3615-3623.(in Chinese with English abstract) | |
[40] | 姚晓云,范淑秀,邹国兴,吴延寿,陈春莲,熊运华,刘进,王嘉宇,徐正进. 不同施氮水平下水稻株高与剑性状比较分析. 华北农学报, 2019, 34(6):54-62. |
Yao X Y, Fan S X, Zou G X, Wu Y S, Chen C L, Xiong Y H, Liu J, Wang J Y, Xu Z J.Comparative analysis of rice plant height and sword traits under different nitrogen application levels[J]. Journal of North China Agriculture, 2019, 34(6):54-62.(in Chinese with English abstract) | |
[41] | 吕海霞,周广生,丁泽红,孙永建,余四斌. 水稻染色体片段代换系对氮反应的QTL分析[J]. 分子植物育种, 2010, 8(6): 1074-1081. |
Lü H X, Zhou G S, Ding Z H, Sun Y J, Yu S B.QTL identification for nitrogen responses in rice chromosomal segment substitution lines[J].Molecular Plant Breeding, 2010, 8(6): 1074-1081.(in Chinese with English abstract) | |
[42] | Fu Y Q, Zhong X H, Pan J F, Liang K M, Liu Y Z, Peng B L, Hu X Y, Huang N R.QTLs identification for nitrogen and phosphorus uptake-related traits using ultra-high density SNP linkage[J/OL].Plant Science, 2019, 288: 110209. |
[43] | Feng B, Chen K, Cui Y R, Wu Z C, Zheng T Q, Zhu Y J, Ali J, Wang B B, Xu J L, Zhang W Z,Li Z K.Genetic dissection and simultaneous improvement of drought and low nitrogen tolerances by designed QTL pyramiding in rice[J]. Plant Science, 2018, doi: 10.3389/fpls.2018.00306. |
[44] | Jewel Z A, Ali J, Anumalla AM, Hernandez J, Pang Y L, Li Z K.Identification of quantitative trait loci associated with nutrient use efficiency traits, using SNP markers in an early backcross population of rice(Oryza sativa L.)[J]. International Journal of Molecular Science, 2019, 20: 900.doi:10.3390/ijms20040900. |
[45] | Tong HH,Mei HW,Yu XQ,Xu XY,Li MS,Zhang SQ,Luo LJ.Identification of related QTLs at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels[J]. Acta Genetica Sinica,2006, 33(5): 458-467. |
[46] | 赵峰,白建江,杨瑞芳,石英尧,朴钟泽. 不同氮素水平条件下水稻苗期形态性状QTL分析[J]. 上海农业学报, 2015, 6(31): 18-23. |
Zhao F, Bai J J, Yang R F, Shi Y Y, Piao Z Z.QTL analysis of morphological characters in rice at seedling stage under different nitrogen levels[J].Acta Agriculturae Shanghai, 2015, 6(31): 18-23.(in Chinese with English abstract) | |
[47] | Zhao CF, Zhou LH, Zhang YD, Zhu Z, Chen T, Zhao QY, Yao S, Yu X, Wang CL.QTL mapping for seedling traits associated with low-nitrogen tolerance using a set of advanced backcross introgression lines of rice[J]. Plant Breeding, 2014, 133(2): 189-195. |
[48] | Zhou Y, Tao Y J, Tang D N, Wang J, Zhong J, Wang Y, Yuan Q M, Yu X F, Zhang Y, Wang Y L, Liang G H, Dong G C.Identification of QTL associated with nitrogen uptake and nitrogen use efficiency using high throughput genotyped CSSLs in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8: 1166. |
[49] | Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Liu H X, Fu X D.Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46(6):652-656. |
[1] | 刘忠奇, 张海清, 贺记外, 桂金鑫. 成熟期水稻种子脱水速率全基因组关联分析[J]. 中国水稻科学, 2024, 38(2): 150-159. |
[2] | 胡佳晓, 刘进, 崔迪, 勒思, 周慧颖, 韩冰, 孟冰欣, 余丽琴, 韩龙植, 马小定, 黎毛毛. 利用东乡野生稻染色体片段置换系鉴定穗部性状主效QTL[J]. 中国水稻科学, 2023, 37(6): 597-608. |
[3] | 刘进, 崔迪, 余丽琴, 张立娜, 周慧颖, 马小定, 胡佳晓, 韩冰, 韩龙植, 黎毛毛. 水稻苗期耐热种质资源筛选及QTL定位[J]. 中国水稻科学, 2022, 36(3): 259-268. |
[4] | 胡标林, 黄得润, 肖叶青, 何强生, 万勇, 樊叶杨. 应用东乡野生稻回交重组自交系群体分析糙米矿质含量QTL[J]. 中国水稻科学, 2018, 32(1): 43-50. |
[5] | 张桂莲, 廖斌, 唐文帮, 陈立云, 肖应辉. 稻米垩白性状对高温耐性的QTL分析[J]. 中国水稻科学, 2017, 31(3): 257-264. |
[6] | 张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮, 张文伟, 江玲. 稻米淀粉RVA谱特征值与直链淀粉、蛋白含量的相关性及QTL定位分析[J]. 中国水稻科学, 2017, 31(1): 31-39. |
[7] | 徐晓明1,2,3,#,张迎信1,3,#,王会民1,4,任翠5,王汝慈1,3,沈希宏1,3,占小登1,3,吴玮勋1,3,程式华1,3,曹立勇1,3,*. 一个水稻根长QTL qRL4的分离鉴定[J]. 中国水稻科学, 2016, 30(4): 363-370. |
[8] | 王军, 朱金燕, 周勇, 杨杰, 范方军, 李文奇, 王芳权, 仲维功, 梁国华. 不同温光条件下水稻抽穗期QTL的定位与分析[J]. 中国水稻科学, 2016, 30(3): 247-255. |
[9] | 圣忠华, 朱子亮, 马宁, 李威, 贺记外, 魏祥进, 邵高能, 王建龙, 胡培松, 唐绍清. 超级稻品种中嘉早17产量相关性状QTL定位研究[J]. 中国水稻科学, 2016, 30(1): 35-43. |
[10] | 任洁, 赵秀琴, 丁在松, 项超, 张晶, 王超, 张俊巍, 张强, 庞昀龙, 高用明, 石英尧. 利用选择导入系进行水稻耐低磷鉴定与QTL定位分析[J]. 中国水稻科学, 2015, 29(1): 1-13. |
[11] | 占小登,于萍,林泽川,陈代波,沈希宏,张迎信,付君林,程式华* ,曹立勇*. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL[J]. 中国水稻科学, 2014, 28(6): 570-580. |
[12] | 姜树坤,张凤鸣* ,白良明,孙世臣,王彤彤,丁国华,姜辉,张喜娟. 水稻移栽后新生根系相关性状的QTL分析[J]. 中国水稻科学, 2014, 28(6): 598-604. |
[13] | 冯跃,翟荣荣,林泽川,曹立勇,魏兴华,程式华*. 不同供氮水平下水稻产量性状的QTL分析[J]. 中国水稻科学, 2013, 27(6): 577-584. |
[14] | 杨占烈1,2,戴高兴3,翟荣荣1,林泽川1,王会民4,曹立勇1,*,程式华1,*. 多环境条件下超级杂交稻协优9308 重组自交系群体粒形性状的QTL分析[J]. 中国水稻科学, 2013, 27(5): 482-490. |
[15] | 周勇1,2 ,朱孝波1 ,袁华1 ,郑英2 ,钦鹏1 ,魏应海1,2 ,王玉平1 ,黄世君2 ,李仕贵1,*. 水稻单片段代换系芽期和苗期耐冷性分析及耐冷性QTL鉴定[J]. 中国水稻科学, 2013, 27(4): 381-388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||