中国水稻科学 ›› 2020, Vol. 34 ›› Issue (6): 479-490.DOI: 10.16819/j.1001-7216.2020.9135
• 综述与专论 • 下一篇
收稿日期:
2019-12-16
修回日期:
2020-06-08
出版日期:
2020-11-10
发布日期:
2020-11-10
通讯作者:
张迎信
基金资助:
Yiwei KANG, Yuyu CHEN, Yingxin ZHANG*()
Received:
2019-12-16
Revised:
2020-06-08
Online:
2020-11-10
Published:
2020-11-10
Contact:
Yingxin ZHANG
摘要:
水稻的育种目标包括高产和优质等。粒型是指籽粒的三维结构,是决定水稻产量的重要因素之一,也是影响稻米品质的重要性状。目前已经克隆了超过60个与水稻粒型相关的基因,但应用于育种的粒型基因尚无完整统计。本文综述了已克隆的水稻粒型基因特别是数量性状基因座的研究进展,归纳总结了可应用于水稻高产及优质分子育种的重要粒型基因的功能标记,介绍了粒型基因的育种应用现状,并对前景作了展望,以期为水稻育种家提供可直接利用的分子育种信息。
中图分类号:
康艺维, 陈玉宇, 张迎信. 水稻粒型基因克隆研究进展及育种应用展望[J]. 中国水稻科学, 2020, 34(6): 479-490.
Yiwei KANG, Yuyu CHEN, Yingxin ZHANG. Research Progress and Breeding Prospects of Grain Size Associated Genes in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(6): 479-490.
[1] | 金连登, 罗玉坤, 朱智伟, 陈能, 许立, 陈铭学, 闵捷. 面向市场加大力度提升品质: 对新世纪初我国稻米产业发展对策的若干思考[J]. 中国稻米, 2001, 7(3): 5-8. |
Jin L D, Luo Y K, Zhu Z W, Chen N, Xu L, Chen M X, Min J.Face to market,strengthen dynamics and promote quality: Thoughts about developmental countermeasures of rice industry at the 21st century in China[J]. China Rice, 2001,7(3):5-8. (in Chinese) | |
[2] | 李仕贵, 黎汉云, 周开达, 马玉清. 杂交水稻稻米外观品质性状的遗传相关分析[J]. 西南大学学报: 自然科学版, 1995(3): 197-201. |
Li S G, Li H Y, Zhou K D, Ma Y Q.Genetic correlation analysis of appearance quality traits of hybrid rice[J]. Journal of Southwest University: Natural Science, 1995(3): 197-201. (in Chinese) | |
[3] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672. |
Huang H X, Qian Q.Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality japonicarice[J]. Chinese Journal of Rice Science, 2017, 31(6): 665-672. (in Chinese with English abstract) | |
[4] | 高志强,占小登, 梁永书, 程式华, 曹立勇. 水稻粒形性状的遗传及相关基因定位与克隆研究进展[J]. 遗传, 2011, 33(4): 314-321. |
Gao Z Q, Zhan X D, Liang Y S, Chen S H, Cao L Y.Progress on genetics of rice grain shape trait and its related gene mapping and cloning[J]. Hereditas, 2011, 33(4): 314-321. (in Chinese with English abstract) | |
[5] | Bhattacharjee P,Singhal R S, Kulkarni P R Basmati rice: A review[J]. International Journal of Food Science & Technology, 2010, 37(1): 1-12. |
[6] | 莫海玲, 唐梅, 孙富, 罗敬昭, 邓晶. 优质香稻三系不育系野香A的选育与应用[J]. 杂交水稻, 2015, 30(4): 11-12. |
Mo H L, Tang M, Sun F, Luo J Z, Deng J.Breeding and application of aromatic CMS line Yexiang A with fine grain quality in rice[J]. Hybrid Rice, 2015, 30(4): 11-12. (in Chinese) | |
[7] | 朱满山, 黄慧君, 王丰, 刘振荣, 柳武革, 廖亦龙, 李金华, 陈建伟. 优质抗稻瘟病弱感光型杂交晚稻新组合泰丰优55[J]. 杂交水稻, 2013, 28(6): 76-77. |
Zhu M S, Huang H J, Wang F, Liu Z R, Liu W G, Liao Y L.Taifengyou 55, a new indica hybrid rice combination with weak photosensitivity, fine grain quality and blast resistance[J]. Hybrid Rice, 2013, 28(6): 76-77. (in Chinese) | |
[8] | 周清元, 安华, 张毅, 沈福成. 水稻子粒形态性状遗传研究[J]. 西南农业大学学报: 自然科学版, 2000, 22(2): 102-104. |
Zhou Q Y, An H, Zhang Y, Shen F C.Study on heredity of morphological characters of rice grain[J]. Journal of Southwest Agricultural University: Nature Science, 2000, 22(2):102-104. (in Chinese with English abstract) | |
[9] | 石春海,申宗坦. 早籼稻谷粒性状遗传效应的分析[J]. 浙江农业大学学报, 1994, 20(4): 405-410. |
Shi C H, Shen Z T.Analysis of genetic effects of grain traits in indicarice[J].Journal of Zhejiang Agricultural University, 1994, 20(4): 405-410. (in Chinese with English abstract) | |
[10] | 朱业宝,郭玉春, 梁康迳, 孙新立. 水稻粒形调控基因的研究进展[J]. 福建农林大学学报: 自然科学版, 2015, 44(1): 1-7. |
Zhu Y B, Guo Y C, Liang K J, Sun X L.Progress on the genes controlling grain shape of rice[J]. Journal of Fujian Agriculture and Forestry University: Natural Science, 2015, 44(1): 1-7. (in Chinese with English abstract) | |
[11] | Li N, Xu R, Duan P G, Li Y H.Control of grain size in rice[J]. Plant Reproduction, 2018, 31: 237-251. |
[12] | Hu Z, He H, Zhang S, Sun F, Xin X, Wang W, Qian X.A Kelch Motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice[J]. Journal of Integrative Plant Biology, 2012, 54(12): 979-90. |
[13] | Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G.OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15(1): 28. |
[14] | Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao Y J, Wu Y J, Fu X D.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9(1): 852. |
[15] | Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Abdul RRM, Li J J, Zhang H L, Li Z C.Alternative splicing of OsLG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, 16(9): 1667-1678. |
[16] | Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lü D, Cui L L, Yan L, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B.Dissecting a heterotic gene through GradedPool-Seq mapping informs a rice-improvement strategy[J]. Nature Communications, 2019, 10(1): 2982. |
[17] | Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q.GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to form extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[18] | Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X.A novel QTL qTGW3encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[19] | Ying J Z, Ma M, Bai C, Huang X, Liu J L, Fan Y Y, Song X J.TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753. |
[20] | Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B.The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4): 1574-2018. |
[21] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1): 1240 |
[22] | Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y.Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. New Phytologist, 2020.DOI: 10.1111/nph.16540 |
[23] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[24] | Shomura A, Izawa TK, Ebitani T, Kanegae H, Konishi S, Yano M.Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028. |
[25] | Liu J F, Chen J, Zheng X M, Wu F Q, Li Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3: 17043. |
[26] | Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S.Natural variation in the promoter of GSE5contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[27] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[28] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[29] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[30] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584. |
[31] | Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y.Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J].Proceedings of the National Academy of Sciences of the United States of America, 2012,109(52): 21534-21539. |
[32] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z,Jiang L W, Gao J P, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1666-80. |
[33] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013 45(6): 707. |
[34] | Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F,Zhao Y,Li Y,Cui L L,Fan D L,Lu Y Q,Wang Q J,Wang Y C,Zhan Q L,Liu K Y,Wei X H,Han B. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016 48(4): 447-456. |
[35] | Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H.A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3(6): 17064. |
[36] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S.A rare allele of GS2enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. |
[37] | Che R H, Tong H G, Shi B H, Liu Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C.Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2(1): 15195. |
[38] | Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y Y, Zhu X D, Li J Y, Qian Q.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944. |
[39] | Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Science Foundation in China, 2015, 47(3): 949. |
[40] | Jun S X, Takeshi K, Madoka A, Tomoyuki F, Keisuke N, Norio K, Shuhei S, Kotaro M, Daisuke O, Takumi K.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J/OL].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76. |
[41] | Li N, Li Y H.Signaling pathways of seed size control in plants[J]. Current Opinion in Plant Biology, 2016, 33:23-32. |
[42] | Li N, Xu R, Li Y H.Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019, 60:435-463. |
[43] | Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice[J]. Plant Journal, 2017, 91(5): 849-860. |
[44] | Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, Ye Y, Liu X, Wang J, Zhang J.Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017, 27(9): 1142-1156. |
[45] | Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wang J M.Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice[J]. Plant Physiology, 2019,180(1):381-391. |
[46] | Sumiyo T, Motoyuki A, Shozo F, Suguru T, Shigeo Y, Masahiro Y, Atsushi Y, Hidemi K, Makoto M, Yukiko F.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790. |
[47] | Ferrero-Serrano Á, Su Z, Assmann S M.Illuminating the role of the Gα heterotrimeric G protein subunit, RGA1, in regulating photoprotection and photovoidance in rice[J]. Plant Cell and Environment, 2018, 41(2): 451-468. |
[48] | Huang X, Qian Q Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X.Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[49] | Li X, Tao Q, Miao J, Yang Z, Gu M, Liang G, Zhou Y.Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation[J]. Rice, 2019, 12(1): 5. |
[50] | Miao J, Yang Z F, Zhang D P, Wang Y Z, Xu M B, Zhou L H, Wang J, Wu S J, Yao Y L, Gu F F, Gong Z Y, Gu M H, Liang G H, Zhou Y.Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice[J]. Plant Biotechnology Journal, 2019, 17(3):650-664. |
[51] | Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Jia L.Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 2018, 11(6): 860-873. |
[52] | Guo T, Chen K, Dong N N, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X.GRAIN SIZE AND NUMBER1negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice[J]. Plant Cell, 2018,30(4): 871-888. |
[53] | Zhang Y, Xiong Y, Liu R, Xue H, Yang Z.The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division[J].Proceedings of the National Academy of Sciences of the United States of America,2019, 116(32): 16121-16126. |
[54] | 董庆坤, 刘慧丽. 植物激素调控籽粒大小的研究进展[J]. 华南师范大学学报:自然科学版, 2015, 47(6): 72-78. |
Dong Q K, Liu H L.Progress on the plant hormone regulation related to seed development[J]. Journal of South China Normal University: Natural Science Edition, 2015, 47(6): 72-78. (in Chinese with English abstract) | |
[55] | Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Matsuoka K M.Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 2000, 12(9): 1591-1606. |
[56] | Hong, Z,Ueguchi-Tanaka M,Umemura K,Uozu S,Fujioka S,Takatsuto S,Yoshida S,Ashikari M,Kitano H,Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochromeP450[J]. Plant Cell, 2004, 15(12):2900-2910. |
[57] | Dany H, Hidenori S.An atypical bHLH protein encoded byPOSITIVE REGULATOR OF GRAIN LENGTH 2is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG[J]. Breeding Science, 2012, 62(2):133-141. |
[58] | Liu L C, Tong H N, Xiao Y H, Che R H, Chu C C.Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35):11102-11107. |
[59] | Dany H, Hidenori S.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice[J]. PloS ONE, 2012, 7(2): e31325. |
[60] | Jiang Y H, Bao L, Jeong S Y, Kim S K, Xu C G, Li X H, Zhang Q F.XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice[J]. Plant Journal for Cell & Molecular Biology, 2012, 70(3):398-408. |
[61] | Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3):776-790. |
[62] | Tong H N, Liu L C, Jin Y, Du L, Yin Y H, Qian Q, Zhu L H, Chu C C.DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice[J]. Plant Cell, 2012, 24(6):2562-2577. |
[63] | Koichiro A, Tokunori H, Kanna S I, Miyako U T, Hidemi K, Makoto M.A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway[J].Plant & Cell Physiology, 2014, (5):5. |
[64] | Tong H N, Liu L C, Jin Y, Du L Yin Y H,Qian Q,Zhu L H,Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice[J].Plant Journal,2009, 58(5):803-816. |
[65] | Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiology, 2009, 151(2):669-680. |
[66] | Bai M Y, Zhang L Y, Gampala SS, Zhu S W, Song W Y, Chong K, Wang Z Y.Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proceedings of the National Academy of Sciences, 2007, 104(34): 13839-13844. |
[67] | Yuan H, Fan S J, Huang J, Zhan S J, Wang S F, Gao P, Chen W L, Tu B, Ma B T, Wang Y P.08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice[J]. Rice, 2017, 10(1): 25. |
[68] | Feng Z M, Wu C Y, Wang C M, Roh J, Zhang L, Chen J, Zhang S Z, Zhang H, Yang C Y, Hu J L, You X M, Liu X, Yang X M, Guo X P, Zhang X, Wu F, Terzaghi W, Kim S K, Jiang L, Wan J M.SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice[J]. Journal of Experimental Botany, 2016, 67(14):4241-4253. |
[69] | Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M.Short grain1 decreases organ elongation and brassinosteroid response in rice[J]. Plant Physiology, 2012, 158(3):1208-1219. |
[70] | Liu H H, Guo S S, Xu Y Y, Li C H, Zhang D J, Xu S J, Zhang C, Chong K.OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology, 2014, 165(1): 160-174. |
[71] | Ren D Y, Cui Y J, Hu H T, Xu Q K, Qian Q.AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice[J].Plant Journal, 2019, 100(4): 813-824. |
[72] | Zhao Y F, Peng T, Sun H Z, Teotia S, Wen H L, Du Y X, Zhang J, Li J Z, Tang G L, Xue H W. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice[J]. Plant Biotechnology Journal, 2019, 17(4): 712-723. |
[73] | Hitoshi N, Atsunori T, Takanari T, Miki O, Shozo F, Hidemitsu N, Hiroaki I, Masaki M.Shortgrain1 decreases organ elongation and brassinosteroid response in rice[J]. Plant Physiology, 2012, 158(3): 1208. |
[74] | Li J, Chu H W, Zhang Y H, Mou T M, Wu C Y, Zhang Q F, Xu J.The riceHGWgene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. PLoS ONE, 2017, 7(3): e34231. |
[75] | 李扬, 徐小艳, 严明,冯芳君, 马孝松, 梅捍卫.利用GS3基因功能性分子标记改良水稻粒型的研究[J]. 上海农业学报, 2016(1): 1-5. |
Li Y, Xu X Y, Yan M, Feng F J, Ma X S, Mei H W.Improvement of rice grain shape by functional molecular marker of GS3gene[J]. Acta Agriculturae Shanghai, 2016(1):1-5. (in Chinese with English abstract) | |
[76] | 裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒宽基因GS5的功能标记开发和单倍型鉴定[J]. 中国水稻科学, 2016, 30(5): 487-492. |
Yi C D, Wang D R, Jiang W, Li W, Cheng X J, Wang Y, Zhou Y, Liang G H, Gu M H.Development of functional markers and identification of haplotypes for rice grain width geneGS5[J]. Chinese Journal of Rice Science, 2016, 30(5): 487-492. (in Chinese with English abstract) | |
[77] | 裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒形基因GW8的功能标记开发和单体型鉴定[J]. 作物学报, 2016, 42(9): 1291-1297. |
Yi C D, Wang D R, Jiang W, Li W, Cheng X J, Wang Y, Zhou Y, Liang G H, Gu M H.Development of functional markers and identification of haplotypes for rice grain shape gene GW8[J]. Acta Agronomica Sinica, 2016,42(9): 1291-1297. (in Chinese with English abstract) | |
[78] | 丁丹, 张亚东, 郑佳, 赵春芳, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌. 水稻粒长基因GS3和qGL3功能标记的设计及应用记[J]. 江苏农业学报, 2014, 30(6):1191-1197. |
Ding D, Zhang Y D, Zhen J, Zhao C F, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L.Design and application of functional markers of grain length genes GS3 and qGL3 in rice[J]. Jiangsu Journal of Agricultural Sciences, 2014,30(6):1191-1197. (in Chinese with English abstract) | |
[79] | Zhang Y D, Zheng J, Liang Z K, Liang Y L, Peng Z H, Wang C L.Verification and evaluation of grain QTLs using RILs from TD70×Kasalath in rice.Genet Molecular Research, 2015, 14(4):14882-14892. |
[80] | Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12):1266-1269. |
[81] | Yan S, Zou G, Li S, Wang H, Liu H, Zhai G, Guo P, Song H, Yan C, Tao Y.Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics, 123(7): 1173-1181. |
[82] | Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y.The SMALLANDROUNDSEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice[J]. Genes and Genetic Systems, 2010, 85(5): 327-339. |
[83] | Kazuhiko S, Yoshinobu T, Kaworu E, Akio M, Hirohiko H, Naho H, Kanako I, Masatomo K, Yoshinori B, Tsukaho H.Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice[J]. Proceedings of the National Academy of Sciencesof USA, 2010, 107(13): 5792-5797. |
[84] | Sakamoto T, Matsuoka M.Identifying and exploiting grain yield genes in rice[J]. Current Opinion in Plant Biology, 2008, 11(2): 209-214. |
[85] | Zuo J, Li J.Molecular genetic dissection of quantitative trait loci regulating rice grain size[J]. Annual Review of Genetics, 2014, 48(1): 99-118. |
[86] | Michelmore R W, Kesseli I P A R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciencesof USA, 1991, 88(21): 9828-9832. |
[87] | Vikram P, Swamy B P M,Dixit S,Ahmed H,Cruz M T S,Singh A K,Ye G,Kumar A. Bulk segregant analysis: An effective approach for mapping consistent-effect drought grain yield QTLs in rice[J]. Field Crops Research, 2012, 134: 185-192. |
[88] | Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M.Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nature Biotechnology, 2012, 30(2): 174-178. |
[89] | Rym F, Hiroki T, Muluneh T, Akira A, Satoshi N, Hiroki Y, Shailendra S, Shiveta S, Hiroyuki K, Hideo M.MutMap+: Genetic mapping and mutant identification without crossing in rice[J/OL].PloSONE, 2013, 8(7): e68529. |
[90] | Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H.MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist, 2013, 200(1): 276-283. |
[91] | Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S.QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. Plant Journal, 2013, 74(1): 174-183. |
[92] | Sun D, Cen H, Weng H, Wan L, He Y.Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality[J]. Plant Methods, 2019, 15(1): 54. |
[93] | Korte A, Farlow A.The advantages and limitations of trait analysis with GWAS: A review[J]. Plant Methods, 2013, 9(1):29. |
[94] | Wang H R, Xu X, Vieira F G, Xiao Y H, Li Z, Wang J, Nielsen R, Chu C C.The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication[J]. Molecular Plant, 2016, 9(7): 975-985 |
[95] | Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F.Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018, 557(7703): 43-49. |
[96] | Qiu H Z, Ye Z J, Liang M Z, Huang Y Q, Liu W, Lu Z D.Effect of an art brut therapy program called go beyond the schizophrenia (GBTS) on prison inmates with schizophrenia in mainland China-A randomized, longitudinal, and controlled trial[J]. Clinical Psychology and Psychotherapy, 2017, 24(5): 1069. |
[97] | Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y.Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing(GBTS) in maize[J]. Molecular Breeding, 2019, 39(3): 37. |
[98] | 姚祝平, 程远, 万红建, 李志邈, 叶青静, 阮美颖, 王荣青, 周国治, 杨悦俭. CRISPR/Cas9基因编辑技术在植物基因工程育种中的应用[J]. 分子植物育种, 2017, 15(7): 178-186. |
Yao Z P, Chen Y, Wan H J, Li Z M, Ye Q J, Ruan M Y, Wang R Q, Zhou G Z, Yang Y J.Application of CRISPR/Cas9 genome editing technology in plant genetic engineering breeding[J]. Molecular Plant Breeding, 2017, 15(7): 178-186. | |
[99] | Shao T, Tang D, Wang K, Wang M, Che L, Qin B, Yu H, Li M, Gu M, Cheng Z.OsREC8is essential for chromatid cohesion and metaphase I monopolar orientation in rice meiosis[J]. Plant Physiology, 2011, 156(3): 1386-1396. |
[100] | Nonomura I K. The novel geneHOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis[J].Plant Cell Online, 2014, 16(4): 1008-1020. |
[101] | Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G T, Courtois B, Guiderdoni E.Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1242. |
[102] | Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283. |
[103] | Zong Y A, Song Q A, Li C, Jin S, Zhang D B, Wang Y P, Qiu J L, Gao C X.Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, 36: 950-953. |
[104] | Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R.Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 伏荣桃, 陈诚, 王剑, 赵黎宇, 陈雪娟, 卢代华. 转录组和代谢组联合分析揭示稻曲病菌的致病因子[J]. 中国水稻科学, 2024, 38(4): 375-385. |
[5] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[6] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[7] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[8] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[9] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[10] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[11] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[12] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[13] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[14] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[15] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||