中国水稻科学 ›› 2019, Vol. 33 ›› Issue (4): 338-346.DOI: 10.16819/j.1001-7216.2019.8134
王东明1,2, 陶冶1,2, 朱建国1, 刘钢1, 朱春梧1,*()
收稿日期:
2018-12-05
修回日期:
2019-04-02
出版日期:
2019-07-10
发布日期:
2019-07-10
通讯作者:
朱春梧
基金资助:
Dongming WANG1,2, Ye TAO1,2, Jianguo ZHU1, Gang LIU1, Chunwu ZHU1,*()
Received:
2018-12-05
Revised:
2019-04-02
Online:
2019-07-10
Published:
2019-07-10
Contact:
Chunwu ZHU
摘要:
【目的】大气CO2浓度升高会降低水稻的外观与加工品质。为探明其下降机制并予以缓解,【方法】采用开放式大气CO2浓度升高(FACE)平台、两种栽培品种及其三种不同的基因调控遗传材料 (中花11及其蒸腾调节材料ZmK2.1-15、ZmK2.1-20、OsKAT3-26、OsKAT3-30; 中花11及其促冠根生长材料ERF3-7和ERF3-12; 日本晴及其促硝酸盐吸收材料NIL),研究稻米外观与加工品质对CO2浓度升高的响应。【结果】稻米外观品质与加工品质对CO2浓度升高的响应因品种不同而异。CO2浓度升高下,中花11的垩白粒率和垩白度增加9.2%和4.4%,整精米率降低5.3%;而日本晴的垩白粒率和垩白度降低11.1%和7.9%,整精米率提升9.8%。蒸腾调节材料显著改善了CO2浓度升高对中花11外观与外观品质的负面效应,与当前CO2浓度相比,CO2浓度升高,ZmK2.1-15、ZmK2.1-20、OsKAT3-26、OsKAT3-30的垩白粒率相对变化量为-2.7%、-16.3%、-14.8%,+7.4%,垩白度为-8.7%、-22.3%、-15.1%、-3.0%,整精米率为+2.1%、+6.4%、+3.6%、-7.0%。促冠根生长材料加大了CO2浓度升高对中花11号外观与加工品质的负面效应,ERF3-7、ERF3-12的垩白粒率在CO2浓度升高下分别增加17.7%和11.5%,垩白度增加34.4%和19.1%,整精米率分别降低10.1%和0.8%。促硝酸盐吸收材料(NIL)的垩白粒率和垩白度在CO2浓度升高下无明显变化,整精米率下降4.2%。NIL的外观品质较日本晴明显改善,CO2浓度升高下垩白粒率和垩白度分别下降16.5%和17.9%,当前CO2浓度条件下分别下降26.3%和28.9%。【结论】未来CO2浓度升高条件下,通过基因改良促进水稻蒸腾作用和硝酸盐吸收是提升稻米外观与加工品质的有效途径之一。
中图分类号:
王东明, 陶冶, 朱建国, 刘钢, 朱春梧. 稻米外观与加工品质对大气CO2浓度升高的响应[J]. 中国水稻科学, 2019, 33(4): 338-346.
Dongming WANG, Ye TAO, Jianguo ZHU, Gang LIU, Chunwu ZHU. Responses of Rice Appearance and Processing Quality to Elevated Atmospheric CO2 Concentration[J]. Chinese Journal OF Rice Science, 2019, 33(4): 338-346.
材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|
中花11 Zhonghua 11 | FACE | 82.9±0.7 | 72.3±1.2 | 68.0±1.2 | 13.2±0.9 | 5.8±0.7 |
Ambient | 82.6±0.7 | 72.5±0.4 | 70.2±0.5 | 12.1±1.7 | 5.6±0.7 | |
Change | 0.4 | -0.4 | -3.1 | 8.9 | 4.2 | |
ZmK2.1-15 | FACE | 82.5±1.2 | 71.9±0.4 | 68.0±2.6 | 42.5±1.5 | 16.3±0.3 |
Ambient | 81.8±0.2 | 71.4±0.8 | 66.6±3.4 | 43.7±4.3 | 17.8±2.1 | |
Change | 0.8 | 0.8 | 2.1 | -2.7 | -8.7 | |
ZmK2.1-20 | FACE | 83.0±0.2 | 72.7±0.2 | 68.5±0.8 | 39.0±0.6 | 15.7±0.6 |
Ambient | 81.3±1.2 | 71.3±1.7 | 64.4±2.0 | 46.6±6.9 | 20.2±3.5 | |
Change | 2.1 | 1.9 | 6.4 | -16.3 | -22.3 | |
OsKAT3-26 | FACE | 82.5±0.5 | 72.3±0.2 | 70.9±0.1 | 24.0±3.7 | 9.9±1.2 |
Ambient | 82.0±0.8 | 72.3±1.0 | 68.5±0.7 | 28.2±3.5 | 11.6±1.5 | |
Change | 0.7 | 0.0 | 3.6 | -14.8 | -15.1 | |
OsKAT3-30 | FACE | 80.1±1.5 | 68.3±4.5 | 62.1±3.2 | 33.9±5.5 | 13.7±1.2 |
Ambient | 80.9±0.8 | 70.5±1.4 | 66.8±2.4 | 31.6±4.7 | 14.1±1.0 | |
Change | -0.9 | -3.1 | -7.0 | 7.4 | -3.0 | |
方差分析Analysis of variance | ||||||
变异来源Source of variation | ||||||
材料Material(M) | * | 0.118 | *** | *** | *** | |
CO2浓度([CO2]) | 0.383 | 0.805 | 0.746 | 0.167 | 0.127 | |
M×[CO2] | 0.150 | 0.498 | 0.101 | 0.080 | 0.106 |
表1 2015年中花11及其蒸腾调节材料(ZmK2.1-15, ZmK2.1-15, OsKAT3-26, OsKAT3-30)在不同CO2浓度处理下的糙米率、精米率、整精米率、垩白粒率和垩白度
Table 1 Brown rice percentage, milled rice percentage, head rice percentage, chalky grain percentage and chalkiness degree of Zhonghua 11 and its transpiration-promoting genetic materials (ZmK2.1-15, ZmK2.1-15, OsKAT3-26, OsKAT3-30) under elevated and ambient CO2 concentration in 2015.
材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|
中花11 Zhonghua 11 | FACE | 82.9±0.7 | 72.3±1.2 | 68.0±1.2 | 13.2±0.9 | 5.8±0.7 |
Ambient | 82.6±0.7 | 72.5±0.4 | 70.2±0.5 | 12.1±1.7 | 5.6±0.7 | |
Change | 0.4 | -0.4 | -3.1 | 8.9 | 4.2 | |
ZmK2.1-15 | FACE | 82.5±1.2 | 71.9±0.4 | 68.0±2.6 | 42.5±1.5 | 16.3±0.3 |
Ambient | 81.8±0.2 | 71.4±0.8 | 66.6±3.4 | 43.7±4.3 | 17.8±2.1 | |
Change | 0.8 | 0.8 | 2.1 | -2.7 | -8.7 | |
ZmK2.1-20 | FACE | 83.0±0.2 | 72.7±0.2 | 68.5±0.8 | 39.0±0.6 | 15.7±0.6 |
Ambient | 81.3±1.2 | 71.3±1.7 | 64.4±2.0 | 46.6±6.9 | 20.2±3.5 | |
Change | 2.1 | 1.9 | 6.4 | -16.3 | -22.3 | |
OsKAT3-26 | FACE | 82.5±0.5 | 72.3±0.2 | 70.9±0.1 | 24.0±3.7 | 9.9±1.2 |
Ambient | 82.0±0.8 | 72.3±1.0 | 68.5±0.7 | 28.2±3.5 | 11.6±1.5 | |
Change | 0.7 | 0.0 | 3.6 | -14.8 | -15.1 | |
OsKAT3-30 | FACE | 80.1±1.5 | 68.3±4.5 | 62.1±3.2 | 33.9±5.5 | 13.7±1.2 |
Ambient | 80.9±0.8 | 70.5±1.4 | 66.8±2.4 | 31.6±4.7 | 14.1±1.0 | |
Change | -0.9 | -3.1 | -7.0 | 7.4 | -3.0 | |
方差分析Analysis of variance | ||||||
变异来源Source of variation | ||||||
材料Material(M) | * | 0.118 | *** | *** | *** | |
CO2浓度([CO2]) | 0.383 | 0.805 | 0.746 | 0.167 | 0.127 | |
M×[CO2] | 0.150 | 0.498 | 0.101 | 0.080 | 0.106 |
图1 FACE条件下中花11(野生型)及其蒸腾调节材料(ZmK2.1-15, ZmK2.1-20, OsKAT3-26, OsKAT3-30)和促冠根生长材料(ERF3-7, ERF3-12),日本晴(野生型)及其促硝酸盐吸收材料(NIL)的糙米率、精米率、整精米率、垩白粒率和垩白度变化。 A–糙米率;B–精米率; C–整精米率; D–垩白粒率; E–垩白度。误差线表示标准差,独立样本t检验计算显著性:***,P<0.001; **,P<0.01; *,P<0.05。
Fig. 1. Average change in milling quality and appearance quality at elevated CO2 concentration for Zhonghua 11 (wild type) and its transpiration-promoting overexpression genetic materials (ZmK2.1-15, ZmK2.1-15, OsKAT3-26, OsKAT3-30) and crown root-promoting overexpression genetic materials (ERF3-7 and ERF3-12), Nipponbare (wild type) and its nitrate-absorption promoting overexpression genetic material(NIL). A, Brown rice percentage; B, Milled rice percentage; C, Head rice percentage D, Chalky grain percentage; E, Chalkiness degree. Bars represent standard deviation, and statistically significant effects by independent sample t-test are indicated: *** P<0.001; ** P<0.01; * P<0.05.
年份 Year | 材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|---|
2016 | 中花11 | FACE | 80.8±0.6 | 69.2±0.4 | 59.5±3.4 | 32.6±0.8 | 11.7±0.9 |
Zhonghua 11 | Ambient | 80.5±0.1 | 68.2±0.2 | 65.5±0.3 | 29.4±0.1 | 9.7±0.1 | |
Change | 0.4 | 1.5 | -9.1 | 11.1 | 21.5 | ||
ERF3-7 | FACE | 78.2±1.1 | 66.4±1.0 | 54.9±1.9 | 78.2±0.9 | 40.2±0.6 | |
Ambient | 78.2±0.4 | 63.0±0.7 | 60.3±0.3 | 65.3±1.4 | 29.2±0.7 | ||
Change | -0.1 | 5.3 | -9.0 | 19.8 | 37.7 | ||
ERF3-12 | FACE | 80.6±1.8 | 67.3±2.6 | 59.1±1.5 | 83.2±0.5 | 46.3±2.0 | |
Ambient | 79.9±1.7 | 64.9±5.4 | 57.6±0.4 | 77.0±1.1 | 38.9±1.2 | ||
Change | 0.9 | 3.7 | 2.7 | 8.1 | 19.1 | ||
2017 | 中花11 | FACE | 80.9±0.3 | 69.4±2.0 | 60.1±0.7 | 10.3±0.6 | 2.9±0.5 |
Zhonghua 11 | Ambient | 81.2±0.6 | 71.0±1.2 | 62.4±1.4 | 9.9±0.8 | 4.3±0.8 | |
Change | -0.3 | -2.3 | -3.7 | 4.0 | -33.2 | ||
ERF3-7 | FACE | 77.1±0.3 | 63.8±1.0 | 51.3±1.2 | 30.3±2.6 | 11.1±1.3 | |
Ambient | 78.1±1.0 | 64.5±1.1 | 57.8±1.8 | 26.9±1.0 | 9.0±0.2 | ||
Change | -1.2 | -1.1 | -11.2 | 12.4 | 23.6 | ||
ERF3-12 | FACE | 78.2±0.6 | 65.4±1.7 | 53.5±2.2 | 60.2±1.8 | 24.9±0.9 | |
Ambient | 78.9±2.7 | 63.8±3.3 | 56.0±1.6 | 51.6±1.8 | 20.9±1.3 | ||
Change | -0.9 | 2.4 | -4.4 | 16.7 | 19.1 | ||
方差分析Analysis of variance | |||||||
变异来源Source of variation | |||||||
年际Year(Y) | * | 0.780 | * | *** | *** | ||
材料Material(M) | * | 0.062 | *** | *** | *** | ||
CO2浓度([CO2]) | 0.505 | 0.353 | * | * | ** | ||
Y×M | * | 0.056 | 0.451 | *** | *** | ||
Y×[CO2] | 0.204 | 0.101 | 0.641 | 0.128 | * | ||
M×[CO2] | 0.688 | 0.078 | ** | ** | ** | ||
Y×M×[CO2] | 0.845 | 0.306 | 0.110 | ** | * |
表2 2016和2017年中花11及其促冠根生长材料(ERF3-7、ERF3-12)在不同CO2浓度处理下的糙米率、精米率、整精米率、垩白粒率和垩白度
Table 2 Brown rice percentage, milled rice percentage, head rice percentage, chalky grain percentage and chalkiness degree of Zhonghua 11 and its crown root-promoting genetic materials (ERF3-7 and ERF3-12) under elevated and ambient CO2 concentration in 2016-2017.
年份 Year | 材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% |
---|---|---|---|---|---|---|---|
2016 | 中花11 | FACE | 80.8±0.6 | 69.2±0.4 | 59.5±3.4 | 32.6±0.8 | 11.7±0.9 |
Zhonghua 11 | Ambient | 80.5±0.1 | 68.2±0.2 | 65.5±0.3 | 29.4±0.1 | 9.7±0.1 | |
Change | 0.4 | 1.5 | -9.1 | 11.1 | 21.5 | ||
ERF3-7 | FACE | 78.2±1.1 | 66.4±1.0 | 54.9±1.9 | 78.2±0.9 | 40.2±0.6 | |
Ambient | 78.2±0.4 | 63.0±0.7 | 60.3±0.3 | 65.3±1.4 | 29.2±0.7 | ||
Change | -0.1 | 5.3 | -9.0 | 19.8 | 37.7 | ||
ERF3-12 | FACE | 80.6±1.8 | 67.3±2.6 | 59.1±1.5 | 83.2±0.5 | 46.3±2.0 | |
Ambient | 79.9±1.7 | 64.9±5.4 | 57.6±0.4 | 77.0±1.1 | 38.9±1.2 | ||
Change | 0.9 | 3.7 | 2.7 | 8.1 | 19.1 | ||
2017 | 中花11 | FACE | 80.9±0.3 | 69.4±2.0 | 60.1±0.7 | 10.3±0.6 | 2.9±0.5 |
Zhonghua 11 | Ambient | 81.2±0.6 | 71.0±1.2 | 62.4±1.4 | 9.9±0.8 | 4.3±0.8 | |
Change | -0.3 | -2.3 | -3.7 | 4.0 | -33.2 | ||
ERF3-7 | FACE | 77.1±0.3 | 63.8±1.0 | 51.3±1.2 | 30.3±2.6 | 11.1±1.3 | |
Ambient | 78.1±1.0 | 64.5±1.1 | 57.8±1.8 | 26.9±1.0 | 9.0±0.2 | ||
Change | -1.2 | -1.1 | -11.2 | 12.4 | 23.6 | ||
ERF3-12 | FACE | 78.2±0.6 | 65.4±1.7 | 53.5±2.2 | 60.2±1.8 | 24.9±0.9 | |
Ambient | 78.9±2.7 | 63.8±3.3 | 56.0±1.6 | 51.6±1.8 | 20.9±1.3 | ||
Change | -0.9 | 2.4 | -4.4 | 16.7 | 19.1 | ||
方差分析Analysis of variance | |||||||
变异来源Source of variation | |||||||
年际Year(Y) | * | 0.780 | * | *** | *** | ||
材料Material(M) | * | 0.062 | *** | *** | *** | ||
CO2浓度([CO2]) | 0.505 | 0.353 | * | * | ** | ||
Y×M | * | 0.056 | 0.451 | *** | *** | ||
Y×[CO2] | 0.204 | 0.101 | 0.641 | 0.128 | * | ||
M×[CO2] | 0.688 | 0.078 | ** | ** | ** | ||
Y×M×[CO2] | 0.845 | 0.306 | 0.110 | ** | * |
年份 Year | 材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% | |
---|---|---|---|---|---|---|---|---|
2016 | 日本晴 | FACE | 71.4±0.3 | 57.9±1.0 | 53.8±1.8 | 12.5±0.9 | 3.8±0.2 | |
Nipponbare | Ambient | 75.0±4.7 | 60.9±3.6 | 48.8±4.9 | 13.4±1.0 | 4.1±0.1 | ||
Change | -4.9 | -4.8 | 10.3 | -6.9 | -6.6 | |||
NIL | FACE | 78.0±1.4 | 63.8±0.8 | 56.8±2.0 | 8.6±0.2 | 2.7±0.2 | ||
Ambient | 79.5±0.4 | 64.7±0.3 | 62.1±0.6 | 8.1±0.3 | 2.2±0.2 | |||
Change | -1.8 | -1.3 | -8.6 | 6.8 | 21.8 | |||
2017 | 日本晴 | FACE | 81.8±0.4 | 68.7±0.2 | 67.3±0.6 | 24.3±1.6 | 8.2±0.7 | |
Nipponbare | Ambient | 81.5±0.3 | 68.5±0.3 | 61.6±1.0 | 28.0±0.3 | 8.9±0.2 | ||
Change | 0.4 | 0.3 | 9.3 | -13.1 | -8.5 | |||
NIL | FACE | 81.5±0.4 | 68.0±0.9 | 64.7±1.7 | 22.1±5.3 | 7.1±2.0 | ||
Ambient | 81.3±0.1 | 67.9±0.4 | 64.8±1.0 | 22.4±2.5 | 7.0±0.7 | |||
Change | 0.3 | 0.2 | -0.1 | -1.5 | 1.5 | |||
方差分析Analysis of variance | ||||||||
变异来源Source of variation | ||||||||
年际Year(Y) | ** | ** | * | ** | * | |||
材料Material(M) | 0.100 | 0.088 | ** | ** | * | |||
CO2浓度([CO2]) | 0.393 | 0.430 | 0.318 | 0.535 | 0.711 | |||
Y×M | 0.053 | * | *** | 0.549 | 0.988 | |||
Y×[CO2] | 0.250 | 0.253 | 0.089 | 0.499 | 0.582 | |||
M×[CO2] | 0.392 | 0.460 | * | 0.164 | 0.063 | |||
Y×M×[CO2] | 0.340 | 0.324 | 0.533 | 0.705 | 0.894 |
表3 2016和2017年日本晴及其促硝酸盐吸收材料NIL在不同CO2浓度处理下的糙米率、精米率、整精米率、垩白粒率和垩白度
Table 3 Brown rice percentage, milled rice percentage, head rice percentage, chalky grain percentage and chalkiness degree of Nipponbare and its nitrate-absorption promoting genetic material(NIL)under elevated and ambient CO2 concentration in 2016-2017.
年份 Year | 材料 Material | CO2处理 CO2 treatment | 糙米率 Brown rice percentage/% | 精米率 Milled rice percentage/% | 整精米率 Head rice percentage/% | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% | |
---|---|---|---|---|---|---|---|---|
2016 | 日本晴 | FACE | 71.4±0.3 | 57.9±1.0 | 53.8±1.8 | 12.5±0.9 | 3.8±0.2 | |
Nipponbare | Ambient | 75.0±4.7 | 60.9±3.6 | 48.8±4.9 | 13.4±1.0 | 4.1±0.1 | ||
Change | -4.9 | -4.8 | 10.3 | -6.9 | -6.6 | |||
NIL | FACE | 78.0±1.4 | 63.8±0.8 | 56.8±2.0 | 8.6±0.2 | 2.7±0.2 | ||
Ambient | 79.5±0.4 | 64.7±0.3 | 62.1±0.6 | 8.1±0.3 | 2.2±0.2 | |||
Change | -1.8 | -1.3 | -8.6 | 6.8 | 21.8 | |||
2017 | 日本晴 | FACE | 81.8±0.4 | 68.7±0.2 | 67.3±0.6 | 24.3±1.6 | 8.2±0.7 | |
Nipponbare | Ambient | 81.5±0.3 | 68.5±0.3 | 61.6±1.0 | 28.0±0.3 | 8.9±0.2 | ||
Change | 0.4 | 0.3 | 9.3 | -13.1 | -8.5 | |||
NIL | FACE | 81.5±0.4 | 68.0±0.9 | 64.7±1.7 | 22.1±5.3 | 7.1±2.0 | ||
Ambient | 81.3±0.1 | 67.9±0.4 | 64.8±1.0 | 22.4±2.5 | 7.0±0.7 | |||
Change | 0.3 | 0.2 | -0.1 | -1.5 | 1.5 | |||
方差分析Analysis of variance | ||||||||
变异来源Source of variation | ||||||||
年际Year(Y) | ** | ** | * | ** | * | |||
材料Material(M) | 0.100 | 0.088 | ** | ** | * | |||
CO2浓度([CO2]) | 0.393 | 0.430 | 0.318 | 0.535 | 0.711 | |||
Y×M | 0.053 | * | *** | 0.549 | 0.988 | |||
Y×[CO2] | 0.250 | 0.253 | 0.089 | 0.499 | 0.582 | |||
M×[CO2] | 0.392 | 0.460 | * | 0.164 | 0.063 | |||
Y×M×[CO2] | 0.340 | 0.324 | 0.533 | 0.705 | 0.894 |
图2 FACE条件下所有遗传材料(中花11, ZmK2.1-15, ZmK2.1-20, OsKAT3-26, OsKAT3-30, ERF3-7, ERF3-12, 日本晴, NIL)整精米率的变化与垩白粒率的变化之间的线性回归关系
Fig. 2. A linear regression relationship between the change of head rice percentage and chalky grain percentage at elevated [CO2] to ambient [CO2] for all rice varieties of contrasting genetic backgrounds (Zhonghua 11, ZmK2.1-15, ZmK2.1-15, OsKAT3-26, OsKAT3-30, ERF3-7, ERF3-12, Nipponbare, NIL).
[1] | Dlugokencky D, Tans P.Globally Averaged Marine Surface Annual Mean Data.NOAA/ESRL, 2017. |
[2] | International Energy Agency.Global Energy and CO2 Status Report 2017. GECO, 2018. |
[3] | The Core Writing Team, Pachauri R K, Meyer L. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2014. |
[4] | Lobell D B, Schlenker W, Costaroberts J.Climate trends and global crop production Since 1980.Science, 2011, 333(6042): 616-620. |
[5] | Zhu C W, Zhu J G, Cao J, Jiang Q, Liu G, Ziska L H.Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2].J Exp Bot, 2014, 65(20): 6049-6056. |
[6] | Yang L X, Wang Y L, Dong G C, Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y.The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice.Field Crops Res, 2007, 102(2): 128-140. |
[7] | Myers S S, Zanobetti A, Kloog I, Huybers P J, Leakey A D B, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G J, Hasegawa T, Holbrook M, Nelson R L, Ottman M J, Raboy V, Sakai H, Sartor K, Schwartz J, Seneweera S, Tausz M, Usui Y. Rising CO2 threatens human nutrition.Nature, 2014, 510(7503): 139-142. |
[8] | Zhu C W, Kobayashi K, Loladze I, Zhu J G, Jiang Q, Xu X, Liu G, Seneweera S, Ebi K L, Drewnowski A, Fukagawa N K, Ziska L H. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv, 2018, 4(5): eaaq1012. |
[9] | Smith M R, Myers S S.Impact of anthropogenic CO2 emissions on global human nutrition.Nat Clim Chan, 2018, 8(9): 834-839. |
[10] | Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T.Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.Glob Chan Biol, 2016, 22(3): 1256-1270. |
[11] | 董桂春, 王余龙, 黄建晔, 杨洪建, 顾晖, 彭斌, 居静, 杨连新, 朱建国, 单玉华. 稻米品质性状对开放式空气二氧化碳浓度增高的响应. 应用生态学报, 2004, 15(7): 1217-1222. |
Dong G C, Wang Y L, Huang J Y, Yang H J, Gu H, Peng B, Ju J, Yang L X, Zhu J G, Shan Y H.Response of rice grain quality traits to free-air CO2 enrichment.Chin J Appl Ecol, 2004, 15(7): 1217-1222. (in Chinese with English abstract) | |
[12] | 常二华, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的关系. 作物学报, 2007, 33(12): 1949-1959. |
Chang E H, Zhang H, Zhang S F, Wang Z Q, Yang J C.Effects of nitrogen and phosphorus on the root exudates during grain filling and their relations with grain quality of rice.Acta Agron Sin, 2007, 33(12): 1949-1959. (in Chinese with English abstract) | |
[13] | 全国明, 章家恩, 许荣宝, 谢利, 刘金苓. 环境生态因子对稻米品质的影响研究进展. 中国农学通报, 2006, 22(4): 158-162. |
Quan G M, Zhang J E, Xu R B, Xie L, Liu J L.Review on the effect of environmental factors on rice quality.Chin Agric Sci Bull, 2006, 22(4): 158-162. (in Chinese with English abstract) | |
[14] | Taub D R, Miller B, Allen H.Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis.Glob Chan Biol, 2008, 14(3): 565-575. |
[15] | Mcgrath J M, Lobell D B.Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations.Plant Cell & Environ, 2013, 36(3): 697-705. |
[16] | Yoshimoto M, Oue H, Takahashi N, Kobayashi K.The effects of FACE (free-air CO2 enrichment) on temperatures and transpiration of rice panicles at flowering stage.J Agric Meteorol, 2005, 60(5): 597-600. |
[17] | 杨洪建, 杨连新, 刘红江, 黄建晔, 董桂春, 朱建国, 王余龙. FACE对水稻根系及产量的影响. 作物学报, 2005, 31(9): 1221-1226. |
Yang H J, Yang L X, Liu H J, Huang J Y, Dong G C, Zhu J G, Wang Y L.Effects of free-air CO2 enrichment on root system and yield in rice (Oryza sativa L.).Acta Agron Sin, 2005, 31(9): 1221-1226. (in Chinese with English abstract) | |
[18] | 林赵淼, 郑德益, 张新城, 刘正辉, 王绍华, 丁艳锋. 稻米垩白形成的生理与分子机制研究进展. 中国稻米, 2015, 21(4): 14-19. |
Lin Z M, Zheng D Y, Zhang X C, Liu Z H, Wang S H, Ding Y F.Research advances in the physiological and molecular mechanisms of chalkiness formation in rice.China Rice, 2015, 21(4): 14-19. (in Chinese with English abstract) | |
[19] | Su Y H, North H, Grignon C, Thibaud J B, Sentenac H, Very A A.Regulation by external K+ in a maize inward shaker channel targets transport activity in the high concentration range.Plant Cell, 2005, 17(5): 1532-1548. |
[20] | Wang L, Yang S Y, Guo M Y, Huang Y N, Sentenac H, Very A A, Su Y H.The S1-S2 linker determines the distinct pH sensitivity between ZmK2.1 and KAT1.Plant J, 2016, 85(5): 675-685. |
[21] | Zhao Y, Cheng S F, Song Y L, Huang Y L, Zhou S L, Liu X Y, Zhou D X.The Interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling.Plant Cell, 2015, 27(9): 2469-2483. |
[22] | Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C.Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies.Nat Genet, 2015, 47(7): 834-840. |
[23] | Wei W, Hu B, Yuan D, Liu Y Q, Che R H, Hu Y C, Ou S J, Liu Y X, Zhang Z H, Wang H R, Li H, Jiang Z M, Zhang Z L, Gao X K, Qiu Y H, Meng X B, Bai Y, Liang Y, Wang Y Q, Zhang L H, Li L G, Sodmergen, Jing H C, Li J Y, Chu C C. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice.Plant Cell, 2018, 30(3): 638-651. |
[24] | Yang L X, Huang J Y, Yang H J, Dong G C, Liu H J, Liu G, Zhu J G, Wang Y L.Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization.Field Crops Res, 2007, 100(2): 189-199. |
[25] | 黄建晔, 杨连新, 杨洪建, 刘红江, 董桂春, 朱建国, 王余龙.开放式空气CO2浓度增加对水稻生育期的影响及其原因分析. 作物学报, 2005, 31(7): 882-887. |
Huang J Y, Yang L X, Yang H J, Liu H J, Dong G C, Zhu J G, Wang Y L.Effects of free-air CO2 enrichment (FACE) on growth duration of rice (Oryza sativa L.) and its cause.Acta Agron Sin, 2005, 31(7): 882-887. (in Chinese with English abstract) | |
[26] | Siebert S, Ewert F, Rezaei E E, Kage H, Gras R.Impact of heat stress on crop yield: On the importance of considering canopy temperature.Environm Res Lett, 2014, 9(4): 044012. |
[27] | 罗卫红, Yoshimoto M, 戴剑峰, 朱建国, 韩勇, 刘钢. 开放式空气CO2浓度增高对水稻冠层微气候的影响. 应用生态学报, 2002, 13(10): 1235-1239. |
Luo W, Yoshimoto M, Dai J, Zhu J G, Han Y, Liu G.Effects of free-air CO2 enrichment on rice canopy microclimate.Chin J Appl Ecol, 2002, 13(10): 1235-1239. (in Chinese with English abstract) | |
[28] | Kobayashi A, Bao G L, Ye S H, Tomita K.Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties.Breeding Sci, 2007, 57: 107-116. |
[29] | 庞静, 朱建国, 谢祖彬, 刘钢, 陈改萍. CO2浓度升高条件下水稻蒸腾与N吸收的关系. 中国水稻科学, 2006, 20(2): 205-209. |
Pang J, Zhu J G, Xie Z B, Liu G, Chen G P.Relations between transpiration and N uptake of rice grown in elevated air carbon dioxide concentration.Chin J Rice Sci, 2006, 20(2): 205-209. (in Chinese with English abstract) | |
[30] | 徐习. 高浓度CO2条件下提升水稻增产效应的初步研究.南京: 中国科学院南京土壤研究, 2017. |
Xu X.Preliminary study on raising rice yield response to elevated carbon dioxide. Nanjing: Institute of Soil Science, Chinese Academy of Sciences, 2017. (in Chinese with English abstract) | |
[31] | Lawlor D W.Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems.J Exper Bot, 2002, 53(370): 773-787. |
[32] | Ambardekar A A, Siebenmorgen T J, Counce P A, Lanning S B, Mauromoustakos A.Impact of field-scale nighttime air temperatures during kernel development on rice milling quality.Field Crops Res, 2011, 122(3): 179-185. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||