中国水稻科学 ›› 2020, Vol. 34 ›› Issue (5): 443-456.DOI: 10.16819/j.1001-7216.2020.0307
贾琰1, 杨亮2, 邹德堂1, 瞿炤珺1, 王敬国1, 刘化龙1, 王晋3, 赵宏伟1,*()
收稿日期:
2020-03-18
修回日期:
2020-05-09
出版日期:
2020-09-10
发布日期:
2020-09-10
通讯作者:
赵宏伟
作者简介:
#共同第一作者;
基金资助:
Yan JIA1, Liang YANG2, Detang ZOU1, Zhaojun QU1, Jingguo WANG1, Hualong LIU1, Jin WANG3, Hongwei ZHAO1,*()
Received:
2020-03-18
Revised:
2020-05-09
Online:
2020-09-10
Published:
2020-09-10
Contact:
Hongwei ZHAO
About author:
#These authors contributed equally to this work
摘要:
【目的】制定减灾保产化控栽培技术,有效抵御寒地粳稻孕穗期低温冷害。【方法】采用裂区试验设计和中心组合试验设计,基于产量相关指标隶属函数值,筛选出寒地粳稻孕穗期冷水胁迫下氯化钙(CaCl2)、谷氨酸(Glu)、γ-氨基丁酸(GABA)三种外源物质最适施用浓度及其最适浓度配比,并研究孕穗期冷水胁迫下施用最适浓度配比三种外源物质(CGG)对寒地粳稻氮光合效率及产量形成的影响。【结果】1)孕穗期冷水胁迫下施用CGG最适浓度配比为1.87 mmol/L CaCl2、2.76 mg/LGlu、4.40 mmol/L GABA,隶属函数平均值最大(0.932)。2)与正常灌溉相比,孕穗期低温胁迫下寒地粳稻氮光合效率下降;与孕穗期冷水胁迫相比,施用最适浓度配比CGG可显著提高东农428齐穗期叶面积指数(5.37%)及氮光合效率(4.53%);可显著提高松粳10齐穗期单位面积叶片干物质量(2.56%)和叶面积指数(3.39%)。3)与孕穗期冷水胁迫相比,施用最适浓度配比CGG可提高寒地粳稻抽穗至成熟期干物质积累量,但其积累量仍低于正常灌溉水平,且在品种和处理间存在差异。4)与孕穗期冷水胁迫相比,施用最适浓度配比CGG寒地粳稻产量及产量构成因素均有所上升,但仍低于正常灌溉水平,且对冷敏感的品种影响更为显著。5)与孕穗期冷水胁迫相比,施用最适浓度CGG东农428和松粳10温度生产效率平均增幅分别为5.55%和23.72%。外源CGG对于温度生产效率差异的贡献率为8.99%。【结论】孕穗期冷水胁迫下施用最适浓度配比CGG可通过促进齐穗期叶片生长,进而提高群体氮光合效率,有利于抽穗后干物质积累及产量形成,减轻孕穗期冷水胁迫对寒地粳稻产量造成的损失,提高寒地粳稻温度生产效率。
中图分类号:
贾琰, 杨亮, 邹德堂, 瞿炤珺, 王敬国, 刘化龙, 王晋, 赵宏伟. 孕穗期冷水胁迫下施用外源物质对寒地粳稻氮光合效率及产量的影响[J]. 中国水稻科学, 2020, 34(5): 443-456.
Yan JIA, Liang YANG, Detang ZOU, Zhaojun QU, Jingguo WANG, Hualong LIU, Jin WANG, Hongwei ZHAO. Effects of Exogenous Materials on Nitrogen Photosynthetic Efficiency and Yield Formation of japonica Rice in Cold Region Under Cold Water Stress at Booting Stage[J]. Chinese Journal OF Rice Science, 2020, 34(5): 443-456.
年份 Year | 有机质 Organic matter /(g·kg-1) | 全氮 Total N /(g·kg-1) | 全磷 Total P /(g·kg-1) | 缓效钾 Slowly available K/(mg·kg-1) /(mg·kg-1) | 速效氮 Available N /(mg·kg-1) | 速效磷 Available P /(mg·kg-1) | 速效钾 Available K /(mg·kg-1) | pH值 Value of pH |
---|---|---|---|---|---|---|---|---|
2014 | 22.5 | 1.26 | 0.43 | 707 | 130 | 18.9 | 99.3 | 6.85 |
2015 | 22.4 | 1.25 | 0.42 | 706 | 127 | 18.1 | 98.3 | 6.67 |
2016 | 22.3 | 1.23 | 0.40 | 705 | 126 | 17.9 | 98.1 | 6.61 |
2017 | 22.1 | 1.20 | 0.39 | 705 | 125 | 18.0 | 97.6 | 6.56 |
表1 土壤基础肥力(2014–2017)
Table 1 Soil properties of composite topsoil samples (0-20 cm) from the main experimental plots (2014-2017).
年份 Year | 有机质 Organic matter /(g·kg-1) | 全氮 Total N /(g·kg-1) | 全磷 Total P /(g·kg-1) | 缓效钾 Slowly available K/(mg·kg-1) /(mg·kg-1) | 速效氮 Available N /(mg·kg-1) | 速效磷 Available P /(mg·kg-1) | 速效钾 Available K /(mg·kg-1) | pH值 Value of pH |
---|---|---|---|---|---|---|---|---|
2014 | 22.5 | 1.26 | 0.43 | 707 | 130 | 18.9 | 99.3 | 6.85 |
2015 | 22.4 | 1.25 | 0.42 | 706 | 127 | 18.1 | 98.3 | 6.67 |
2016 | 22.3 | 1.23 | 0.40 | 705 | 126 | 17.9 | 98.1 | 6.61 |
2017 | 22.1 | 1.20 | 0.39 | 705 | 125 | 18.0 | 97.6 | 6.56 |
外源物质 Exogenous substance | 浓度 Concentration | ||||
---|---|---|---|---|---|
γ-氨基丁酸GABA/(mmol·L-1) | 0(T1) | 1.25(G1) | 2.50(G2) | 3.75(G3) | 5.00(G4) |
谷氨酸Glu/(mg·mL-1) | 0(T1) | 0.75(Glu1) | 1.50(Glu2) | 2.25(Glu3) | 3.00(Glu4) |
氯化钙CaCl2/(mmmol·L-1) | 0(T1) | 1.00(C1) | 2.00(C2) | 3.00(C3) | 4.00(C4) |
表2 孕穗期冷水胁迫下外源物质施用浓度
Table 2 Exogenous substance concentrations under cold-water stress during booting stage.
外源物质 Exogenous substance | 浓度 Concentration | ||||
---|---|---|---|---|---|
γ-氨基丁酸GABA/(mmol·L-1) | 0(T1) | 1.25(G1) | 2.50(G2) | 3.75(G3) | 5.00(G4) |
谷氨酸Glu/(mg·mL-1) | 0(T1) | 0.75(Glu1) | 1.50(Glu2) | 2.25(Glu3) | 3.00(Glu4) |
氯化钙CaCl2/(mmmol·L-1) | 0(T1) | 1.00(C1) | 2.00(C2) | 3.00(C3) | 4.00(C4) |
试验因素 Factor | 步距 Step size | 编码值 Coded value (r=1.682) | ||||
---|---|---|---|---|---|---|
-r | -1 | 0 | 1 | r | ||
γ-氨基丁酸 GABA/(mmol·L-1) | 1.00 | 2.82 | 3.50 | 4.50 | 5.50 | 6.18 |
谷氨酸Glu/(mg·mL-1) | 1.00 | 0.92 | 1.60 | 2.60 | 3.60 | 4.28 |
氯化钙CaCl2/(mol·L-1) | 1.00 | 0.32 | 1.00 | 2.00 | 3.00 | 3.68 |
表3 因子编码及实际值
Table 3 Factor code and actual level.
试验因素 Factor | 步距 Step size | 编码值 Coded value (r=1.682) | ||||
---|---|---|---|---|---|---|
-r | -1 | 0 | 1 | r | ||
γ-氨基丁酸 GABA/(mmol·L-1) | 1.00 | 2.82 | 3.50 | 4.50 | 5.50 | 6.18 |
谷氨酸Glu/(mg·mL-1) | 1.00 | 0.92 | 1.60 | 2.60 | 3.60 | 4.28 |
氯化钙CaCl2/(mol·L-1) | 1.00 | 0.32 | 1.00 | 2.00 | 3.00 | 3.68 |
序号 Order | 因子编码水平 Coded level of factors | 序号 Order | 因子编码水平 Coded level of factors | ||||
---|---|---|---|---|---|---|---|
Glu | CaCl2 | GABA | Glu | CaCl2 | GABA | ||
1 | 0 | 0 | -1.682 | 11 | 0 | 0 | 0 |
2 | -1 | -1 | -1 | 12 | 0 | 0 | 0 |
3 | 1 | -1 | -1 | 13 | 0 | 0 | 0 |
4 | -1 | 1 | -1 | 14 | 1.682 | 0 | 0 |
5 | 1 | 1 | -1 | 15 | 0 | 1.682 | 0 |
6 | 0 | -1.682 | 0 | 16 | -1 | -1 | 1 |
7 | -1.682 | 0 | 0 | 17 | 1 | -1 | 1 |
8 | 0 | 0 | 0 | 18 | -1 | 1 | 1 |
9 | 0 | 0 | 0 | 19 | 1 | 1 | 1 |
10 | 0 | 0 | 0 | 20 | 0 | 0 | 1.682 |
表 4 中心组合设计因素水平与编码表
Table 4 Central composite design code of factors.
序号 Order | 因子编码水平 Coded level of factors | 序号 Order | 因子编码水平 Coded level of factors | ||||
---|---|---|---|---|---|---|---|
Glu | CaCl2 | GABA | Glu | CaCl2 | GABA | ||
1 | 0 | 0 | -1.682 | 11 | 0 | 0 | 0 |
2 | -1 | -1 | -1 | 12 | 0 | 0 | 0 |
3 | 1 | -1 | -1 | 13 | 0 | 0 | 0 |
4 | -1 | 1 | -1 | 14 | 1.682 | 0 | 0 |
5 | 1 | 1 | -1 | 15 | 0 | 1.682 | 0 |
6 | 0 | -1.682 | 0 | 16 | -1 | -1 | 1 |
7 | -1.682 | 0 | 0 | 17 | 1 | -1 | 1 |
8 | 0 | 0 | 0 | 18 | -1 | 1 | 1 |
9 | 0 | 0 | 0 | 19 | 1 | 1 | 1 |
10 | 0 | 0 | 0 | 20 | 0 | 0 | 1.682 |
年份 Year | 试验处理 Treatment | 水温 Tw/℃ | 空气温度 Ta/℃ | 热量 Rd/(MJ·m-2 d-1) |
---|---|---|---|---|
2014 | 对照 Control | 24.2±1.9 | 25.4±1.5 | 16.3±6.3 |
冷水灌溉 Cold-water irrigation | 17.1±0.7 | 24.2±1.9 | 16.2±6.5 | |
2015 | 对照 Control | 24.2±1.8 | 23.8±1.1 | 16.1±7.1 |
冷水灌溉 Cold-water irrigation | 17.1±0.6 | 23.6±1.8 | 16.2±6.9 | |
2016 | 对照 Control | 23.4±1.5 | 24.2±1.2 | 16.7±8.6 |
冷水灌溉 Cold-water irrigation | 17.0±0.5 | 24.0±1.4 | 16.6±8.7 | |
2017 | 对照 Control | 23.0±1.9 | 23.8±1.6 | 15.9±8.4 |
冷水灌溉 Cold-water irrigation | 17.0±0.7 | 23.5±1.1 | 15.8±8.2 |
表5 孕穗期冷水灌溉期间田间试验条件
Table 5 Survey of testing site conditions during cold-water irrigation at booting stage.
年份 Year | 试验处理 Treatment | 水温 Tw/℃ | 空气温度 Ta/℃ | 热量 Rd/(MJ·m-2 d-1) |
---|---|---|---|---|
2014 | 对照 Control | 24.2±1.9 | 25.4±1.5 | 16.3±6.3 |
冷水灌溉 Cold-water irrigation | 17.1±0.7 | 24.2±1.9 | 16.2±6.5 | |
2015 | 对照 Control | 24.2±1.8 | 23.8±1.1 | 16.1±7.1 |
冷水灌溉 Cold-water irrigation | 17.1±0.6 | 23.6±1.8 | 16.2±6.9 | |
2016 | 对照 Control | 23.4±1.5 | 24.2±1.2 | 16.7±8.6 |
冷水灌溉 Cold-water irrigation | 17.0±0.5 | 24.0±1.4 | 16.6±8.7 | |
2017 | 对照 Control | 23.0±1.9 | 23.8±1.6 | 15.9±8.4 |
冷水灌溉 Cold-water irrigation | 17.0±0.7 | 23.5±1.1 | 15.8±8.2 |
品种 Variety | 处理 Treatment | 可育花粉率 Fertile pollen rate/% | 总颖花数 Spikelets per panicle | 总枝梗数 No. of rachises and branches per panicle | 有效穗数 Effective panicle number/(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight /g | 产量 Yield /(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|
东农428 Dongnong 428 | T0 | 93.5 a | 148.2 a | 31.4 a | 330.9 a | 115.1 a | 92.5 a | 25.5 a | 8984.9 a |
T1 | 89.0 fg | 132.7 i | 30.5 de | 326.4 b | 111.9 bc | 88.1 g | 23.1 i | 7417.9 f | |
T1+G1 | 88.8 c | 134.6 h | 30.8 bc | 327.6 b | 112.1 bc | 89.5 def | 23.5 fg | 7717.6 cde | |
T1+G2 | 90.3 cd | 140.6 cd | 30.9 b | 328.1 ab | 112.5 bc | 90.3 bcd | 23.9 c | 7959.0 bc | |
T1+G3 | 91.1 bc | 142.1 b | 30.8 bc | 328.9 ab | 111.9 b | 90.6 bc | 23.5 fg | 7826.1 bcd | |
T1+G4 | 90.9 bc | 141.6 bc | 30.7 bcd | 327.4 b | 112.0 bc | 90.1 cde | 23.6 efg | 7779.8 cd | |
T1+Glu1 | 89.3 ef | 135.2 gh | 30.3 e | 326.9 b | 112.1 bc | 89.4 ef | 23.2 hi | 7584.4 def | |
T1+Glu2 | 90.4 bcd | 139.3 ef | 30.7 bcd | 327.7 b | 112.9 b | 90.4 bc | 23.7 cde | 7920.0 bc | |
T1+Glu3 | 91.2 b | 141.6 bc | 30.6 cd | 328.1 ab | 112.4 bc | 90.5 b | 23.4 gh | 7812.4 bcd | |
T1+Glu4 | 89.6 def | 140.1 de | 30.5 de | 327.3 b | 111.8 c | 90.2 cde | 23.2 hi | 7670.1 cdef | |
T1+C1 | 89.1 efg | 133.3 i | 30.6 cd | 327.1 b | 110.8 d | 88.9 f | 23.2 hi | 7476.0 ef | |
T1+C2 | 89.9 de | 136.3 g | 31.2 a | 327.4 b | 112.6 bc | 90.5 bc | 23.8 cd | 7941.5 bc | |
T1+C3 | 90.8 bc | 140.7 cd | 30.8 bc | 328.1 ab | 112.3 bc | 91.1 b | 24.1 b | 8090.6 b | |
T1+C4 | 88.4 g | 138.4 f | 30.7 bcd | 327.2 b | 112.1 bc | 90.1 cde | 23.5 fg | 7767.3 cd | |
松粳10 Songjing 10 | T0 | 93.0 a | 142.6 a | 29.8 a | 325.4 a | 105.2 bc | 91.5 a | 25.2 a | 7884.3 a |
T1 | 85.0 e | 117.7 f | 27.5 ef | 318.9 b | 100.1 i | 83.4 defg | 21.1 g | 5607.0 f | |
T1+G1 | 85.0 e | 121.6 e | 27.9 bc | 319.2 b | 100.2 i | 82.9 g | 21.3 f | 5637.6 f | |
T1+G2 | 85.7 cde | 125.9 b | 27.1 g | 318.9 b | 101.3 fg | 83.5 defg | 21.6 e | 5821.8 ef | |
T1+G3 | 86.6 b | 125.7 bc | 27.8 cd | 319.1 b | 105.6 ab | 84.5 c | 22.6 b | 6424.1 b | |
T1+G4 | 86.0 bcd | 124.9 bc | 27.6 def | 319.2 b | 106.4 a | 84.1 cd | 21.9 d | 6241.2 bc | |
T1+Glu1 | 85.2 e | 122.0 e | 27.6 def | 319.3 b | 100.3 hi | 83.1 fg | 21.2 fg | 5640.1 f | |
T1+Glu2 | 85.8 cde | 124.7 c | 28.1 b | 319.6 b | 105.3 bc | 84.1 cd | 21.4 ef | 6046.3 cd | |
T1+Glu3 | 86.2 bcd | 125.5 bc | 27.7 cde | 319.4 b | 103.6 d | 83.9 cde | 22.2 c | 6158.5 c | |
T1+Glu4 | 85.1 e | 123.4 d | 27.5 ef | 319.2 b | 102.9 de | 83.6 defg | 21.4 ef | 5882.5 de | |
T1+C1 | 85.0 e | 121.5 e | 27.4 f | 318.5 b | 101.1 d | 83.5 defg | 21.3 f | 5717.0 ef | |
T1+C2 | 85.5 de | 123.5 d | 27.9 bc | 319.7 b | 103.4 gh | 85.2 b | 22.1 c | 6230.8 bc | |
T1+C3 | 86.3 bc | 124.8 bc | 27.6 def | 320.1 b | 104.6 c | 83.8 cdef | 21.6 e | 6055.8 cd | |
T1+C4 | 85.1 e | 123.6 d | 27.1 g | 319.4 b | 102.1 ef | 83.2 efg | 21.4 ef | 5804.3 ef | |
F值 F value | 品种 Variety(V) | 2.95* | 2.14* | 0.40 | 0.48 | 0.40 | 1.21 | 3.62** | 1.34 |
处理Treatment(T) | 12.23** | 8.14** | 2.81* | 2.74* | 0.52 | 8.12** | 16.48** | 6.23** | |
品种×处理 V×T | 9.929** | 29.53** | 19.02** | 0.57 | 21.49** | 19.77** | 42.97** | 6.17** |
表6 孕穗期冷水胁迫下施用CaCl2、Glu和GABA对寒地粳稻产量相关指标的影响
Table 6 Effects of exogenous CaCl2, Glu and GABA on yield related indexes of cold-region japonica rice under cold water stress at booting stage.
品种 Variety | 处理 Treatment | 可育花粉率 Fertile pollen rate/% | 总颖花数 Spikelets per panicle | 总枝梗数 No. of rachises and branches per panicle | 有效穗数 Effective panicle number/(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight /g | 产量 Yield /(kg·hm-2) |
---|---|---|---|---|---|---|---|---|---|
东农428 Dongnong 428 | T0 | 93.5 a | 148.2 a | 31.4 a | 330.9 a | 115.1 a | 92.5 a | 25.5 a | 8984.9 a |
T1 | 89.0 fg | 132.7 i | 30.5 de | 326.4 b | 111.9 bc | 88.1 g | 23.1 i | 7417.9 f | |
T1+G1 | 88.8 c | 134.6 h | 30.8 bc | 327.6 b | 112.1 bc | 89.5 def | 23.5 fg | 7717.6 cde | |
T1+G2 | 90.3 cd | 140.6 cd | 30.9 b | 328.1 ab | 112.5 bc | 90.3 bcd | 23.9 c | 7959.0 bc | |
T1+G3 | 91.1 bc | 142.1 b | 30.8 bc | 328.9 ab | 111.9 b | 90.6 bc | 23.5 fg | 7826.1 bcd | |
T1+G4 | 90.9 bc | 141.6 bc | 30.7 bcd | 327.4 b | 112.0 bc | 90.1 cde | 23.6 efg | 7779.8 cd | |
T1+Glu1 | 89.3 ef | 135.2 gh | 30.3 e | 326.9 b | 112.1 bc | 89.4 ef | 23.2 hi | 7584.4 def | |
T1+Glu2 | 90.4 bcd | 139.3 ef | 30.7 bcd | 327.7 b | 112.9 b | 90.4 bc | 23.7 cde | 7920.0 bc | |
T1+Glu3 | 91.2 b | 141.6 bc | 30.6 cd | 328.1 ab | 112.4 bc | 90.5 b | 23.4 gh | 7812.4 bcd | |
T1+Glu4 | 89.6 def | 140.1 de | 30.5 de | 327.3 b | 111.8 c | 90.2 cde | 23.2 hi | 7670.1 cdef | |
T1+C1 | 89.1 efg | 133.3 i | 30.6 cd | 327.1 b | 110.8 d | 88.9 f | 23.2 hi | 7476.0 ef | |
T1+C2 | 89.9 de | 136.3 g | 31.2 a | 327.4 b | 112.6 bc | 90.5 bc | 23.8 cd | 7941.5 bc | |
T1+C3 | 90.8 bc | 140.7 cd | 30.8 bc | 328.1 ab | 112.3 bc | 91.1 b | 24.1 b | 8090.6 b | |
T1+C4 | 88.4 g | 138.4 f | 30.7 bcd | 327.2 b | 112.1 bc | 90.1 cde | 23.5 fg | 7767.3 cd | |
松粳10 Songjing 10 | T0 | 93.0 a | 142.6 a | 29.8 a | 325.4 a | 105.2 bc | 91.5 a | 25.2 a | 7884.3 a |
T1 | 85.0 e | 117.7 f | 27.5 ef | 318.9 b | 100.1 i | 83.4 defg | 21.1 g | 5607.0 f | |
T1+G1 | 85.0 e | 121.6 e | 27.9 bc | 319.2 b | 100.2 i | 82.9 g | 21.3 f | 5637.6 f | |
T1+G2 | 85.7 cde | 125.9 b | 27.1 g | 318.9 b | 101.3 fg | 83.5 defg | 21.6 e | 5821.8 ef | |
T1+G3 | 86.6 b | 125.7 bc | 27.8 cd | 319.1 b | 105.6 ab | 84.5 c | 22.6 b | 6424.1 b | |
T1+G4 | 86.0 bcd | 124.9 bc | 27.6 def | 319.2 b | 106.4 a | 84.1 cd | 21.9 d | 6241.2 bc | |
T1+Glu1 | 85.2 e | 122.0 e | 27.6 def | 319.3 b | 100.3 hi | 83.1 fg | 21.2 fg | 5640.1 f | |
T1+Glu2 | 85.8 cde | 124.7 c | 28.1 b | 319.6 b | 105.3 bc | 84.1 cd | 21.4 ef | 6046.3 cd | |
T1+Glu3 | 86.2 bcd | 125.5 bc | 27.7 cde | 319.4 b | 103.6 d | 83.9 cde | 22.2 c | 6158.5 c | |
T1+Glu4 | 85.1 e | 123.4 d | 27.5 ef | 319.2 b | 102.9 de | 83.6 defg | 21.4 ef | 5882.5 de | |
T1+C1 | 85.0 e | 121.5 e | 27.4 f | 318.5 b | 101.1 d | 83.5 defg | 21.3 f | 5717.0 ef | |
T1+C2 | 85.5 de | 123.5 d | 27.9 bc | 319.7 b | 103.4 gh | 85.2 b | 22.1 c | 6230.8 bc | |
T1+C3 | 86.3 bc | 124.8 bc | 27.6 def | 320.1 b | 104.6 c | 83.8 cdef | 21.6 e | 6055.8 cd | |
T1+C4 | 85.1 e | 123.6 d | 27.1 g | 319.4 b | 102.1 ef | 83.2 efg | 21.4 ef | 5804.3 ef | |
F值 F value | 品种 Variety(V) | 2.95* | 2.14* | 0.40 | 0.48 | 0.40 | 1.21 | 3.62** | 1.34 |
处理Treatment(T) | 12.23** | 8.14** | 2.81* | 2.74* | 0.52 | 8.12** | 16.48** | 6.23** | |
品种×处理 V×T | 9.929** | 29.53** | 19.02** | 0.57 | 21.49** | 19.77** | 42.97** | 6.17** |
品种 Variety | 处理 Treatment | 可育花粉率 Fertile pollen rate | 总颖花数 Spikelet per panicle | 总枝梗数 No. of rachises and branches per panicle | 有效穗数 Effective panicle number | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate | 千粒重 1000-grain weight | 产量 Yield | 隶属函数平均值 ASFV |
---|---|---|---|---|---|---|---|---|---|---|
东农428 Dongnong 428 | T0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T1 | 0.12 | 0.00 | 0.18 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.07 | |
T1+G1 | 0.08 | 0.12 | 0.45 | 0.27 | 0.30 | 0.32 | 0.17 | 0.19 | 0.24 | |
T1+G2 | 0.37 | 0.51 | 0.55 | 0.38 | 0.40 | 0.50 | 0.33 | 0.35 | 0.42 | |
T1+G3 | 0.53 | 0.61 | 0.45 | 0.56 | 0.26 | 0.57 | 0.17 | 0.26 | 0.42 | |
T1+G4 | 0.49 | 0.57 | 0.36 | 0.22 | 0.28 | 0.45 | 0.21 | 0.23 | 0.35 | |
T1+Glu1 | 0.18 | 0.16 | 0.00 | 0.11 | 0.30 | 0.30 | 0.04 | 0.11 | 0.15 | |
T1+Glu2 | 0.39 | 0.43 | 0.36 | 0.29 | 0.49 | 0.52 | 0.25 | 0.32 | 0.38 | |
T1+Glu3 | 0.55 | 0.57 | 0.27 | 0.38 | 0.37 | 0.55 | 0.12 | 0.25 | 0.38 | |
T1+Glu4 | 0.24 | 0.48 | 0.18 | 0.20 | 0.23 | 0.48 | 0.04 | 0.16 | 0.25 | |
T1+C1 | 0.14 | 0.04 | 0.27 | 0.16 | 0.00 | 0.18 | 0.04 | 0.04 | 0.11 | |
T1+C2 | 0.29 | 0.23 | 0.82 | 0.22 | 0.42 | 0.55 | 0.29 | 0.33 | 0.39 | |
T1+C3 | 0.47 | 0.52 | 0.45 | 0.38 | 0.35 | 0.68 | 0.42 | 0.43 | 0.46 | |
T1+C4 | 0.00 | 0.37 | 0.36 | 0.18 | 0.30 | 0.45 | 0.17 | 0.22 | 0.26 | |
松粳10 Songjing 10 | T0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T1 | 0.02 | 0.00 | 0.11 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | |
T1+G1 | 0.01 | 0.11 | 0.21 | 0.24 | 0.14 | 0.04 | 0.07 | 0.07 | 0.11 | |
T1+G2 | 0.17 | 0.27 | 0.06 | 0.17 | 0.35 | 0.11 | 0.11 | 0.13 | 0.17 | |
T1+G3 | 0.29 | 0.24 | 0.14 | 0.24 | 0.66 | 0.14 | 0.43 | 0.34 | 0.31 | |
T1+G4 | 0.40 | 0.16 | 0.00 | 0.00 | 0.71 | 0.11 | 0.27 | 0.24 | 0.24 | |
T1+Glu1 | 0.03 | 0.17 | 0.04 | 0.06 | 0.04 | 0.00 | 0.03 | 0.01 | 0.05 | |
T1+Glu2 | 0.10 | 0.28 | 0.26 | 0.11 | 1.02 | 0.12 | 0.07 | 0.19 | 0.27 | |
T1+Glu3 | 0.15 | 0.31 | 0.09 | 0.08 | 0.69 | 0.10 | 0.27 | 0.24 | 0.24 | |
T1+Glu4 | 0.02 | 0.23 | 0.00 | 0.05 | 0.55 | 0.06 | 0.09 | 0.12 | 0.14 | |
T1+C1 | 0.01 | 0.15 | 0.11 | 0.00 | 0.20 | 0.04 | 0.05 | 0.05 | 0.08 | |
T1+C2 | 0.07 | 0.23 | 0.30 | 0.17 | 0.65 | 0.24 | 0.24 | 0.27 | 0.27 | |
T1+C3 | 0.16 | 0.28 | 0.19 | 0.23 | 0.88 | 0.07 | 0.12 | 0.20 | 0.27 | |
T1+C4 | 0.02 | 0.24 | 0.00 | 0.13 | 0.39 | 0.00 | 0.07 | 0.09 | 0.12 |
表7 孕穗期冷水胁迫下施用CaCl2, Glu and GABA对寒地粳稻耐冷性的综合影响
Table 7 Comprehensive effects of exogenous CaCl2, Glu and GABA on cold tolerance of cold-region japonica rice under cold water stress at booting stage.
品种 Variety | 处理 Treatment | 可育花粉率 Fertile pollen rate | 总颖花数 Spikelet per panicle | 总枝梗数 No. of rachises and branches per panicle | 有效穗数 Effective panicle number | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate | 千粒重 1000-grain weight | 产量 Yield | 隶属函数平均值 ASFV |
---|---|---|---|---|---|---|---|---|---|---|
东农428 Dongnong 428 | T0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T1 | 0.12 | 0.00 | 0.18 | 0.00 | 0.26 | 0.00 | 0.00 | 0.00 | 0.07 | |
T1+G1 | 0.08 | 0.12 | 0.45 | 0.27 | 0.30 | 0.32 | 0.17 | 0.19 | 0.24 | |
T1+G2 | 0.37 | 0.51 | 0.55 | 0.38 | 0.40 | 0.50 | 0.33 | 0.35 | 0.42 | |
T1+G3 | 0.53 | 0.61 | 0.45 | 0.56 | 0.26 | 0.57 | 0.17 | 0.26 | 0.42 | |
T1+G4 | 0.49 | 0.57 | 0.36 | 0.22 | 0.28 | 0.45 | 0.21 | 0.23 | 0.35 | |
T1+Glu1 | 0.18 | 0.16 | 0.00 | 0.11 | 0.30 | 0.30 | 0.04 | 0.11 | 0.15 | |
T1+Glu2 | 0.39 | 0.43 | 0.36 | 0.29 | 0.49 | 0.52 | 0.25 | 0.32 | 0.38 | |
T1+Glu3 | 0.55 | 0.57 | 0.27 | 0.38 | 0.37 | 0.55 | 0.12 | 0.25 | 0.38 | |
T1+Glu4 | 0.24 | 0.48 | 0.18 | 0.20 | 0.23 | 0.48 | 0.04 | 0.16 | 0.25 | |
T1+C1 | 0.14 | 0.04 | 0.27 | 0.16 | 0.00 | 0.18 | 0.04 | 0.04 | 0.11 | |
T1+C2 | 0.29 | 0.23 | 0.82 | 0.22 | 0.42 | 0.55 | 0.29 | 0.33 | 0.39 | |
T1+C3 | 0.47 | 0.52 | 0.45 | 0.38 | 0.35 | 0.68 | 0.42 | 0.43 | 0.46 | |
T1+C4 | 0.00 | 0.37 | 0.36 | 0.18 | 0.30 | 0.45 | 0.17 | 0.22 | 0.26 | |
松粳10 Songjing 10 | T0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
T1 | 0.02 | 0.00 | 0.11 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | |
T1+G1 | 0.01 | 0.11 | 0.21 | 0.24 | 0.14 | 0.04 | 0.07 | 0.07 | 0.11 | |
T1+G2 | 0.17 | 0.27 | 0.06 | 0.17 | 0.35 | 0.11 | 0.11 | 0.13 | 0.17 | |
T1+G3 | 0.29 | 0.24 | 0.14 | 0.24 | 0.66 | 0.14 | 0.43 | 0.34 | 0.31 | |
T1+G4 | 0.40 | 0.16 | 0.00 | 0.00 | 0.71 | 0.11 | 0.27 | 0.24 | 0.24 | |
T1+Glu1 | 0.03 | 0.17 | 0.04 | 0.06 | 0.04 | 0.00 | 0.03 | 0.01 | 0.05 | |
T1+Glu2 | 0.10 | 0.28 | 0.26 | 0.11 | 1.02 | 0.12 | 0.07 | 0.19 | 0.27 | |
T1+Glu3 | 0.15 | 0.31 | 0.09 | 0.08 | 0.69 | 0.10 | 0.27 | 0.24 | 0.24 | |
T1+Glu4 | 0.02 | 0.23 | 0.00 | 0.05 | 0.55 | 0.06 | 0.09 | 0.12 | 0.14 | |
T1+C1 | 0.01 | 0.15 | 0.11 | 0.00 | 0.20 | 0.04 | 0.05 | 0.05 | 0.08 | |
T1+C2 | 0.07 | 0.23 | 0.30 | 0.17 | 0.65 | 0.24 | 0.24 | 0.27 | 0.27 | |
T1+C3 | 0.16 | 0.28 | 0.19 | 0.23 | 0.88 | 0.07 | 0.12 | 0.20 | 0.27 | |
T1+C4 | 0.02 | 0.24 | 0.00 | 0.13 | 0.39 | 0.00 | 0.07 | 0.09 | 0.12 |
图1 孕穗期冷水胁迫下外源物质浓度与寒地粳稻ASFV的关系*表示0.05显著水平,** 表示0.01显著水平。
Fig. 1. Relationship between exogenous substances concentration and ASFV of cold-region japonica rice under cold water stress. *represents significant correlation at P < 0.05, **represents significant correlation at P < 0.01.
编码 Code | 实际值 Actual value | 预测值 Predictive value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GABA | CaCl2 | Glu | 可育花粉率 Fertile pollen rate/% | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量 Yield /(kg·hm-2) | ASFV | 可育花粉率 Fertile pollen rate/% | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量 Yield /(kg·hm-2) | ASFV |
1 | -1 | 1 | 94.84 | 93.45 | 25.06 | 8956.1 | 0.71 | 78.30 | 76.34 | 20.68 | 8023.01 | 0.23 |
-1 | -1 | 1 | 90.13 | 88.72 | 23.72 | 8426.3 | 0.22 | 78.50 | 76.80 | 20.20 | 7995.03 | 0.22 |
0 | 1.682 | 0 | 95.98 | 94.75 | 24.87 | 8923.8 | 0.75 | 76.17 | 73.98 | 20.01 | 7851.64 | 0.15 |
0 | 0 | 0 | 98.06 | 95.86 | 24.67 | 9000.5 | 0.84 | 83.95 | 81.88 | 22.72 | 8603.76 | 0.45 |
-1.682 | 0 | 0 | 89.85 | 87.85 | 22.49 | 8236.1 | 0.05 | 88.14 | 85.94 | 24.74 | 9041.59 | 0.63 |
-1 | 1 | 1 | 96.97 | 97.28 | 24.51 | 9106.4 | 0.87 | 77.22 | 74.75 | 20.76 | 8023.94 | 0.20 |
0 | 0 | 0 | 95.43 | 94.12 | 25.61 | 9020.3 | 0.80 | 81.64 | 79.91 | 21.56 | 8315.40 | 0.35 |
1 | 1 | 1 | 97.37 | 95.69 | 25.91 | 9112.1 | 0.94 | 78.30 | 76.17 | 20.78 | 8077.84 | 0.23 |
1.682 | 0 | 0 | 97.01 | 95.45 | 25.53 | 9015.8 | 0.87 | 75.14 | 73.53 | 19.32 | 7657.39 | 0.10 |
-1 | -1 | -1 | 92.34 | 90.37 | 23.58 | 8485.6 | 0.33 | 72.49 | 70.77 | 18.25 | 7434.11 | 0.00 |
1 | -1 | -1 | 98.13 | 96.07 | 24.90 | 9006.2 | 0.87 | 88.69 | 86.30 | 24.66 | 9051.84 | 0.64 |
1 | 1 | -1 | 97.88 | 96.34 | 24.42 | 9018.5 | 0.84 | 87.81 | 85.50 | 24.11 | 8953.07 | 0.60 |
0 | 0 | -1.682 | 88.47 | 87.22 | 23.09 | 8369.2 | 0.08 | 79.55 | 77.44 | 21.26 | 8231.43 | 0.29 |
0 | 0 | 1.682 | 96.14 | 94.69 | 24.96 | 9005.2 | 0.78 | 83.07 | 80.71 | 23.04 | 8645.71 | 0.44 |
-1 | 1 | -1 | 88.65 | 87.29 | 22.87 | 8256.9 | 0.04 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 92.10 | 89.89 | 22.92 | 8453.1 | 0.25 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | -1.682 | 0 | 98.11 | 96.31 | 24.28 | 9015.2 | 0.83 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 95.88 | 94.05 | 23.33 | 8789.2 | 0.58 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 90.63 | 89.64 | 23.89 | 8536.8 | 0.30 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 90.43 | 88.87 | 23.58 | 8429.7 | 0.23 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
表8 孕穗期冷水胁迫下施用不同浓度配比CGG对寒地粳稻产量相关指标的影响
Table 8 Effects of different concentrations of CGG on cold-water stress at the booting stage.
编码 Code | 实际值 Actual value | 预测值 Predictive value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GABA | CaCl2 | Glu | 可育花粉率 Fertile pollen rate/% | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量 Yield /(kg·hm-2) | ASFV | 可育花粉率 Fertile pollen rate/% | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量 Yield /(kg·hm-2) | ASFV |
1 | -1 | 1 | 94.84 | 93.45 | 25.06 | 8956.1 | 0.71 | 78.30 | 76.34 | 20.68 | 8023.01 | 0.23 |
-1 | -1 | 1 | 90.13 | 88.72 | 23.72 | 8426.3 | 0.22 | 78.50 | 76.80 | 20.20 | 7995.03 | 0.22 |
0 | 1.682 | 0 | 95.98 | 94.75 | 24.87 | 8923.8 | 0.75 | 76.17 | 73.98 | 20.01 | 7851.64 | 0.15 |
0 | 0 | 0 | 98.06 | 95.86 | 24.67 | 9000.5 | 0.84 | 83.95 | 81.88 | 22.72 | 8603.76 | 0.45 |
-1.682 | 0 | 0 | 89.85 | 87.85 | 22.49 | 8236.1 | 0.05 | 88.14 | 85.94 | 24.74 | 9041.59 | 0.63 |
-1 | 1 | 1 | 96.97 | 97.28 | 24.51 | 9106.4 | 0.87 | 77.22 | 74.75 | 20.76 | 8023.94 | 0.20 |
0 | 0 | 0 | 95.43 | 94.12 | 25.61 | 9020.3 | 0.80 | 81.64 | 79.91 | 21.56 | 8315.40 | 0.35 |
1 | 1 | 1 | 97.37 | 95.69 | 25.91 | 9112.1 | 0.94 | 78.30 | 76.17 | 20.78 | 8077.84 | 0.23 |
1.682 | 0 | 0 | 97.01 | 95.45 | 25.53 | 9015.8 | 0.87 | 75.14 | 73.53 | 19.32 | 7657.39 | 0.10 |
-1 | -1 | -1 | 92.34 | 90.37 | 23.58 | 8485.6 | 0.33 | 72.49 | 70.77 | 18.25 | 7434.11 | 0.00 |
1 | -1 | -1 | 98.13 | 96.07 | 24.90 | 9006.2 | 0.87 | 88.69 | 86.30 | 24.66 | 9051.84 | 0.64 |
1 | 1 | -1 | 97.88 | 96.34 | 24.42 | 9018.5 | 0.84 | 87.81 | 85.50 | 24.11 | 8953.07 | 0.60 |
0 | 0 | -1.682 | 88.47 | 87.22 | 23.09 | 8369.2 | 0.08 | 79.55 | 77.44 | 21.26 | 8231.43 | 0.29 |
0 | 0 | 1.682 | 96.14 | 94.69 | 24.96 | 9005.2 | 0.78 | 83.07 | 80.71 | 23.04 | 8645.71 | 0.44 |
-1 | 1 | -1 | 88.65 | 87.29 | 22.87 | 8256.9 | 0.04 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 92.10 | 89.89 | 22.92 | 8453.1 | 0.25 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | -1.682 | 0 | 98.11 | 96.31 | 24.28 | 9015.2 | 0.83 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 95.88 | 94.05 | 23.33 | 8789.2 | 0.58 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 90.63 | 89.64 | 23.89 | 8536.8 | 0.30 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
0 | 0 | 0 | 90.43 | 88.87 | 23.58 | 8429.7 | 0.23 | 95.07 | 92.59 | 27.40 | 9769.73 | 0.91 |
来源 Source | 平方和 Sum of squares | 自由度 df | 均方根 Mean square | 方差值 F-value | 显著性P值 P value | 备注 Note | |
---|---|---|---|---|---|---|---|
模型Model | 2 | 9 | 0.22 | 42.58 | < 0.0001 | 显著Significant | |
X1(GABA) | 0.01 | 1 | 0.01 | 2.55 | 0.1417 | ||
X2(CaCl2) | 0.00 | 1 | 0.00 | 0.39 | 0.5458 | ||
X3(Glu) | 0.03 | 1 | 0.03 | 5.65 | 0.0388 | ||
X1X2 | 0.05 | 1 | 0.05 | 9.42 | 0.0118 | ||
X1X3 | 0.09 | 1 | 0.09 | 17.05 | 0.0020 | ||
X2X3 | 0.02 | 1 | 0.02 | 3.88 | 0.0771 | ||
X12 | 1.36 | 1 | 1.36 | 260.98 | < 0.0001 | ||
X22 | 0.15 | 1 | 0.15 | 29.44 | 0.0003 | ||
X32 | 0.54 | 1 | 0.54 | 103.10 | < 0.0001 | ||
残差Residual | 0.05 | 10 | 0.01 | ||||
失拟Lack of fit | 0.04 | 5 | 0.01 | 2.09 | 0.2195 | 不显著Not significant | |
纯误Pure error | 0.02 | 5 | 0.00 | ||||
总变异Total variation | 2.05 | 19 | |||||
R2=0. 9746 | R2adj=0.9517 | Adeq precision=28.049 |
表9 ASFV响应曲面模型方差分析
Table 9 Response surface model ANOVA of ASFV.
来源 Source | 平方和 Sum of squares | 自由度 df | 均方根 Mean square | 方差值 F-value | 显著性P值 P value | 备注 Note | |
---|---|---|---|---|---|---|---|
模型Model | 2 | 9 | 0.22 | 42.58 | < 0.0001 | 显著Significant | |
X1(GABA) | 0.01 | 1 | 0.01 | 2.55 | 0.1417 | ||
X2(CaCl2) | 0.00 | 1 | 0.00 | 0.39 | 0.5458 | ||
X3(Glu) | 0.03 | 1 | 0.03 | 5.65 | 0.0388 | ||
X1X2 | 0.05 | 1 | 0.05 | 9.42 | 0.0118 | ||
X1X3 | 0.09 | 1 | 0.09 | 17.05 | 0.0020 | ||
X2X3 | 0.02 | 1 | 0.02 | 3.88 | 0.0771 | ||
X12 | 1.36 | 1 | 1.36 | 260.98 | < 0.0001 | ||
X22 | 0.15 | 1 | 0.15 | 29.44 | 0.0003 | ||
X32 | 0.54 | 1 | 0.54 | 103.10 | < 0.0001 | ||
残差Residual | 0.05 | 10 | 0.01 | ||||
失拟Lack of fit | 0.04 | 5 | 0.01 | 2.09 | 0.2195 | 不显著Not significant | |
纯误Pure error | 0.02 | 5 | 0.00 | ||||
总变异Total variation | 2.05 | 19 | |||||
R2=0. 9746 | R2adj=0.9517 | Adeq precision=28.049 |
图2 孕穗期冷水胁迫下施用外源物质对寒地粳稻产量相关指标平均隶属函数值的影响 a、b、c图中CaCl2、Glu和GABA浓度分别为2.00 mmol/L、2.60 mg/mL和4.50 mmol/L。
Fig. 2. Effect of application of exogenous substances on ASFV of yield-related indexes of cold-region japonica rice under cold water stress at booting stage. CaCl2, Glu and GABA concentrations in a, b and c are 2.00 mmol/L, 2.60 mg/mL and 4.50 mmol/L, respectively.
年份 Year | 品种 Variety | 处理 Treatment | 单位面积叶 片干物质量 Leaf dry weight/(g·m-2) | 叶面积指数 Leaf area index | 叶片氮素浓度 Leaf nitrogen concentration /(g·kg-1) | 单位叶面积 干物质量 Leaf dry weight/(g·m-2) | 单位面积 含氮量 Nitrogen content /(g·m-2) | 净光合速率 Net photosynthetic rate/(μmol·m-2 s-1) | 氮光合效率 Photosynthetic nitrogen use efficiency /(μmol·g-1 s-1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 东农428 Dongnong 428 | 正常灌溉Control | 154.32 a | 7.29 a | 22.58 a | 21.18 b | 0.48 a | 21.07 a | 44.03 a | ||
低温胁迫 Cold water stress | 148.48 b | 6.43 c | 20.13 c | 23.10 a | 0.47 ab | 19.87 b | 42.70 b | ||||
低温+CGG Cold water +CGG | 149.71 b | 6.86 b | 21.07 b | 21.83 b | 0.46 b | 20.14 ab | 43.75 ab | ||||
松粳10 Songjing 10 | 正常灌溉Control | 155.48 a | 7.23 a | 22.10 a | 21.51 b | 0.48 a | 21.25 a | 44.66 a | |||
低温胁迫 Cold water stress | 142.52 b | 6.38 b | 20.02 b | 22.35 a | 0.45 b | 19.07 b | 42.59 b | ||||
低温+CGG Cold water+CGG | 146.61 b | 6.59 b | 20.86 b | 22.26 a | 0.46 ab | 20.14 ab | 43.35 ab | ||||
2017 | 东农428 Dongnong 428 | 正常灌溉Control | 159.35 a | 7.09 a | 22.70 a | 22.48 a | 0.51 a | 22.64 a | 44.34 a | ||
低温胁迫 Cold water stress | 147.59 b | 6.43 c | 21.30 b | 22.98 a | 0.49 b | 20.17 b | 41.19 b | ||||
低温+CGG Cold water +CGG | 150.71 b | 6.69 b | 21.36 b | 22.54 a | 0.48 b | 21.17 ab | 43.94 a | ||||
松粳10 Songjing 10 | 正常灌溉Control | 151.05 a | 6.99 a | 21.77 a | 21.62 c | 0.47 b | 21.38 a | 45.40 a | |||
低温胁迫 Cold water stress | 145.42 b | 6.31 b | 21.09 a | 23.05 a | 0.49 a | 18.87 b | 38.80 c | ||||
低温+CGG Cold water +CGG | 148.71 ab | 6.53 b | 21.48 a | 22.79 b | 0.49 a | 19.83 ab | 40.49 b | ||||
平均值 Mean | 东农428 Dongnong 428 | 正常灌溉Control | 156.84 a | 7.19 a | 22.64 a | 21.83 b | 0.50 a | 21.86 a | 44.19 a | ||
低温胁迫 Cold water stress | 148.04 b | 6.43 c | 20.71 b | 23.04 a | 0.48 ab | 20.02 b | 41.95 b | ||||
低温+CGG Cold water+CGG | 150.21 b | 6.77 b | 21.22 b | 22.19 b | 0.47 b | 20.65 ab | 43.85 a | ||||
松粳10 Songjing 10 | 正常灌溉Control | 153.27 a | 7.11 a | 21.94 a | 21.57 b | 0.47 a | 21.31 a | 45.03 a | |||
低温胁迫 Cold water | 143.97 c | 6.34 c | 20.56 b | 22.70 a | 0.47 a | 18.97 b | 40.69 b | ||||
低温+CGG Cold water +CGG | 147.66 b | 6.56 b | 21.17 b | 22.52 a | 0.48 a | 19.98 b | 41.92 b | ||||
F值 F value | 品种 Variety(V) | 4.28* | 1.17 | 1.04 | 0.18 | 1.91 | 2.92 | 1.18 | |||
处理 Treatment(T) | 20.24** | 74.72** | 26.14** | 25.27** | 1.46 | 11.65** | 11.09** | ||||
年份 Year (Y) | 0.30 | 1.10 | 2.86 | 7.98** | 22.38** | 0.86 | 2.72 | ||||
年份×品种 Y×T | 0.21 | 0.01 | 0.01 | 0.23 | 0.12 | 1.57 | 1.39 | ||||
年份×处理 Y×V | 0.09 | 1.29 | 5.41* | 1.74 | 1.69 | 0.42 | 3.33 | ||||
品种×处理 V×T | 0.17 | 0.87 | 1.22 | 2.73 | 1.76 | 0.19 | 2.40 | ||||
年份×品种×处理 Y×V×T | 4.00* | 0.41 | 0.61 | 739.06** | 6.00** | 0.18 | 1.49 |
表10 孕穗期冷水胁迫下施用最适配比CGG对寒地粳稻齐穗期氮光合效率的影响
Table 10. Effects of application of the optimal ratio CGG under cold water stress at booting stage on nitrogen photosynthetic efficiency of cold-region japonica rice at full heading stage.
年份 Year | 品种 Variety | 处理 Treatment | 单位面积叶 片干物质量 Leaf dry weight/(g·m-2) | 叶面积指数 Leaf area index | 叶片氮素浓度 Leaf nitrogen concentration /(g·kg-1) | 单位叶面积 干物质量 Leaf dry weight/(g·m-2) | 单位面积 含氮量 Nitrogen content /(g·m-2) | 净光合速率 Net photosynthetic rate/(μmol·m-2 s-1) | 氮光合效率 Photosynthetic nitrogen use efficiency /(μmol·g-1 s-1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 东农428 Dongnong 428 | 正常灌溉Control | 154.32 a | 7.29 a | 22.58 a | 21.18 b | 0.48 a | 21.07 a | 44.03 a | ||
低温胁迫 Cold water stress | 148.48 b | 6.43 c | 20.13 c | 23.10 a | 0.47 ab | 19.87 b | 42.70 b | ||||
低温+CGG Cold water +CGG | 149.71 b | 6.86 b | 21.07 b | 21.83 b | 0.46 b | 20.14 ab | 43.75 ab | ||||
松粳10 Songjing 10 | 正常灌溉Control | 155.48 a | 7.23 a | 22.10 a | 21.51 b | 0.48 a | 21.25 a | 44.66 a | |||
低温胁迫 Cold water stress | 142.52 b | 6.38 b | 20.02 b | 22.35 a | 0.45 b | 19.07 b | 42.59 b | ||||
低温+CGG Cold water+CGG | 146.61 b | 6.59 b | 20.86 b | 22.26 a | 0.46 ab | 20.14 ab | 43.35 ab | ||||
2017 | 东农428 Dongnong 428 | 正常灌溉Control | 159.35 a | 7.09 a | 22.70 a | 22.48 a | 0.51 a | 22.64 a | 44.34 a | ||
低温胁迫 Cold water stress | 147.59 b | 6.43 c | 21.30 b | 22.98 a | 0.49 b | 20.17 b | 41.19 b | ||||
低温+CGG Cold water +CGG | 150.71 b | 6.69 b | 21.36 b | 22.54 a | 0.48 b | 21.17 ab | 43.94 a | ||||
松粳10 Songjing 10 | 正常灌溉Control | 151.05 a | 6.99 a | 21.77 a | 21.62 c | 0.47 b | 21.38 a | 45.40 a | |||
低温胁迫 Cold water stress | 145.42 b | 6.31 b | 21.09 a | 23.05 a | 0.49 a | 18.87 b | 38.80 c | ||||
低温+CGG Cold water +CGG | 148.71 ab | 6.53 b | 21.48 a | 22.79 b | 0.49 a | 19.83 ab | 40.49 b | ||||
平均值 Mean | 东农428 Dongnong 428 | 正常灌溉Control | 156.84 a | 7.19 a | 22.64 a | 21.83 b | 0.50 a | 21.86 a | 44.19 a | ||
低温胁迫 Cold water stress | 148.04 b | 6.43 c | 20.71 b | 23.04 a | 0.48 ab | 20.02 b | 41.95 b | ||||
低温+CGG Cold water+CGG | 150.21 b | 6.77 b | 21.22 b | 22.19 b | 0.47 b | 20.65 ab | 43.85 a | ||||
松粳10 Songjing 10 | 正常灌溉Control | 153.27 a | 7.11 a | 21.94 a | 21.57 b | 0.47 a | 21.31 a | 45.03 a | |||
低温胁迫 Cold water | 143.97 c | 6.34 c | 20.56 b | 22.70 a | 0.47 a | 18.97 b | 40.69 b | ||||
低温+CGG Cold water +CGG | 147.66 b | 6.56 b | 21.17 b | 22.52 a | 0.48 a | 19.98 b | 41.92 b | ||||
F值 F value | 品种 Variety(V) | 4.28* | 1.17 | 1.04 | 0.18 | 1.91 | 2.92 | 1.18 | |||
处理 Treatment(T) | 20.24** | 74.72** | 26.14** | 25.27** | 1.46 | 11.65** | 11.09** | ||||
年份 Year (Y) | 0.30 | 1.10 | 2.86 | 7.98** | 22.38** | 0.86 | 2.72 | ||||
年份×品种 Y×T | 0.21 | 0.01 | 0.01 | 0.23 | 0.12 | 1.57 | 1.39 | ||||
年份×处理 Y×V | 0.09 | 1.29 | 5.41* | 1.74 | 1.69 | 0.42 | 3.33 | ||||
品种×处理 V×T | 0.17 | 0.87 | 1.22 | 2.73 | 1.76 | 0.19 | 2.40 | ||||
年份×品种×处理 Y×V×T | 4.00* | 0.41 | 0.61 | 739.06** | 6.00** | 0.18 | 1.49 |
F值 F value | 积累量 Dry matter accumulation/(kg·hm-2) | 群体生长速率 Crop growth rate/(g·m-2 d -1) | 温度生产效率 Temperature production efficiency/(g·m-2 ℃-1) |
---|---|---|---|
品种Variety(V) | 1.737 | 1.832 | 20.01** |
处理Treatment(T) | 66.743** | 46.954** | 16.71** |
年份Year (Y) | 0.037 | 0.250 | 0.65 |
年份×品种Y×T | 0.329 | 0.368 | 0.14 |
年份×处理Y×V | 0.648 | 0.125 | 0.22 |
品种×处理V×T | 34.384** | 23.246** | 24.24** |
年份×品种×处理Y×V×T | 29.578** | 2.665 | 3.91* |
表11 孕穗期冷水胁迫施用最适浓度配比CGG对寒地粳稻群体抽穗后干物质生产及温度生产效率方差值的影响
Table 11. Effect of optimal concentration of CGG during cold-water stress at booting stage on variance of dry matter production of cold-region japonica rice after heading stage.
F值 F value | 积累量 Dry matter accumulation/(kg·hm-2) | 群体生长速率 Crop growth rate/(g·m-2 d -1) | 温度生产效率 Temperature production efficiency/(g·m-2 ℃-1) |
---|---|---|---|
品种Variety(V) | 1.737 | 1.832 | 20.01** |
处理Treatment(T) | 66.743** | 46.954** | 16.71** |
年份Year (Y) | 0.037 | 0.250 | 0.65 |
年份×品种Y×T | 0.329 | 0.368 | 0.14 |
年份×处理Y×V | 0.648 | 0.125 | 0.22 |
品种×处理V×T | 34.384** | 23.246** | 24.24** |
年份×品种×处理Y×V×T | 29.578** | 2.665 | 3.91* |
年份 Year | 品种 Variety | 处理 Treatment | 有效穗数 Effective panicle number/(No.·m-2) | 每穂粒数 Spikelet number per panicle | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量Yield | |
---|---|---|---|---|---|---|---|---|
理论产量 /(kg·hm-2) | 理论产量冷水反应指数/% | |||||||
2016 | 东农428 Dongnong 428 | 正常灌溉Control | 331.3 a | 115.1 a | 93.1 a | 25.5 a | 9051.5 a | 100.0 a |
冷水胁迫Cold water stress | 325.9 b | 111.5 b | 88.1 c | 23.4 c | 7491.0 c | 82.8 c | ||
冷水+CGG Cold water stress+CGG | 329.6 ab | 114.9 a | 89.9 b | 24.3 b | 8272.2 b | 91.4 b | ||
松粳10 Songjing 10 | 正常灌溉Control | 328.9 a | 104.8 a | 92.1 a | 25.4 a | 8062.2 a | 100.0 a | |
冷水胁迫Cold water stress | 316.6 c | 100.5 b | 84.1 c | 21.1 c | 5645.8 c | 70.0 c | ||
冷水+CGG Cold water stress+CGG | 322.0 b | 103.9 a | 89.7 b | 23.1 b | 6931.9 b | 86.0 b | ||
2017 | 东农428 Dongnong 428 | 正常灌溉Control | 353.22 a | 112.6 a | 94.2 a | 25.3 a | 9286.7 a | 100.0 a |
冷水胁迫Cold water stress | 347.33 b | 108.4 b | 88.2 c | 22.6 c | 7529.6 c | 79.2 c | ||
冷水+CGG Cold water stress+CGG | 348.96 ab | 110.5 a | 90.3 b | 24.2 b | 8408.8 b | 88.7 b | ||
松粳10 Songjing 10 | 正常灌溉Control | 345.89 a | 104.2 a | 90.5 a | 24.7 a | 8356.7 a | 100.0 a | |
冷水胁迫Cold water stress | 338.65 c | 98.6 b | 81.0 c | 20.2 c | 5752.3 c | 67.9 c | ||
冷水+CGG Cold water stress+CGG | 342.16b | 102.9 a | 88.7 b | 23.3 b | 7254.8 b | 90.1 b | ||
F值 F value | 品种Variety(V) | 3.60 | 146.32** | 7.25** | 4.00* | 22.23** | 1.64 | |
处理Treatment(T) | 1.38 | 2.29 | 36.24** | 49.24** | 21.24* | 122.99** | ||
年份Year (Y) | 138.17** | 1.57 | 0.32 | 0.64 | 0.09 | 0.04 | ||
年份×品种Y×T | 0.21 | 2.37 | 1.25 | 0.01 | 0.05 | 0.13 | ||
年份×处理Y×V | 0.25 | 0.04 | 0.34 | 0.80 | 0.13 | 0.67 | ||
品种×处理V×T | 0.10 | 0.55 | 19.41** | 26.94** | 15.00** | 60.21** | ||
年份×品种×处理Y×V×T | 3.19 | 3.39 | 3.31 | 10.65** | 3.35 | 3.02 |
表12 孕穗期冷水胁迫下施用最适浓度配比CGG对寒地粳稻产量及产量构成因素的影响
Table 12. Effect of optimal concentration of CGG during cold-water stress at booting stage on yield and yield components of cold-region japonica rice.
年份 Year | 品种 Variety | 处理 Treatment | 有效穗数 Effective panicle number/(No.·m-2) | 每穂粒数 Spikelet number per panicle | 结实率 Spikelet fertility/% | 千粒重 1000-grain weight/g | 产量Yield | |
---|---|---|---|---|---|---|---|---|
理论产量 /(kg·hm-2) | 理论产量冷水反应指数/% | |||||||
2016 | 东农428 Dongnong 428 | 正常灌溉Control | 331.3 a | 115.1 a | 93.1 a | 25.5 a | 9051.5 a | 100.0 a |
冷水胁迫Cold water stress | 325.9 b | 111.5 b | 88.1 c | 23.4 c | 7491.0 c | 82.8 c | ||
冷水+CGG Cold water stress+CGG | 329.6 ab | 114.9 a | 89.9 b | 24.3 b | 8272.2 b | 91.4 b | ||
松粳10 Songjing 10 | 正常灌溉Control | 328.9 a | 104.8 a | 92.1 a | 25.4 a | 8062.2 a | 100.0 a | |
冷水胁迫Cold water stress | 316.6 c | 100.5 b | 84.1 c | 21.1 c | 5645.8 c | 70.0 c | ||
冷水+CGG Cold water stress+CGG | 322.0 b | 103.9 a | 89.7 b | 23.1 b | 6931.9 b | 86.0 b | ||
2017 | 东农428 Dongnong 428 | 正常灌溉Control | 353.22 a | 112.6 a | 94.2 a | 25.3 a | 9286.7 a | 100.0 a |
冷水胁迫Cold water stress | 347.33 b | 108.4 b | 88.2 c | 22.6 c | 7529.6 c | 79.2 c | ||
冷水+CGG Cold water stress+CGG | 348.96 ab | 110.5 a | 90.3 b | 24.2 b | 8408.8 b | 88.7 b | ||
松粳10 Songjing 10 | 正常灌溉Control | 345.89 a | 104.2 a | 90.5 a | 24.7 a | 8356.7 a | 100.0 a | |
冷水胁迫Cold water stress | 338.65 c | 98.6 b | 81.0 c | 20.2 c | 5752.3 c | 67.9 c | ||
冷水+CGG Cold water stress+CGG | 342.16b | 102.9 a | 88.7 b | 23.3 b | 7254.8 b | 90.1 b | ||
F值 F value | 品种Variety(V) | 3.60 | 146.32** | 7.25** | 4.00* | 22.23** | 1.64 | |
处理Treatment(T) | 1.38 | 2.29 | 36.24** | 49.24** | 21.24* | 122.99** | ||
年份Year (Y) | 138.17** | 1.57 | 0.32 | 0.64 | 0.09 | 0.04 | ||
年份×品种Y×T | 0.21 | 2.37 | 1.25 | 0.01 | 0.05 | 0.13 | ||
年份×处理Y×V | 0.25 | 0.04 | 0.34 | 0.80 | 0.13 | 0.67 | ||
品种×处理V×T | 0.10 | 0.55 | 19.41** | 26.94** | 15.00** | 60.21** | ||
年份×品种×处理Y×V×T | 3.19 | 3.39 | 3.31 | 10.65** | 3.35 | 3.02 |
图3 孕穗期冷水胁迫施用最适浓度配比CGG对寒地粳稻群体抽穗后干物质生产的影响
Fig. 3. Effect of optimal concentration of CGG during cold-water stress at booting stage on dry matter production of cold-region japonica rice after heading stage.
图4 孕穗期冷水胁迫下施用最适浓度配比CGG对寒地粳稻温度生产效率的影响
Fig. 4. Effect of optimal concentration of CGG during cold-water stress at booting stage on temperature production efficiency of cold-region japonica rice.
[1] | 贾琰,沈阳,邹德堂,沙汉景,王敬国,刘化龙,赵振东,夏楠,赵宏伟. 孕穗期冷水灌溉对寒地粳稻籽粒灌浆及其氮素积累的影响[J]. 中国水稻科学, 2015, 29: 259-272. |
Jia Y, Shen Y, Zou D, Sha H, Wang J, Liu H, Zhao Z, Xia N, Zhao H.Effect of cold-water irrigation at booting stage on grain filling and nitrogen accumulation of grain in cold-regionrice[J]. Chinese Journal of Rice Science, 2015, 29: 259-272. (in Chinese with English abstract) | |
[2] | Jia Y, Wang J, Qu Z, Zou D, Sha H, Liu H, Sun J, Zheng H, Yang L, Zhao H.Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice[J]. Field Crops Research, 2019, 242: 107587. |
[3] | 梁书民. 中国农业种植结构及演化的空间分布和原因分析[J]. 中国农业资源与区划, 2006, 27(2): 29-34. |
Liang S.Pace distribution and reason analysis of the changes in agriculture planting structure of China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2006, 27(2): 29-34. (in Chinese with English abstract) | |
[4] | Wang H, Wu Z, Zhou Y, Han J, Shi D.Effects of salt stress on ion balance and nitrogen metabolism in rice[J]. Plant Soil Environment, 2012, 58(2): 62-67. |
[5] | Jia Y, Zou D,Wang J, Liu H, Inayat M, Sha H, Zheng H, Sun J, Zhao H.Effect of low water temperature at reproductive stage on yield and glutamate metabolism of rice (Oryza sativa L.) in China[J]. Field Crops Research, 2015, 175: 16-25. |
[6] | Bown A W, Shelp B J.Plant GABA: Not just a metabolite[J]. Trends in Plant Science, 2016, 21(10): 811-813. |
[7] | Fait A, Fromm H, Walter D, Galili G, Fernie A.Highway or byway: The metabolic role of the GABA shunt in plants[J]. Trends in Plant Science, 2008, 13(1): 14-19. |
[8] | Song H, Xu X, Wang H, Wang H, Tao Y.Exogenous γ‐aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings[J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1410-1416. |
[9] | 付蓉. γ-氨基丁酸对作物幼苗生长发育的影响[D]. 南京:南京农业大学,2010. |
Fu R.Effects ofγ-aminobutyric acid on the growth and development of crop seedlings[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract) | |
[10] | Malekzadeh P, Khara J, Heidari R.Effect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress[J]. Iran Journal of Plant Physiology, 2012, 3(1): 611-617. |
[11] | 罗黄颖,高洪波,夏庆平,宫彬彬,吴晓蕾. γ-氨基丁酸对盐胁迫下番茄活性氧代谢及叶绿素荧光参数的影响[J]. 中国农业科学, 2011, 4(4): 753-761. |
Luo H Y, Gao H B, Xia Q P, Gong B B, Wu X X.Effects of Exogenous GABA on reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato under NaCl stres[J]. Scientia Agricultura Sinica, 2011, 4(4): 753-761. (in Chinese with English abstract) | |
[12] | Aurisano N, Bertani A, Reggiani R.Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia[J]. Plant Cell Physiology, 1995, 36(8): 1525-1529. |
[13] | Ma R, Zhang M, Li B, Du G, Wang J, Chen J.The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions[J]. Journal of Arid Environment, 2005, 63(1): 177-190. |
[14] | Gao H, Jia Y, Guo S, Lv G, Wang T, Li J.Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance[J]. Journal of Plant Physiology, 2011, 168(11): 1217-1225. |
[15] | Cheng T S, Hung M J, Cheng Y I, Cheng L.Calcium-induced proline accumulation contributes to amelioration of NaCl injury and expression of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.)[J]. Aquatic Toxicology, 2013, 144: 265-274. |
[16] | Yin Y, Yang R, Guo Q, Gu Z. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean[J]. European Food Research and Technology, 2014, 238(5): 781-788. |
[17] | Yu G H, Zou J, Feng J, Peng X,Wu J,Wu Y, Palanivelu R, Sun M.Exogenous gamma-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase[J]. Journal of Experimental Botany, 2014, 65(12): 3235-3248. |
[18] | Mazzucotelli E, Tartari A, Cattivelli L, Forlani G. Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat[J]. Journal of Experimental Botany, 2006, 57(14): 3755-3766. |
[19] | Wang Y, Luo Z, Huang X, Yang K, Gao S, Du R.Effect of exogenous gamma-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel[J]. Scientia Horticulturae, 2014, 168: 132-137. |
[20] | Jia Y, Zou D, Wang J, Sha H, Liu H, Inayat M, Sun J, Zheng H, Xia N, Zhao H.Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage[J]. Journal of Plant Growth Regulation, 2017, 36(1): 240-253. |
[21] | Bagdi D L, Shaw B P.Analysis of proline metabolic enzymes in Oryza sativa under NaCl stress[J]. Journal of Environmental Biology, 2013, 34(4): 677. |
[22] | Xue J, Wang S, You X, Dong J, Han L, Liu F.Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2011, 25(21): 3289-3297. |
[23] | 李勇. 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究[D]. 南京: 南京农业大学, 2011. |
Li Y.Studies on mechanisms of the effects of different nitrogen supplies on photosynthesis and photosynthetic nitrogen use efficiency of rice plants[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[24] | 王熹, 阙瑞芬. 籼稻大粒型品种花粉发育的生理分析[J]. 作物学报, 1981, 7(3): 171-178. |
Wang X, Que R.Physiological study on the pollen development of large-grain type of indica rice[J]. Acta Agronomica Sinica, 1981, 7(3): 171-178. (in Chinese with English abstract) | |
[25] | 刘利,雷小龙,王丽,邓飞,刘代银,任万军. 种植方式对杂交稻枝梗和颖花分化及退化的影响[J]. 作物学报, 2013, 39(8): 1434-1444. |
Liu L, Lei X, Wang L, Deng F, Liu D, Ren W.Effect of planting methods on differentiation and retrogression of branches and spikelets of hybrid rice cultivar[J]. Acta Agronomica Sinica, 2013, 39(8): 1434-1444. (in Chinese with English abstract) | |
[26] | 闫艳红,杨文钰,张新全,陈小林,陈忠群. 施氮量对套作大豆花后光合特性、干物质积累及产量的影响[J]. 草业学报, 2011(3): 236-241. |
Yan Y, Yang W, Zhang X, Chen X, Chen Z. Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming[J]. Acta Prataculturae Sinica, 2011(3): 236-241. (in Chinese with English abstract) | |
[27] | 朱启林,向蕊,汤利,龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
Zhu Q, Xiang R, Tang L, Long Q.Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiencyof maize under nitrogen addition[J]. Chinese Journal of Plant Ecology, 2018, 42(6): 672-680. (in Chinese with English abstract) | |
[28] | Deng N, Ling X, Sun Y, Zhang C, Fahad S, Peng S, Cui K, Nie L, Huang J.Influence of temperature and solar radiation on grain yield and quality in irrigated rice system[J]. European Journal of Agronomy, 2015, 64: 37-46. |
[29] | 王洪章,刘鹏,董树亭,张吉旺,赵斌,任佰朝. 夏玉米产量与光温生产效率差异分析——以山东省为例[J]. 中国农业科学, 2019, 52(8): 66-78. |
Wang H, Liu P, Dong S, Zhang J, Zhao B, Ren B.Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: Taking Shandong Province as an example[J]. Scientia Agricultura Sinica, 2019, 52(8): 66-78. (in Chinese with English abstract) | |
[30] | Zhang W, Zhu K, Wang Z, Zhang H, Gu J, Liu L, Yang J, Zhang J.Brassinosteroids function in spikelet differentiation and degeneration in rice[J]. Journal of Integrative Plant Biology, 2019, 61(8): 943-963. |
[31] | Zhu X, Liao J, Xia X, Fei X, Li Y,., Shen J, Wen B, Ma Y, Wang Y, Fang W. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature[J]. BMC Plant Biology, 2019, 19(1): 43. |
[32] | Çekiç F Ö.Exogenous GABA stimulates endogenous GABA and phenolic acid contents in tomato plants under salt stress[J]. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 2018, 14(1): 61-64. |
[33] | Bhattacharjee P, Chakraborti S, Chakraborty S.Metabolic Adaptations in Plants During Abiotic Stress. Boca Raton, Florida: CRC Press, 2018: 261-270. |
[34] | Eprintsev A T, Selivanova N V, Igamberdiev A U. Nitrogen Metabolism in Plants. New York: Springer Press, 2020: 71-78. |
[35] | Li Y, Fan Y, Ma Y, Zhang Z, Yue H, Wang L, Li J, Jiao Y.Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress[J]. Journal of Plant Growth Regulation, 2017, 36(2): 436-449. |
[36] | Hohmannmarriott M F, Blankenship R E.Evolution of photosynthesis[J]. Annual Review of Plant Biology, 2010, 154(2): 434-438. |
[37] | Monneveux P, Zaidi P H, Sanchez C.Population density and low nitrogen affects yield-associated traits in tropical maize[J]. Crop Science, 2005, 45(2): 535. |
[38] | Liu T, Ren T, White P J, Cong R, Lu J.Storage nitrogen coordinates leaf expansion and photosynthetic capacity in winter oilseed rape (Brassica napus L.)[J]. Journal of Experimental Botany, 2018, 69:2995-3007. |
[39] | Kratsch H A, Wise R R.The ultrastructure of chilling stress[J]. Plant Cell and Environment, 2000, 23(4): 337-350. |
[40] | Lei P, Xu Z, Liang J, Luo X, Xu H.Poly (γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L[J]. Plant Growth Regulation, 2016, 78(2): 233-241. |
[41] | Shimono H, Hasegawa T, Iwama K.Response of growth and grain yield in paddy rice to cool water at different growth stages[J]. Field Crops Research, 2002, 73(2): 67-79. |
[42] | Ramankutty N, Foley J A, Norman J, Mcsweeney K.The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change[J]. Global Ecology and Biogeography, 2002, 11(5): 377-392. |
[43] | Normile D.Agricultural research: Reinventing rice to feed the world[J]. Science, 2008, 321(5887): 330-333. |
[44] | Liu Z, Yang X, Lin X, Hubbard K, Lv S, Wang J.Maize yield gaps caused by non-controllable, agronomic, and socioeconomic factors in a changing climate of Northeast China[J]. Science of the Total Environment, 2016, 541: 756-764. |
[45] | Li W, Liu J, Ashraf U, Li G, Li Y, Lu W, Gao L, Han F, Hu J.Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize[J]. Frontiers in Plant Science, 2016, 7: 919. |
[46] | Li M, Guo S, Yang X, Meng Q, Wei X.Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes[J]. Biologia Plantarum, 2016, 60(1): 123-131. |
[47] | Kant S, Bi Y M, Rothstein S J.Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency[J]. Journal of Experimental Botany, 2011, 62(4): 1499-1509. |
[48] | Poorter H, Evans J R.Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area[J]. Oecologia, 1998, 116(1-2): 26-37. |
[49] | Doherty C J, van Buskirk H A, Myers S J, Michael F. T. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984. |
[50] | 张洪程,吴桂成,吴文革,戴其根,霍中洋,许轲,高辉,魏海燕,黄幸福,龚金龙. 水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式[J]. 中国农业科学, 2010, 43(13): 2645-2660. |
Zhang H, Wu G, Wu W, Dai Q, Huo Z, Xu K, Gao H, Wei H, Huang X, Gong J.The SOI model of quantitative cultivation of super-high yielding rice[J]. Scientia Agricultura Sinica, 2010, 43(13): 2645-2660. (in Chinese with English abstract) | |
[51] | 张洪程,吴桂成,戴其根,霍中洋,许轲,高辉,魏海燕,吕修涛,万靓军,黄银忠. 水稻氮肥精确后移及其机制[J]. 作物学报, 2011, 37(10): 1837-1851. |
Zhang H, Wu G, Dai Q, Huo Z, Xu K, Wei H, Lv X, Wan L, Huang Y.Precise postponing nitrogen application and its mechanism in rice[J]. Acta Agronomica Sinica, 2011, 37(10): 1837-1851. (in Chinese with English abstract) | |
[52] | 张洪程,赵品恒,孙菊英,吴桂成,徐军,端木银熙,戴其根,霍中洋,许轲,魏海燕. 机插杂交粳稻超高产形成群体特征[J]. 农业工程学报, 2012, 28(2): 39-44. |
Zhang H, Zhao P, Sun J, Wu G, Xu J, Duan M, Dai Q, Huo Z, Xu K, Wei H.Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2): 39-44. (in Chinese with English abstract) | |
[53] | Takai T, Matsuura S, Nishio T, Ohsumi A. Shiraiwa T, Horie T.Rice yield potential is closely related to crop growth rate during late reproductive period[J]. Field Crops Research, 2006, 96(2-3): 328-335. |
[54] | 龚金龙,邢志鹏,胡雅杰,张洪程,戴其根,霍中洋,许轲,魏海燕,高辉. 籼、粳超级稻光合物质生产与转运特征的差异[J]. 作物学报, 2014, 40(3): 497-510. |
Gong J, Xing Z, HU Y, Zhang H, Dai Q, Huo Z, Xu K, Wei H, Gao H.Difference of characteristics of photosynthesis, matter production and translocation between indica and japonica super rice[J]. Acta Agronomica Sinica, 2014, 40(3): 497-510.(in Chinese with English abstract) | |
[55] | 程建峰, 沈允钢. 作物高光效之管见[J]. 作物学报, 2010, 36(8): 1235-1247. |
Cheng J, Shen Y.My humble opinions on high photosynthetic efficiency of crop[J]. Acta Agronomica Sinica, 2010, 36(8): 1235-1247. (in Chinese with English abstract) |
[1] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[2] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[3] | 刘淑丽, 张瑞, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学, 2023, 37(1): 1-15. |
[4] | 潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响[J]. 中国水稻科学, 2016, 30(3): 273-282. |
[5] | 王士强, 赵海红, 萧长亮, 赵黎明, 顾春梅, 那永光, 解保胜, 程式华. 孕穗期冷水胁迫对寒地水稻干物质生产的影响[J]. 中国水稻科学, 2016, 30(3): 313-322. |
[6] | 夏楠, 赵宏伟, 吕艳超, 赵振东, 邹德堂, 刘化龙, 王敬国, 贾琰. 灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响[J]. 中国水稻科学, 2016, 30(1): 62-74. |
[7] | 裴鹏刚, 张均华, 朱练峰, 胡志华, 金千瑜. 秸秆还田耦合施氮水平对水稻光合特性、氮素吸收及产量形成的影响[J]. 中国水稻科学, 2015, 29(3): 282-290. |
[8] | 贾琰, 沈阳, 邹德堂, 沙汉景, 刘化龙, 赵振东, 夏楠, 赵宏伟. 孕穗期冷水灌溉对寒地粳稻籽粒灌浆及其氮素积累的影响[J]. 中国水稻科学, 2015, 29(3): 259-272. |
[9] | 李健陵1,3 ,霍治国2 ,吴丽姬1 ,朱庆华1 ,胡飞1,*. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学, 2014, 28(3): 277-288. |
[10] | 张卫星#,孙成效#,闵捷,段彬伍,朱智伟*. 水稻生育中后期使用外源植酸对产量和米质的影响[J]. 中国水稻科学, 2013, 27(6): 603-609. |
[11] | 朱齐超,危常州* ,李美宁,朱金龙,吴诚,王佳. 氮肥运筹对膜下滴灌水稻生长和产量的影响[J]. 中国水稻科学, 2013, 27(4): 440-446. |
[12] | 谢勇武1,2,3杨树明1,*曾亚文1,*杨涛1普晓英1 杜娟1赵春艳2张明喜4. 粳稻02428×02428c重组自交系孕穗期耐冷性QTL分析[J]. 中国水稻科学, 2011, 25(6): 681-684. |
[13] | 邵彩虹 谢金水,黄永兰,邱才飞,张振苗,林文雄,. 孕穗期水稻不同功能叶的发育蛋白质组学分析[J]. 中国水稻科学, 2009, 23(5): 456-462 . |
[14] | 赵国珍,杨世准,芮钟斗 ,廖新华,苏振喜,世 荣,蒋 聪 ,戴陆园, . 冷水胁迫对云南粳稻品质性状的影响[J]. 中国水稻科学, 2009, 23(1): 36-36~42 . |
[15] | 曾亚文,李绅崇,普晓英,杜娟,杨树明,刘昆,桂敏,张浩. 云南稻核心种质孕穗期耐冷性状间的相关性与生态差异[J]. 中国水稻科学, 2006, 20(3): 265-271 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||