中国水稻科学 ›› 2019, Vol. 33 ›› Issue (5): 421-428.DOI: 10.16819/j.1001-7216.2019.9007
朱永生1,2, 白建林2, 谢鸿光1, 吴方喜1, 罗曦1, 姜身飞1, 何炜1, 陈丽萍1, 蔡秋华1, 谢华安1,2, 张建福1,2,*()
收稿日期:
2019-01-10
修回日期:
2019-03-18
出版日期:
2019-09-10
发布日期:
2019-09-10
通讯作者:
张建福
基金资助:
Yongsheng ZHU1,2, Jianlin BAI2, Hongguang XIE1, Fangxi WU1, Xi LUO1, Shenfei JIANG1, Wei HE1, Liping CHEN1, Qiuhua CAI1, Huaan XIE1,2, Jianfu ZHANG1,2,*()
Received:
2019-01-10
Revised:
2019-03-18
Online:
2019-09-10
Published:
2019-09-10
Contact:
Jianfu ZHANG
摘要:
【目的】 为了创制兼抗白背飞虱和褐飞虱的水稻恢复系,【方法】 分别以抗褐飞虱材料B5(携带褐飞虱抗性基因Bph14和Bph15)及携带白背飞虱抗性位点qsI-4的籼型恢复系福恢7011为供体亲本,以骨干恢复系福恢676为轮回亲本,应用低世代分离群体田间表型结合单株鉴定与高世代稳定株系室内筛选和分子标记辅助选择相结合的方法,并对抗虫株系及其测交后代进行考查和农艺性状分析。【结果】 选育出聚合Bph14、Bph15 和qsI-4的恢复系材料3份,携带2个抗虫基因的恢复系材料3份。其中6份恢复系的褐飞虱抗性鉴定结果均表现中抗以上。通过抗性鉴定和杂交后代农艺性状分析筛选出具有生产应用潜力的恢复系材料2份。【结论】 为褐飞虱和白背飞虱抗性聚合新种质的创制和应用提供了基础材料。
中图分类号:
朱永生, 白建林, 谢鸿光, 吴方喜, 罗曦, 姜身飞, 何炜, 陈丽萍, 蔡秋华, 谢华安, 张建福. 聚合白背飞虱和褐飞虱抗性基因创制杂交水稻恢复系[J]. 中国水稻科学, 2019, 33(5): 421-428.
Yongsheng ZHU, Jianlin BAI, Hongguang XIE, Fangxi WU, Xi LUO, Shenfei JIANG, Wei HE, Liping CHEN, Qiuhua CAI, Huaan XIE, Jianfu ZHANG. Breeding Restore Lines of Hybrid Rice by Pyramiding Genes for Resistance to White Backed Planthoppers and Brown Planthoppers[J]. Chinese Journal OF Rice Science, 2019, 33(5): 421-428.
基因 Gene | 标记性质 Characteristics | 染色体 Chromosome | 标记 Marker | 类型 Type | 标记引物序列 Primer sequence(5′-3′) | 解链温度 Melting temperature /℃ | 产物大小 Production size/bp |
---|---|---|---|---|---|---|---|
qSI-4 | 共显性 Codominant | 4 | RM8213 | SSR | F: AGCCCAGTGATACAAAGATG R: GCGAGGAGATACCAAGAAAG | 55 | 208 |
Bph14 | 共显性 Codominant | 3 | RI35 | InDel | F: CAATCATCAAGCACGCGTTA R: ATCGAAGCCACTTGGTGAAC | 58 | 325 |
Bph15 | 共显性 Codominant | 4 | Y15 | InDel | F: AGGAACAGTGACACGTAGCA R: GGAGAGTTCAGTTTGCCATCC | 55 | 460 |
表1 水稻褐飞虱与白背飞虱抗性基因连锁标记及引物序列
Table 1 Linkage markers of the white-backed and brown planthoppers resistance genes and primer sequences.
基因 Gene | 标记性质 Characteristics | 染色体 Chromosome | 标记 Marker | 类型 Type | 标记引物序列 Primer sequence(5′-3′) | 解链温度 Melting temperature /℃ | 产物大小 Production size/bp |
---|---|---|---|---|---|---|---|
qSI-4 | 共显性 Codominant | 4 | RM8213 | SSR | F: AGCCCAGTGATACAAAGATG R: GCGAGGAGATACCAAGAAAG | 55 | 208 |
Bph14 | 共显性 Codominant | 3 | RI35 | InDel | F: CAATCATCAAGCACGCGTTA R: ATCGAAGCCACTTGGTGAAC | 58 | 325 |
Bph15 | 共显性 Codominant | 4 | Y15 | InDel | F: AGGAACAGTGACACGTAGCA R: GGAGAGTTCAGTTTGCCATCC | 55 | 460 |
图1 抗稻飞虱水稻材料创制技术路线 MAS表示分子标记辅助选择; IIR表示抗虫鉴定
Fig. 1. Processes of rice planthopper resistance lines. MAS, Marker-assisted selection; IIR, Identification of insect resistance.
图2 对群体中抗虫单株进行抗虫基因Bph15的分子标记检测 M为DNA标记,1为阳性对照B5,其他为分离群体中的单株。
Fig. 2. Molecular marker analysis of insect-resistant gene Bph15 for insect-resistant individuals in segregating populations. M, DNA marker; 1, B5; 2-49 are individual plants of segregating population.
株系 Line | 抗虫基因 Insect-resistant gene | 抗性均值 Average resistance | 抗性水平 Resistance level | ||
---|---|---|---|---|---|
qsI-4 | Bph14 | Bph15 | |||
FJ717 | + | + | + | 2.93 | R |
FJ718 | + | + | + | 3.81 | R |
FJ719 | - | + | + | 3.08 | R |
FJ723 | + | - | + | 5.43 | MR |
FJ742 | + | + | - | 5.57 | MR |
FJ745 | + | + | + | 3.84 | R |
FJ747 | - | - | + | 6.67 | S |
B5 | - | + | + | 3.07 | R |
FH7011 | + | - | - | 6.33 | S |
FH676 | - | - | - | 8.38 | S |
TN1 | - | - | - | 7.87 | S |
表2 各个株系携带的抗虫基因及抗性水平鉴定
Table 2 Identification of insect-resistant genes and resistance levels of each line.
株系 Line | 抗虫基因 Insect-resistant gene | 抗性均值 Average resistance | 抗性水平 Resistance level | ||
---|---|---|---|---|---|
qsI-4 | Bph14 | Bph15 | |||
FJ717 | + | + | + | 2.93 | R |
FJ718 | + | + | + | 3.81 | R |
FJ719 | - | + | + | 3.08 | R |
FJ723 | + | - | + | 5.43 | MR |
FJ742 | + | + | - | 5.57 | MR |
FJ745 | + | + | + | 3.84 | R |
FJ747 | - | - | + | 6.67 | S |
B5 | - | + | + | 3.07 | R |
FH7011 | + | - | - | 6.33 | S |
FH676 | - | - | - | 8.38 | S |
TN1 | - | - | - | 7.87 | S |
图4 经田间筛选的稳定株系在室内通过人工接虫进行抗性鉴定 左图为接虫前的幼苗状态,右图为接虫7 d后的情况。
Fig. 4. Artificial resistance identification in the laboratory of the stable lines screened in the field. The picture on the left shows the seedling before identification and the picture on the right shows the seedling at 7 days after insect inoculation.
品系 Line | 株高 Plant height/cm | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
FH676(CK) | 131.9±4.4 | 7.6±0.9 | 175.0±11.6 | 154.0±9.6 | 88.0±1.6 | 31.2±0.3 |
FJ717 | 127.4±1.2* | 8.3±1.2 | 173.6±13.6 | 159.0±12.8 | 91.6±1.9* | 30.7±0.3 |
FJ718 | 125.9±5.3** | 9.2±2.1** | 168.9±15.9* | 154.3±13.3 | 91.3±2.5* | 29.8±0.2 |
FJ719 | 133.9±6. 7 | 6.8±0.6* | 187.1±9.5* | 159.5±8.6 | 85.2±2.7* | 32.0±0.1 |
FJ745 | 126.9±5.2** | 7.4±1.3 | 169.5±12.3 | 151.4±10.2 | 89.3±0.4 | 30.1±0.4 |
表3 入选抗虫恢复系与轮回亲本的农艺性状比较分析(福建沙县,2016)
Table 3 Comparative analysis of agronomic traits between selected insect-resistant restorer lines and recurrent parents (Shaxian County, Fujian, 2016).
品系 Line | 株高 Plant height/cm | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
FH676(CK) | 131.9±4.4 | 7.6±0.9 | 175.0±11.6 | 154.0±9.6 | 88.0±1.6 | 31.2±0.3 |
FJ717 | 127.4±1.2* | 8.3±1.2 | 173.6±13.6 | 159.0±12.8 | 91.6±1.9* | 30.7±0.3 |
FJ718 | 125.9±5.3** | 9.2±2.1** | 168.9±15.9* | 154.3±13.3 | 91.3±2.5* | 29.8±0.2 |
FJ719 | 133.9±6. 7 | 6.8±0.6* | 187.1±9.5* | 159.5±8.6 | 85.2±2.7* | 32.0±0.1 |
FJ745 | 126.9±5.2** | 7.4±1.3 | 169.5±12.3 | 151.4±10.2 | 89.3±0.4 | 30.1±0.4 |
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
II-32A/FH676(CK) | 9.7±0.9 | 190.5±13.6 | 177.6±9.6 | 93.2±1.4 | 28.2±0.9 | 9160.5±169.2 |
II-32A/FJ717 | 9.9±1.2 | 193.6±21.2 | 181.0±12.8 | 93.5±1.5 | 28.7±0.2 | 9749.3±210.2** |
II-32A/FJ718 | 10.1±2.1 | 188.3±5.6 | 175.7±13.3 | 93.3±2.0 | 28.1±1.1 | 9426.1±107.1* |
II-32A/FJ719 | 7.8±0.6 | 213.5±9.8 | 185.3±8.6 | 86.8±1.7 | 29.0±0.2 | 8878.3±192.5 |
II-32A/FJ745 | 10.4±1.3 | 194.5±18.4 | 173.8±10.2 | 89.3±1.3 | 27.2±0.4 | 9308.9±98.4 |
Y58S//FH676(CK) | 9.1±0.8 | 205.1±11.6 | 176.4±9.6 | 86.0±0.9 | 26.2±0.3 | 7950.9±214.5 |
Y58S//FJ717 | 8.3±0.2 | 210.3±14.6 | 185.5±12.8 | 88.2±0.9 | 26.7±1.4 | 7732.2±110.2 |
Y58S//FJ718 | 10.3±1.4 | 196.7±5.6 | 171.5±13.3 | 87.2±3.2 | 26.6±0.1 | 8886.5±183.1** |
Y58S//FJ719 | 7.8±0.8 | 223.5±109.9 | 184.8±8.6 | 82.7±1.7 | 28.0±0.9 | 7571.3±199.2 |
Y58S//FJ745 | 9.8±0.3 | 197.4±13.2 | 174.2±10.2 | 88.3±1.4 | 26.1±0.3 | 8397.5±210.1* |
表4 入选抗虫恢复系与轮回亲本的杂交后代农艺性状比较分析(福建沙县,2018)
Table 4 Comparative analysis of agronomic traits of hybrid progenies between selected insect-resistant restorer lines and recurrent parents(Shaxian County, Fujian, China, 2018).
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
II-32A/FH676(CK) | 9.7±0.9 | 190.5±13.6 | 177.6±9.6 | 93.2±1.4 | 28.2±0.9 | 9160.5±169.2 |
II-32A/FJ717 | 9.9±1.2 | 193.6±21.2 | 181.0±12.8 | 93.5±1.5 | 28.7±0.2 | 9749.3±210.2** |
II-32A/FJ718 | 10.1±2.1 | 188.3±5.6 | 175.7±13.3 | 93.3±2.0 | 28.1±1.1 | 9426.1±107.1* |
II-32A/FJ719 | 7.8±0.6 | 213.5±9.8 | 185.3±8.6 | 86.8±1.7 | 29.0±0.2 | 8878.3±192.5 |
II-32A/FJ745 | 10.4±1.3 | 194.5±18.4 | 173.8±10.2 | 89.3±1.3 | 27.2±0.4 | 9308.9±98.4 |
Y58S//FH676(CK) | 9.1±0.8 | 205.1±11.6 | 176.4±9.6 | 86.0±0.9 | 26.2±0.3 | 7950.9±214.5 |
Y58S//FJ717 | 8.3±0.2 | 210.3±14.6 | 185.5±12.8 | 88.2±0.9 | 26.7±1.4 | 7732.2±110.2 |
Y58S//FJ718 | 10.3±1.4 | 196.7±5.6 | 171.5±13.3 | 87.2±3.2 | 26.6±0.1 | 8886.5±183.1** |
Y58S//FJ719 | 7.8±0.8 | 223.5±109.9 | 184.8±8.6 | 82.7±1.7 | 28.0±0.9 | 7571.3±199.2 |
Y58S//FJ745 | 9.8±0.3 | 197.4±13.2 | 174.2±10.2 | 88.3±1.4 | 26.1±0.3 | 8397.5±210.1* |
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
丰两优4号(CK) Fengliangyou 4(CK) | 8.9±0.7 | 191.4±8.3 | 159.5±6.4 | 83.4±2.2 | 28.5±0.1 | 7619.2±203.5 |
Ⅱ优明86 ⅡYouming 86 | 9.3±0.7 | 190.7±4.4 | 174.0±3.3 | 91.2±2.8 | 28.3±0.1 | 8683.0±219.3 |
泰丰A/FJ717 Taifeng A/FJ717 | 10.3±0.5 | 186.6±11.3 | 161.4±8.6 | 86.5±1.7 | 25.3±0.1 | 7965.3±184.8* |
泰丰A/FJ718 Taifeng A/FJ718 | 9.8±0.4 | 179.5±10.3 | 157.2±9.0 | 87.6±3.4 | 25.0±0.1 | 7241.6±114.7 |
泰丰A/FJ745 Taifeng A/FJ745 | 10.3±0.4 | 182.8±13.4 | 157.9±12.0 | 86.4±1.8 | 25.3±0.1 | 7795.3±217.6 |
泸香618A/FJ717 Luxiang 618A/FJ717 | 9.7±0.3 | 199.8±9.1 | 178.4±7.3 | 89.3±1.2 | 25.4±0.2 | 8279.0±117.9** |
泸香618A/FJ718 Luxiang 618A/FJ718 | 11.1±0.7 | 176.4±9.8 | 154.1±6.3 | 87.3±0.8 | 25.5±0.2 | 8214.2±254.7** |
泸香618A/FJ745 Luxiang 618A/FJ745 | 9.4±1.0 | 193.0±12.7 | 171.8±10.7 | 89.0±1.1 | 25.8±0.4 | 7857.7±247.7 |
表5 入选抗虫恢复系与轮回亲本的杂交后代农艺性状比较分析(海南三亚,2018)
Table 5 Comparative analysis of agronomic traits of hybrid progenies between selected insect-resistant restorer lines and recurrent parents(Sanya, Hainan, China, 2018).
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
丰两优4号(CK) Fengliangyou 4(CK) | 8.9±0.7 | 191.4±8.3 | 159.5±6.4 | 83.4±2.2 | 28.5±0.1 | 7619.2±203.5 |
Ⅱ优明86 ⅡYouming 86 | 9.3±0.7 | 190.7±4.4 | 174.0±3.3 | 91.2±2.8 | 28.3±0.1 | 8683.0±219.3 |
泰丰A/FJ717 Taifeng A/FJ717 | 10.3±0.5 | 186.6±11.3 | 161.4±8.6 | 86.5±1.7 | 25.3±0.1 | 7965.3±184.8* |
泰丰A/FJ718 Taifeng A/FJ718 | 9.8±0.4 | 179.5±10.3 | 157.2±9.0 | 87.6±3.4 | 25.0±0.1 | 7241.6±114.7 |
泰丰A/FJ745 Taifeng A/FJ745 | 10.3±0.4 | 182.8±13.4 | 157.9±12.0 | 86.4±1.8 | 25.3±0.1 | 7795.3±217.6 |
泸香618A/FJ717 Luxiang 618A/FJ717 | 9.7±0.3 | 199.8±9.1 | 178.4±7.3 | 89.3±1.2 | 25.4±0.2 | 8279.0±117.9** |
泸香618A/FJ718 Luxiang 618A/FJ718 | 11.1±0.7 | 176.4±9.8 | 154.1±6.3 | 87.3±0.8 | 25.5±0.2 | 8214.2±254.7** |
泸香618A/FJ745 Luxiang 618A/FJ745 | 9.4±1.0 | 193.0±12.7 | 171.8±10.7 | 89.0±1.1 | 25.8±0.4 | 7857.7±247.7 |
[1] | 沈君辉, 尚金梅, 刘光杰. 中国的白背飞虱研究概况. 中国水稻科学, 2003, 17(增刊): 7-22. |
Shen J H, Shang J M, Liu G J.Management of the whitebacked planthopper,Sogatella furcifera in China: A mini-review. Chin J Rice Sci, 2003, 17(Suppl): 7-22. (in Chinese with English abstract) | |
[2] | 任西明, 向聪, 雷东阳, 管利凤. 水稻抗褐飞虱育种研究进展与展望. 作物研究, 2017, 31(4): 453-458. |
Ren X M, Xiang C, Lei D Y, Guan L F.Present status and prospect of resistance breeding of brow planthopper in rice.Crop Res, 2017, 31(4): 453-458. | |
[3] | 蒋宁飞. 利用昌恢891和02428的回交自交系群体定位抗稻飞虱的QTL. 南昌: 江西农业大学, 2016. |
Jiang N F.Mapping quantitative trait loci(QTL) for rice planthopper resistance of Changhui 891/02428 backcross inbred lines. Nanchang: Jiangxi Agriculture University, 2016. (in Chinese with English abstract) | |
[4] | 王彦华, 王鸣华. 褐飞虱抗药性及再猖獗研究进展. 农药, 2006, 45(4): 227-231. |
Wang Y H, Wang M H.Research progress onNilaparvata lugens insecticide resistance and proliferation of the resistant biotype. Agrochemicals, 2006, 45(4): 227-231. (in Chinese with English abstract) | |
[5] | 姜辉, 林荣华, 刘亮, 瞿唯钢, 陶传江. 稻飞虱的危害及再猖獗机制. 昆虫知识, 2005, 42(6): 612-615. |
Jiang H, Lin R H, Liu L, Qu W G, Tao C J.Planthoppers damage to rice and the resurgence mechanism.Entomol Knowl, 2005, 42(6): 612-615. (in Chinese with English abstract) | |
[6] | 侯丽媛, 于萍, 徐群, 袁筱萍, 余汉勇, 王一平, 王彩红, 万国, 彭锁堂, 魏兴华. 两个水稻抗褐飞虱隐性基因的遗传分析与初步定位. 中国水稻科学, 2010, 24(4): 367-371. |
Hou L Y, Yu P, Xu Q, Yuan Y P, Yu H Y, Wang Y P, Wang C H, Wan G, Peng S T, Wei X H.Genetic analysis and preliminary mapping of two recessive resistance genes in rice to brown planthopper,Nilaparvata lugens. Chin J Rice Sci, 2010, 24(4): 367-371. (in Chinese with English abstract) | |
[7] | Jairin J, Sansen K, Wongboon W, Jate K.Detection of a brown planthopper resistance genebph4 at the same chromosomal position of Bph3 using two different genetic backgrounds of rice. Breeding Sci, 2010, 60(1): 71-75. |
[8] | Zhao Y, Huang J, Wang Z Z, Jing S L, Wang Y, Ouyang Y, Cai B D, Xin X F, Liu X, Zhang C X, Pan Y F, Ma R, Li Q F, Jiang W H, Zeng Y, Shangguan X X, Wang H Y, Du B, Zhu L L. Xu X, Feng Y Q, He S Y, Chen R Z, Zhang Q F, He G C.Allelic diversity in an NLR geneBPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci, 2016, 113(45): 12850-12855. |
[9] | Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z He R, Zhu L, Chen R, Han B, He G. Identification and characterization ofBph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci, 2009, 106(52): 22163-22168. |
[10] | Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G.BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.BMC Genom, 2014, 11(15): 674. |
[11] | Jena K K, Jeung J U, Lee J H, Choi C, Brar D S.High-resolution mapping of a new brown planthopper (BPH)resistance gene,Bph18(t), and marker-assisted selection for BPH resistance in rice, 2006, 112(2): 288-297. |
[12] | Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H.Map-based cloning and characterization of a brown planthopper resistance gene BPH26 fromOryza sativa L. ssp. indica cultivar ADR52. Sci Reps, 2014, 4: 58-72. |
[13] | Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Luo X.Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice.J Exp Bot, 2015, 66(19): 6035-6045. |
[14] | Ren J, Gao F, Wu X, Lu X, Zeng L, Lv J, Su X, Luo H, Ren G.Bph32, a novel gene encoding an unknown SCR domain containing protein, confers resistance against the brown planthopper in rice. Sci Rep, 2016, 6: 37 645. |
[15] | Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G.TheBphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol, 2011, 156(2): 856-872. |
[16] | Guo J, Xu C, Wu D, Zhao Y, Qiu Y.Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet, 2018, 50(2): 297-306. |
[17] | Huang Z, He Z, Shu L, Li X.Identification and mapping of two brown planthopper resistance genes in rice.Theor Appl Genet, 2001, 102: 929-934. |
[18] | 徐晓明, 程攀, 陈龙, 曲姗姗, 阴云火, 田发春, 彭炳生, 吴帅, 李土明, 周卫营. 应用分子标记辅助选育抗褐飞虱水稻两系不育系. 安徽农业科学, 2016, 44(20): 107-108. |
Xu X M, Cheng P, Chen L, Qu S S, Yin Y H, Tian F C, Peng B S, Wu S, Li T M, Zhou W Y.Breeding TGMS lines with resistance to brown planthopper by marker-assisted selection.J Anhui Agric Sci, 2016, 44(20): 107-108. (in Chinese with English abstract) | |
[19] | 胡巍, 李艳芳, 胡侃, 江奕君, 张扬. 分子标记辅助选择抗褐飞虱基因改良桂农占的BPH抗性. 分子植物育种, 2015, 13(5): 951-960. |
Hu W, Li Y F, Hu K, Jiang Y J, Zhang Y.Improving BPH-resistance of rice cultivar Guinongzhan by marker-assisted selection for BPH-resistant genes.Mol Plant Breeding, 2015, 13(5): 951-960. (in Chinese with English abstract) | |
[20] | 王海鹏, 黄晓西, 梁越洋, 朱军, 张翠霞, 王秀梅, 贡常委, 郑爱萍, 邓其明, 李双成, 王玲霞, 李平, 王世全. 转Cry30Fa1基因抗褐飞虱水稻的获得及鉴定. 中国水稻科学, 2016, 30(3): 256-264. |
Wang H P, Huang X X, Liang Y Y, Zhu J, Zhang C X, Wang X M, Gong C W, Zheng A P, Deng Q M, Li S C, Wang L X, Li P, Wang S Q.Development and Identification of insect resistant transgenic rice with Cry30Fa1 gene. Chin J Rice Sci, 2016, 30(3): 256-264. (in Chinese with English abstract) | |
[21] | 张建福, 曾大力, 朱永生, 谢鸿光, 蔡秋华, 连玲, 吴方喜, 罗曦, 王颖姮, 郑轶, 谢华安. 分子标记辅助选择创制抗白背飞虱水稻恢复系. 中国水稻科学, 2013, 27(3): 329-334. |
Zhang J F, Zeng D L, Zhu Y S, Xie H G, Cai Q H, Lian L, Wu F X, Luo X, Wang Y H, Zheng Y, Xie H A.Breeding of rice restore lines with white-backed planthopper resistance by marker-assisted selection.Chin J Rice Sci, 2013, 27(3): 329-334. (in Chinese with English abstract) | |
[22] | 刘光杰, 付志红, 沈君辉, 张亚辉. 水稻品种对稻飞虱抗性鉴定方法的比较研究. 中国水稻科学, 2002, 16(1): 52-56. |
Liu G J, Fu Z H, Shen J H, Zhang Y H.Comparative study on evaluation methods for resistance to rice planthoppers (Homoptera: Delphacidae) in rice.Chin J Rice Sci, 2002, 16(1): 52-56. (in Chinese with English abstract) | |
[23] | 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 廖绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14-16. |
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Liao S Y, Chen J H.CTAB improved method of DNA extraction in plant.Res Explor Lab, 2009, 28(9): 14-16. (in Chinese with English abstract) | |
[24] | 何光存, 陈荣智, 杜波, 祝莉莉. 水稻抗褐飞虱基因Bph15的特异性共显性分子标记及其应用: CN107779522A.2018-03-09. |
He G C, Chen R Z, Du B, Zhu L L. Specific co-dominant molecular markers of rice brown planthopper resistance gene Bph15 and their application: CN107779522A.2018-03-09. (in Chinese) | |
[25] | Sidhu G S, Khush G S.Genetic analysis of brown planthopper resistance in twenty varieties of rice,Oryza stativa L. Theor Appl Genet, 1978, 53: 199-203. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||