中国水稻科学 ›› 2020, Vol. 34 ›› Issue (5): 397-405.DOI: 10.16819/j.1001-7216.2020.0211
张立成1,2, 李懿星2, 王天抗2, 邱牡丹2, 宋书锋2, 董皓2,3, 李磊1,2, 刘建丰1,*(), 李莉2,*()
收稿日期:
2020-02-20
修回日期:
2020-05-19
出版日期:
2020-09-10
发布日期:
2020-09-10
通讯作者:
刘建丰,李莉
基金资助:
Licheng ZHANG1,2, Yixing LI2, Tiankang WANG2, Mudan QIU2, Shufeng SONG2, Hao DONG2,3, Lei LI1,2, Jianfeng LIU1,*(), Li LI2,*()
Received:
2020-02-20
Revised:
2020-05-19
Online:
2020-09-10
Published:
2020-09-10
Contact:
Jianfeng LIU, Li LI
摘要:
【目的】以前期通过穗发育芯片筛选到一个水稻Dof家族转录因子OsDof6为研究对象,进一步探究OsDof6的表达模式与生物学功能。【方法】对OsDof6的基因、蛋白及启动子序列进行生物信息学分析,利用CRISPR/Cas9技术对该基因进行定点编辑,通过实时定量PCR和亚细胞定位技术分析该基因的表达模式。【结果】对该基因的启动子序列分析表明,该基因启动子中存在大量与光响应、激素响应及胁迫响应相关的顺式调控元件。利用CRISPR/Cas9技术获得了2种不同突变类型的功能缺失突变体9522Dof6-3和9522Dof6-4。对突变体T1株系进行表型观察发现,相较于对照,两种突变体在营养生长阶段分蘖数明显降低,转入生殖生长阶段后,两种突变体的抽穗时间推迟约3 d。实时定量PCR结果显示OsDof6在水稻根、茎、叶和穗中均有不同程度的表达,在穗发育后期相对表达量明显提高;通过亚细胞定位分析发现OsDof6定位于细胞核。【结论】初步判断OsDof6基因会影响水稻分蘖数与抽穗期。
中图分类号:
张立成, 李懿星, 王天抗, 邱牡丹, 宋书锋, 董皓, 李磊, 刘建丰, 李莉. 水稻抽穗期基因OsDof6功能的初步研究[J]. 中国水稻科学, 2020, 34(5): 397-405.
Licheng ZHANG, Yixing LI, Tiankang WANG, Mudan QIU, Shufeng SONG, Hao DONG, Lei LI, Jianfeng LIU, Li LI. A Preliminary Study on the Function of Rice Heading Date Gene OsDof6[J]. Chinese Journal OF Rice Science, 2020, 34(5): 397-405.
引物名称 | 序列 |
---|---|
Primer name | Sequence (5'-3') |
Cas-B1′ | TTCAGAGGTCTCTCTCGCACTGGAATCGGCAGCAAAGG |
Cas-BL | AGCGTGGGTCTCGACCGGGTCCATCCACTCCAAGCTC |
SP1 | CCCGACATAGATGCAATAACTTC |
SP2 | GCGCGGTGTCATCTATGTTACT |
JC-Dof6-F | AGTAGCTCACCCTGTGATCCAT |
JC-Dof6-R | GCCGACGACGAGGACTTC |
Dof6-U3-F | GGCACCGGTACAAGCAGGGCGCCG |
Dof6-U3-R | AAACCGGCGCCCTGCTTGTACCGG |
1300-Dof6-F | GCCCAGATCAACTAGTATGCTGCCGTACGCG |
1300-Dof6-R | TGCTCACCATGGATCCTGGCATGTAAAGAGCC |
qPCR-Dof6-F | CATGAGCCTCCATGAGTG |
qPCR-Dof6-R | ATGTAAAGAGCCTCCAATCC |
qPCR-Hd1-F | CTCTTGGCTTCTCCTCTC |
qPCR-Hd1-R | CTGTTGTTGTTGTCGTTATTG |
qPCR-Ghd7-F | TACAAGGAGAAGAGGAAGAAG |
qPCR-Ghd7-R | CATCTCGGCATAGGCTTT |
qPCR-Hd3a-F | GTATCTACATTGGTTGGTCACT |
qPCR-Hd3a-R | TCGTAGCACATCACCTCTT |
qPCR-RFT1-F | TAACCTTAGGGAGTATCTACA |
qPCR-RFT1-R | GTAGCACATCACCTCTTG |
表1 引物序列
Table 1 Primer sequence.
引物名称 | 序列 |
---|---|
Primer name | Sequence (5'-3') |
Cas-B1′ | TTCAGAGGTCTCTCTCGCACTGGAATCGGCAGCAAAGG |
Cas-BL | AGCGTGGGTCTCGACCGGGTCCATCCACTCCAAGCTC |
SP1 | CCCGACATAGATGCAATAACTTC |
SP2 | GCGCGGTGTCATCTATGTTACT |
JC-Dof6-F | AGTAGCTCACCCTGTGATCCAT |
JC-Dof6-R | GCCGACGACGAGGACTTC |
Dof6-U3-F | GGCACCGGTACAAGCAGGGCGCCG |
Dof6-U3-R | AAACCGGCGCCCTGCTTGTACCGG |
1300-Dof6-F | GCCCAGATCAACTAGTATGCTGCCGTACGCG |
1300-Dof6-R | TGCTCACCATGGATCCTGGCATGTAAAGAGCC |
qPCR-Dof6-F | CATGAGCCTCCATGAGTG |
qPCR-Dof6-R | ATGTAAAGAGCCTCCAATCC |
qPCR-Hd1-F | CTCTTGGCTTCTCCTCTC |
qPCR-Hd1-R | CTGTTGTTGTTGTCGTTATTG |
qPCR-Ghd7-F | TACAAGGAGAAGAGGAAGAAG |
qPCR-Ghd7-R | CATCTCGGCATAGGCTTT |
qPCR-Hd3a-F | GTATCTACATTGGTTGGTCACT |
qPCR-Hd3a-R | TCGTAGCACATCACCTCTT |
qPCR-RFT1-F | TAACCTTAGGGAGTATCTACA |
qPCR-RFT1-R | GTAGCACATCACCTCTTG |
图1 OsDof6基因核苷酸序列(A)、蛋白结构(B)与家族进化分析(C)
Fig. 1. OsDof6 nucleotide sequence(A) and its protein structure(B) and phylogenetic analysis of OsDof family(C).
元件名称 | 代表序列 | 功能 | 数量 |
---|---|---|---|
Element name | Representative sequence | Function | Number |
3-AF1 binding site | AAGAGATATTT | 光响应元件 | 1 |
Box 4 | ATTAAT | 参与光响应的保守DNA模块的一部分 | 2 |
GT1-motif | GGTTAA | 光响应元件 | 3 |
Sp1 | CC(G/A)CCC | 光响应元件 | 2 |
TCCC-motif | TCTCCCT | 光响应元件的一部分 | 3 |
TGGCA-motif | GATGGAAGTGGCA | 光响应元件的一部分 | 1 |
Circadian | CAANNNNATC | 参与昼夜节律控制的顺式作用调节元件 | 4 |
CGTCA-motif | CGTCA | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
TGACG-motif | TGACG | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
GARE-motif | AAACAGA | 赤霉素应答元件 | 1 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件 | 1 |
Skn-1_motif | GTCAT | 胚乳表达所需的顺式作用调节元件 | 2 |
NON-box | AGATCGACG | 与分生组织特异性激活相关的顺式作用调控元件 | 1 |
TC-rich repeats | ATTTTCTTCA | 参与防御和应激反应的顺式作用元件 | 1 |
HSE | AAAAAATTTC | 热应激反应中的顺式作用元件 | 1 |
MBS | CAACTG | MYB结合位点参与干旱诱导 | 1 |
MBSⅠ | TTTTTACGGTTA | MYB结合位点参与类黄酮生物合成基因调控 | 1 |
Box III | CATTTACACT | 蛋白结合位点 | 1 |
CAAT-box | CCAAT | 启动子和增强子区常见顺式作用元件 | 36 |
TATA-box | TTTTA/TATA | 核心启动子元件 | 51 |
表2 OsDof6基因ATG上游1.5 kb启动子区域功能元件分析
Table 2 Functional element analysis of the 1.5 kb promoter region upstream of OsDof6 gene ATG.
元件名称 | 代表序列 | 功能 | 数量 |
---|---|---|---|
Element name | Representative sequence | Function | Number |
3-AF1 binding site | AAGAGATATTT | 光响应元件 | 1 |
Box 4 | ATTAAT | 参与光响应的保守DNA模块的一部分 | 2 |
GT1-motif | GGTTAA | 光响应元件 | 3 |
Sp1 | CC(G/A)CCC | 光响应元件 | 2 |
TCCC-motif | TCTCCCT | 光响应元件的一部分 | 3 |
TGGCA-motif | GATGGAAGTGGCA | 光响应元件的一部分 | 1 |
Circadian | CAANNNNATC | 参与昼夜节律控制的顺式作用调节元件 | 4 |
CGTCA-motif | CGTCA | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
TGACG-motif | TGACG | 参与茉莉酸甲酯反应的顺式作用调节元件 | 1 |
GARE-motif | AAACAGA | 赤霉素应答元件 | 1 |
CAT-box | GCCACT | 与分生组织表达相关的顺式作用调控元件 | 1 |
Skn-1_motif | GTCAT | 胚乳表达所需的顺式作用调节元件 | 2 |
NON-box | AGATCGACG | 与分生组织特异性激活相关的顺式作用调控元件 | 1 |
TC-rich repeats | ATTTTCTTCA | 参与防御和应激反应的顺式作用元件 | 1 |
HSE | AAAAAATTTC | 热应激反应中的顺式作用元件 | 1 |
MBS | CAACTG | MYB结合位点参与干旱诱导 | 1 |
MBSⅠ | TTTTTACGGTTA | MYB结合位点参与类黄酮生物合成基因调控 | 1 |
Box III | CATTTACACT | 蛋白结合位点 | 1 |
CAAT-box | CCAAT | 启动子和增强子区常见顺式作用元件 | 36 |
TATA-box | TTTTA/TATA | 核心启动子元件 | 51 |
图2 OsDof6基因时空表达分析 A-预测结果;B-实时定量PCR。P3~P8代表穗发育时期,分别为穗长1~2 mm、5~10 mm、15~50 mm、50~100 mm、穗变绿和即将抽穗。
Fig. 2. Temporal and spatial expression analysis of OsDof6 gene. A, Prediction result; B, Experimental result of real-time PCR. P3-P8 indicate different panicle developmental stages, i.e. 1-2 mm long, 5-10 mm long, 15-50 mm long, 50-100 mm long, turning green and heading soon, respectively.
图4 OsDof6基因编辑载体构建与突变体突变类型分析 A-OsDof6基因编辑载体模式图;B-植物表达载体MT-Dof6的PCR鉴定;C-植物表达载体MT-Dof6的测序鉴定;D-Dof6突变体突变类型分析。D图中基因序列上的数字指从该基因ATG开始碱基的顺序,红色序列表示靶位点,图片中黄色区域表示Dof蛋白结构域,红色区域表示突变后的非Dof蛋白结构域。
Fig. 4. Construction of OsDof6 gene editing vector and analysis of mutation types of mutants. A, Model of OsDof6 gene editing vector; B, Identification of plant expression vector MT-Dof6 by PCR; C, Identification of plant expression vector MT-Dof6 by sequencing; D, Analysis of mutation types in Dof6 mutants. The number on the gene sequence in the figure D refers to the order of the bases from ATG. The red sequence indicates target site. The yellow area in the picture indicates the Dof protein domain, and the red area indicates the non-Dof protein domain after mutation.
编号 Mutant No. | 株高 | 分蘖个数 Tiller number | 穗长 | 每穗粒数 | 结实率 | 千粒重 | 单株产量 |
---|---|---|---|---|---|---|---|
Plant height/cm | Panicle length/cm | Grain number per panicle | Seed setting rate/% | 1000-grain weight/g | Yield per plant/g | ||
9522 | 87.3±2.1 | 19.0±1.3 | 17.7±0.2 | 167.0±6.6 | 96.4±1.0 | 23.82±0.21 | 73.51±4.21 |
9522Dof6-1 | 86.9±0.9 | 18.7±1.0 | 17.3±0.5 | 172.0±5.4 | 96.8±1.2 | 23.76±0.11 | 73.62±3.36 |
9522Dof6-3 | 86.6±0.8 | 15.7±1.2* | 17.7±0.4 | 164.8±4.1 | 96.9±1.8 | 23.79±0.15 | 60.32±5.24* |
9522Dof6-4 | 87.0±0.8 | 15.7±1.2* | 17.6±0.5 | 162.0±4.8 | 96.5±1.1 | 23.74±0.23 | 59.45±5.72* |
表3 突变体与对照的产量性状调查
Table 3 Investigation of yield traits in mutants and controls.
编号 Mutant No. | 株高 | 分蘖个数 Tiller number | 穗长 | 每穗粒数 | 结实率 | 千粒重 | 单株产量 |
---|---|---|---|---|---|---|---|
Plant height/cm | Panicle length/cm | Grain number per panicle | Seed setting rate/% | 1000-grain weight/g | Yield per plant/g | ||
9522 | 87.3±2.1 | 19.0±1.3 | 17.7±0.2 | 167.0±6.6 | 96.4±1.0 | 23.82±0.21 | 73.51±4.21 |
9522Dof6-1 | 86.9±0.9 | 18.7±1.0 | 17.3±0.5 | 172.0±5.4 | 96.8±1.2 | 23.76±0.11 | 73.62±3.36 |
9522Dof6-3 | 86.6±0.8 | 15.7±1.2* | 17.7±0.4 | 164.8±4.1 | 96.9±1.8 | 23.79±0.15 | 60.32±5.24* |
9522Dof6-4 | 87.0±0.8 | 15.7±1.2* | 17.6±0.5 | 162.0±4.8 | 96.5±1.1 | 23.74±0.23 | 59.45±5.72* |
图6 抽穗期主要调控基因差异表达分析**表示与9522的差异达0.01显著水平。
Fig. 6. Analysis of expression levels of main genes for heading date. ** significantly differences from 9522 at 0.01 level.
[1] | Yanagisawa S, Schmidt R J.Diversity and similarity among recognition sequences of Dof transcription factor[J]. Plant Journal, 1999, 17(2): 209-214. |
[2] | Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G.Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. |
[3] | Diaz I, Vicente-Carbajosa J, Abraham Z, Martínez M, Moneda I I L, Carbonero P. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development[J]. Plant Journal, 2002, 29(4): 453-464. |
[4] | Yanagisawa S.Dof domain proteins: Plant-specific transcription factors associated with diverse phenomena unique to plants[J]. Plant and Cell Physiology, 2004, 4: 386-391. |
[5] | Yanagisawa S.A novel DNA-binding domain that may form a single zinc finger motif[J]. Nucleic Acids Research, 1995, 23(17): 3403-3410. |
[6] | Yanagisawa S.The DOF family of plant transcription factors[J]. Trends in Plant Science, 2003, 7(12): 555-560. |
[7] | Baumann K, Paolis A D, Costantino P, Gualberti G.The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants[J]. Plant Cell, 1999, 11(3): 323-334. |
[8] | Yamamoto M P, Onodera Y, Touno S M, Takaiwa F.Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes[J]. Plant Physiology, 2006, 141(4): 1694-1707. |
[9] | Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L.Functional characterization of rice OsDof12[J]. Planta, 2009, 229(6): 1159-1169. |
[10] | Kim H S, Kim S J, Abbasi N, A R. Bressan, Yun D J, Yoo S S, Kwon S Y, Choi S B. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis[J]. Plant Journal, 2010, 64(3): 524-535. |
[11] | Chen W, Chao G, Singh K B.The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites[J]. Plant Journal, 1997, 10(6): 955-966. |
[12] | Ward J M, Cufr C A, Denzel M A, Neff M M.The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis[J]. Plant Cell, 2005, 17(2): 475-485. |
[13] | Yanagisawa S, Izui K.Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif[J]. Journal of Biological Chemistry, 1993, 268(21): 16028-16036. |
[14] | Lijavetzky D, Carbonero P, Vicente-Carbajosa J.Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J/OL].BMC Evolutionary Biology, 2003, 3(1): 17. |
[15] | Moreno-Risueno M A, Martínez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors: From green unicellular algae to vascular plants[J]. Molecular Genetics and Genomics, 2007, 277(4): 379-390. |
[16] | Kushwaha H, Gupta S, Singh V, Rastogi S, Yadav D.Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Molecular Biology Reports, 2011, 38(8): 5037-5053. |
[17] | Chen R, Ni Z, Nie X, Qin Y, Dong G, Sun Q.Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.)[J]. Plant Science (Oxford), 2005, 169(6): 1146-1154. |
[18] | Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht N C, Singh V K, Yadav D.Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor[J]. Planta, 2015, 241(3): 549-562. |
[19] | 周淑芬, 颜静宛, 刘华清, 林智敏, 陈睿, 杨绍华, 王锋. 水稻Dof基因家族的组织表达谱及胁迫诱导表达特征分析[J]. 分子植物育种, 2012, 10(6): 635-643. |
Zhou S F, Yan J W, Liu H Q, Lin Z M, Chen R, Yang S H, Wang F.Transcriptional profiling analysis of OsDof gene family in various rice tissues and their expression characteristics under different stresses[J]. Molecular Plant Breeding, 2012, 10(6): 635-643. (in Chinese with English abstract) | |
[20] | 纪剑辉, 周颖君, 杨雯, 谢晶, 华慧, 杨立明. 水稻Dof转录因子家族的鉴定与生物信息学分析[J]. 江苏农业学报, 2015, 31(6): 1191-1198. |
Ji J H, Zhou Y J, Yang W, Xie J, Hua H, Yang L M.Identification and bioinformatics analysis of Dof transcription factors family in rice[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(6): 1191-1198. (in Chinese with English abstract) | |
[21] | 邓尧. 基于CRISPR/Cas9技术的水稻OsD1基因的敲除及其功能初步探究[D]. 长沙: 湖南农业大学, 2018. |
Deng Y.Preliminary study on function of OsD1 based on CRISPR/Cas9 technology in rice[D]. Changsha: Hunan Agriculture University, 2018. (in Chinese with English abstract) | |
[22] | 赵金成, 裘烨, 陈光辉, 朱旭东. 水稻光温敏核不育系‘亮S’异交特性研究[J]. 作物研究, 2016, 30(5): 492-496. |
Zhao J C, Qiu Y, Chen G H, Zhu X D.Studies on the outcrossing characteristics of rice photo-thermo sensitive genic male sterile line ‘Liang S’[J]. Crop Research, 2016, 30(5): 492-496. (in Chinese) | |
[23] | Li Y, Lin J, Li L, Peng Y C, Wang W W, Zhou Y B, Tang D Y, Zhao X Y, Yu F, Liu X M.DHHC- cysteine-rich domain S-acyltransferase protein family in rice: Organization, phylogenetic relationship and expression pattern during development and stress[J]. Plant Systematics and Evolution, 2016, 302(10): 1405-1417. |
[24] | Takai T, Arai-Sanoh Y, Iwasawa N, Hayashi A, Yoshinaga S, Kondo M.Comparative mapping suggests repeated selection of the same quantitative trait locus for high leaf photosynthesis rate in rice high-yield breeding programs[J]. Crop Science, 2012, 52(6): 2649-2658. |
[25] | Gao H, Zheng X M, Fei G, Chen J, Jin M N, Ren Y L, Wu W X, Zhou K N, Sheng P K, Zhou F, Jiang L, Wang J, Zhang X, Guo X P, Wang J L, Cheng Z J, Wu C Y, Wang H Y, Wan J M. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice[J/OL]. PLoS Genetics, 2013, 9(2): e1003281. |
[26] | Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K.Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response[J]. Plant Journal, 2013: 36-46. |
[27] | Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature, 2003, 422(6933): 719-722. |
[28] | Komiya R, Yokoi S, Shimamoto K.A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice[J]. Development, 2009, 136(20): 3443-3450. |
[29] | Wu Q, Liu X, Yin D, Yuan H, Xie Q, Zhao X F, Li X B, Zhu L H, Li S G, Li D Y.Constitutive expression of OsDof4, encoding a C2-C2 zinc finger transcription factor, confesses its distinct flowering effects under long- and short-day photoperiods in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2017, 17(1): 166. |
[30] | Tsuji H, Tachibana C, Tamaki S, Taoka K, Kyozuka J, Shimamoto K.Hd3a promotes lateral branching in rice[J]. Plant Journal, 2015, 82(2): 256-266. |
[31] | Dai C, Xue H W.Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling[J]. EMBO Journal, 2010, 29(11): 1916-1927. |
[32] | Zhang Y, Verhoeff N I, Chen Z, Chen S, Wang M, Zhu Z, Ouwerkerk P B F. Functions of OsDof25 in regulation of OsC4PPDK[J]. Plant Molecular Biology, 2015, 89(3): 229-242. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||