中国水稻科学 ›› 2019, Vol. 33 ›› Issue (2): 167-175.DOI: 10.16819/j.1001-7216.2019.8059 168
收稿日期:
2018-05-07
修回日期:
2018-11-26
出版日期:
2019-03-10
发布日期:
2019-03-10
通讯作者:
郜红建
基金资助:
Chen CHEN, Haiqing GONG, Mengcan JIN, Hongjian GAO*()
Received:
2018-05-07
Revised:
2018-11-26
Online:
2019-03-10
Published:
2019-03-10
Contact:
Hongjian GAO
摘要:
【目的】植物根系形态对于适应低磷胁迫具有一定的可塑性,对提高磷的吸收利用具有重要意义。因此,本研究以长江中下游地区主推的102个水稻品种为供试材料,研究根系形态与水稻幼苗磷吸收利用的相关性。【方法】采用国际水稻所营养液培养方法,研究在NH4+-N和NO3–-N供应条件下苗期植株生物量、磷含量和磷素累积量及其与根系形态指标的相关性。【结果】研究结果表明,在相同供氮水平(40 mg/L)下,供应NH4+-N时,水稻苗期平均生物量为67.87 mg/株,比供应NO3–-N时高4.27 mg/株;水稻苗期平均磷含量为0.49%,比供应NO3–-N时高0.10%;水稻苗期平均磷累积量为0.37 mg/株,比供应NO3–-N时高0.10 mg/株。在NH4+-N条件下,水稻根系形态指标变异系数呈现根尖数>总根长>分支数>总根面积>交叉数>总根体积>平均根系直径的规律;在NO3–-N条件下,水稻根系形态指标变异系数呈现根尖数>分枝数>总根长>总根面积>交叉数>总根体积>平均根系直径的趋势。在NH4+-N条件下,总根长、总根面积、分枝数、交叉数四个形态指标与植株生物量、磷含量、磷累积相关最为显著(P<0.01),而在NO3–-N培养下,总根长、总根面积、根尖数、交叉数与植株生物量及磷素吸收累积指标相关性最为显著(P<0.01)。【结论】供应氨态氮,水稻营养指标与根系形态指标的相关性更高。水稻苗期根系总根长、总根面积、交叉数可作为水稻磷高效评价的重要指标。
中图分类号:
陈晨, 龚海青, 金梦灿, 郜红建. 不同供氮形态下水稻苗期磷吸收累积与根系形态的关系[J]. 中国水稻科学, 2019, 33(2): 167-175.
Chen CHEN, Haiqing GONG, Mengcan JIN, Hongjian GAO. Correlation Between Root Morphology and Accumulation of Phosphorus in Rice Seedlings under Different N Forms[J]. Chinese Journal OF Rice Science, 2019, 33(2): 167-175.
编号 Number | 品种 Variety | 编号 Number | 品种 Variety | 编号 Number | 品种 Variety |
---|---|---|---|---|---|
1 | 农香25 Nongxiang 25 | 35 | 武运粳23 Wuyunjing 23 | 69 | 辐照1号 Fuzhao 1 |
2 | 玉针香 Yuzhenxiang | 36 | WJ112 | 70 | 淮稻18 Huaidao 18 |
3 | 株两优819 Zhuliangyou 819 | 37 | 镇稻11 Zhendao 11 | 71 | 泗稻12 Sidao 12 |
4 | 湘晚籼17 Xiangwanxian 17 | 38 | Y两优646 Y liangyou 646 | 72 | 镇稻18 Zhendao 18 |
5 | 黄华占 Huanghuazhan | 39 | 新两优343 Xinliangyou 343 | 73 | 武运粳19 Wuyunjing 19 |
6 | 陆两优997 Luliangyou 997 | 40 | Y两优2号Y liangyou 2 | 74 | 武运粳21 Wuyunjing 21 |
7 | 湘晚籼12 Xiangwanxian 12 | 41 | 广两优3905 Guangliangyou 3905 | 75 | 连粳9号 Liangjing 9 |
8 | 丰两优1号 Fengliangyou 1 | 42 | 甬优9号 Yongyou 9 | 76 | 连粳7号 Lianjing 7 |
9 | 湘早籼32 Xiangzaoxian 32 | 43 | 晚稻119 Wandao 119 | 77 | 镇稻8号Zhendao 8 |
10 | 湘早籼45 Xiangzaoxian 45 | 44 | 苏稻5号 Sudao 5 | 78 | 武运粳24 Wuyunjing 24 |
11 | 丰源优2997 Fengyuanyou 2997 | 45 | 中籼2503 Zhongxian 2503 | 79 | 宁粳5号 Ningjing 5 |
12 | C两优608 C liangyou 608 | 46 | 两优766 Liangyou 766 | 80 | 新两优6号 Xinliangyou 6 |
13 | 丰源优2297 Fengyuanyou 2297 | 47 | 新两优223 Xinliangyou 223 | 81 | 皖稻153 Wandao 153 |
14 | 湘早籼24 Xiangzaoxian 24 | 48 | Ⅱ优602 ⅡYou 602 | 82 | 丰两优9号 Fengliangyou 9 |
15 | 湘早籼6号 Xiangzaoxian 6 | 49 | 新两优106 Xinliangyou 106 | 83 | 两优383 Liangyou 383 |
16 | 隆香优130 Longxiangyou 130 | 50 | 航香18 Hangxiang 18 | 84 | 两优378 Liangyou 378 |
17 | 湘早籼42 Xiangzaoxian 42 | 51 | 春优84 Chunyou 84 | 85 | Y两优1号 Y liangyou 1 |
18 | 湘晚籼22 Xiangwanxian 22 | 52 | 徽两优6号 Huiliangyou 6 | 86 | 南粳94140 Nanjing 94140 |
19 | 陆两优996 Luliangyou 996 | 53 | 新两优香42 Xinliangyouxiang 42 | 87 | 丰两优80 Fengliangyou 80 |
20 | 镇16 Zhen 16 | 54 | 两优8106 Liangyou 8106 | 88 | 嘉优2号 Jiayou 2 |
21 | WJ93 | 55 | 深两优1813 Shenliangyou 1813 | 89 | 镇稻12 Zhendao 12 |
22 | 镇15 Zhen 15 | 56 | 德香4103 Dexiang 4103 | 90 | 新稻25 Xindao 25 |
23 | WJ46 | 57 | 皖稻68 Wandao 68 | 91 | 深两优3117 Shenliangyou 3117 |
24 | 镇稻14 Zhendao 14 | 58 | 粤优1128 Yueyou 1128 | 92 | 新稻18号 Xindao 18 |
25 | 宁粳1号 Ningjing 1 | 59 | 苏秀9号 Suxiu 9 | 93 | 丰两优6348 Fengliangyou 6348 |
26 | WJ109 | 60 | 华粳5号 Huajing 5 | 94 | 甬优2640 Yongyou 2640 |
27 | WO30 | 61 | 盐粳7号 Yanjing 7 | 95 | 两优3905 Liangyou 3905 |
28 | 镇9424 Zhen 9424 | 62 | ANW | 96 | 南粳49 Nanjing 49 |
29 | 镇稻17 Zhendao 17 | 63 | 扬粳4037 Yangjing 4037 | 97 | 宁粳2号 Ningjing 2 |
30 | 镇稻19 Zhendao 19 | 64 | 淮稻6号 Huaidao 6 | 98 | WO32 |
31 | 宁粳3号 Ningjing 3 | 65 | 华瑞稻 Huaruidao | 99 | 中旱3号 Zhonghan 3 |
32 | WJ104 | 66 | 盐粳11 Yanjing 11 | 100 | 连粳11 Lianjing 11 |
33 | 镇稻10号 Zhendao 10 | 67 | 金粳18 Jinjing 18 | 101 | 圣稻16 Shengdao 16 |
34 | 镇稻88 Zhendao 88 | 68 | 扬辐粳8号 Yangfujing 8 | 102 | 2845 |
表1 供试水稻品种(系)及编号
Table 1 Varieties and numbers of selected rice.
编号 Number | 品种 Variety | 编号 Number | 品种 Variety | 编号 Number | 品种 Variety |
---|---|---|---|---|---|
1 | 农香25 Nongxiang 25 | 35 | 武运粳23 Wuyunjing 23 | 69 | 辐照1号 Fuzhao 1 |
2 | 玉针香 Yuzhenxiang | 36 | WJ112 | 70 | 淮稻18 Huaidao 18 |
3 | 株两优819 Zhuliangyou 819 | 37 | 镇稻11 Zhendao 11 | 71 | 泗稻12 Sidao 12 |
4 | 湘晚籼17 Xiangwanxian 17 | 38 | Y两优646 Y liangyou 646 | 72 | 镇稻18 Zhendao 18 |
5 | 黄华占 Huanghuazhan | 39 | 新两优343 Xinliangyou 343 | 73 | 武运粳19 Wuyunjing 19 |
6 | 陆两优997 Luliangyou 997 | 40 | Y两优2号Y liangyou 2 | 74 | 武运粳21 Wuyunjing 21 |
7 | 湘晚籼12 Xiangwanxian 12 | 41 | 广两优3905 Guangliangyou 3905 | 75 | 连粳9号 Liangjing 9 |
8 | 丰两优1号 Fengliangyou 1 | 42 | 甬优9号 Yongyou 9 | 76 | 连粳7号 Lianjing 7 |
9 | 湘早籼32 Xiangzaoxian 32 | 43 | 晚稻119 Wandao 119 | 77 | 镇稻8号Zhendao 8 |
10 | 湘早籼45 Xiangzaoxian 45 | 44 | 苏稻5号 Sudao 5 | 78 | 武运粳24 Wuyunjing 24 |
11 | 丰源优2997 Fengyuanyou 2997 | 45 | 中籼2503 Zhongxian 2503 | 79 | 宁粳5号 Ningjing 5 |
12 | C两优608 C liangyou 608 | 46 | 两优766 Liangyou 766 | 80 | 新两优6号 Xinliangyou 6 |
13 | 丰源优2297 Fengyuanyou 2297 | 47 | 新两优223 Xinliangyou 223 | 81 | 皖稻153 Wandao 153 |
14 | 湘早籼24 Xiangzaoxian 24 | 48 | Ⅱ优602 ⅡYou 602 | 82 | 丰两优9号 Fengliangyou 9 |
15 | 湘早籼6号 Xiangzaoxian 6 | 49 | 新两优106 Xinliangyou 106 | 83 | 两优383 Liangyou 383 |
16 | 隆香优130 Longxiangyou 130 | 50 | 航香18 Hangxiang 18 | 84 | 两优378 Liangyou 378 |
17 | 湘早籼42 Xiangzaoxian 42 | 51 | 春优84 Chunyou 84 | 85 | Y两优1号 Y liangyou 1 |
18 | 湘晚籼22 Xiangwanxian 22 | 52 | 徽两优6号 Huiliangyou 6 | 86 | 南粳94140 Nanjing 94140 |
19 | 陆两优996 Luliangyou 996 | 53 | 新两优香42 Xinliangyouxiang 42 | 87 | 丰两优80 Fengliangyou 80 |
20 | 镇16 Zhen 16 | 54 | 两优8106 Liangyou 8106 | 88 | 嘉优2号 Jiayou 2 |
21 | WJ93 | 55 | 深两优1813 Shenliangyou 1813 | 89 | 镇稻12 Zhendao 12 |
22 | 镇15 Zhen 15 | 56 | 德香4103 Dexiang 4103 | 90 | 新稻25 Xindao 25 |
23 | WJ46 | 57 | 皖稻68 Wandao 68 | 91 | 深两优3117 Shenliangyou 3117 |
24 | 镇稻14 Zhendao 14 | 58 | 粤优1128 Yueyou 1128 | 92 | 新稻18号 Xindao 18 |
25 | 宁粳1号 Ningjing 1 | 59 | 苏秀9号 Suxiu 9 | 93 | 丰两优6348 Fengliangyou 6348 |
26 | WJ109 | 60 | 华粳5号 Huajing 5 | 94 | 甬优2640 Yongyou 2640 |
27 | WO30 | 61 | 盐粳7号 Yanjing 7 | 95 | 两优3905 Liangyou 3905 |
28 | 镇9424 Zhen 9424 | 62 | ANW | 96 | 南粳49 Nanjing 49 |
29 | 镇稻17 Zhendao 17 | 63 | 扬粳4037 Yangjing 4037 | 97 | 宁粳2号 Ningjing 2 |
30 | 镇稻19 Zhendao 19 | 64 | 淮稻6号 Huaidao 6 | 98 | WO32 |
31 | 宁粳3号 Ningjing 3 | 65 | 华瑞稻 Huaruidao | 99 | 中旱3号 Zhonghan 3 |
32 | WJ104 | 66 | 盐粳11 Yanjing 11 | 100 | 连粳11 Lianjing 11 |
33 | 镇稻10号 Zhendao 10 | 67 | 金粳18 Jinjing 18 | 101 | 圣稻16 Shengdao 16 |
34 | 镇稻88 Zhendao 88 | 68 | 扬辐粳8号 Yangfujing 8 | 102 | 2845 |
图1 在NH4+-N和NO3--N培养条件下水稻苗期生物量(A)、磷含量(B)和磷累积量(C) 1,2……102分别表示供试水稻品种编号;A图中单位为mg/株;B图中单位为%;C图中单位为mg/株
Fig. 1. Biomass(A), phosphorus content(B), phosphorus accumulation(C) of rice plants at the seedling stage cultured in NH4+-N and NO3--N solutions. 1,2……102 represent variety numbers of selected rice varieties; the unit in the A is mg/plant; the unit in the B is %; and the unit in the C is mg/plant.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
变幅 Range | 均值 Mean | 变异系数 CV/% | 变幅 Range | 均值 Mean | 变异系数 CV/% | |
总根长 Total root length/cm | 153.84-2947.86 | 1195.88 aA | 56.63 | 103.58-2165.30 | 979.38 bB | 53.93 |
总根面积 Total root area/cm2 | 9.46-180.77 | 82.56 aA | 46.16 | 13.15-156.89 | 54.77 bB | 54.91 |
平均直径 Average diameter/mm | 0.20-0.46 | 0.30 aA | 19.28 | 0.18-0.42 | 0.29 aA | 21.25 |
总根体积 Total root volume/cm3 | 0.13-0.92 | 0.42 aA | 44.53 | 0.08-0.94 | 0.40 aA | 50.43 |
根尖数 Root tip No. | 879.00-30 975.00 | 11 323.75 aA | 65.96 | 805.67-26 277.67 | 9 459.69 bB | 63.17 |
分枝数 Root branch No. | 2188.33-36 903.67 | 13 386.56 aA | 56.67 | 2013.67-36 333.67 | 11 754.37 bB | 60.53 |
交叉数 Root crossing No. | 1663.00-26 835.00 | 11 449.16 aA | 45.54 | 1098.67-28 036.33 | 11 692.79 aA | 53.35 |
表2 NH4+-N和NO3--N供应条件下水稻苗期根系形态变异特征
Table 2 Variation characteristics of root morphology of rice cultured in NH4+-N and NO3--N solutions.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
变幅 Range | 均值 Mean | 变异系数 CV/% | 变幅 Range | 均值 Mean | 变异系数 CV/% | |
总根长 Total root length/cm | 153.84-2947.86 | 1195.88 aA | 56.63 | 103.58-2165.30 | 979.38 bB | 53.93 |
总根面积 Total root area/cm2 | 9.46-180.77 | 82.56 aA | 46.16 | 13.15-156.89 | 54.77 bB | 54.91 |
平均直径 Average diameter/mm | 0.20-0.46 | 0.30 aA | 19.28 | 0.18-0.42 | 0.29 aA | 21.25 |
总根体积 Total root volume/cm3 | 0.13-0.92 | 0.42 aA | 44.53 | 0.08-0.94 | 0.40 aA | 50.43 |
根尖数 Root tip No. | 879.00-30 975.00 | 11 323.75 aA | 65.96 | 805.67-26 277.67 | 9 459.69 bB | 63.17 |
分枝数 Root branch No. | 2188.33-36 903.67 | 13 386.56 aA | 56.67 | 2013.67-36 333.67 | 11 754.37 bB | 60.53 |
交叉数 Root crossing No. | 1663.00-26 835.00 | 11 449.16 aA | 45.54 | 1098.67-28 036.33 | 11 692.79 aA | 53.35 |
氮供应 Nitrogen form | 参数 Parameter | 总根长 Total root length | 总根面积 Total root area | 平均根系直径Average diameter | 总根体积 Total root volume | 根尖数 Root tip No. | 分枝数 Root branch No. | 交叉数 Root crossing No. |
---|---|---|---|---|---|---|---|---|
NH4+-N | 整株生物量 Whole plant biomass | 0.93** | 0.91** | -0.22* | 0.81** | 0.90** | 0.86** | 0.89** |
整株P含量 Whole plant P content | 0.61** | 0.60** | -0.15 | 0.54** | 0.54** | 0.63** | 0.65** | |
整株P累积量 Whole plant P accumulation | 0.88** | 0.85** | -0.21* | 0.77** | 0.84** | 0.85** | 0.86** | |
NO3--N | 整株生物量 Whole plant biomass | 0.97** | 0.87** | -0.24* | 0.77** | 0.91** | 0.86** | 0.93** |
整株P含量 Whole plant P content | 0.55** | 0.43** | -0.17 | 0.33** | 0.45** | 0.37** | 0.56** | |
整株P累积量 Whole plant P accumulation | 0.89** | 0.78** | -0.22* | 0.63** | 0.79** | 0.73** | 0.87** |
表3 不同供氮形态下水稻生物量、磷养分指标与根系形态指标相关性分析
Table 3 Correlations between biomass, phosphorus indices and root morphological indices under different N forms.
氮供应 Nitrogen form | 参数 Parameter | 总根长 Total root length | 总根面积 Total root area | 平均根系直径Average diameter | 总根体积 Total root volume | 根尖数 Root tip No. | 分枝数 Root branch No. | 交叉数 Root crossing No. |
---|---|---|---|---|---|---|---|---|
NH4+-N | 整株生物量 Whole plant biomass | 0.93** | 0.91** | -0.22* | 0.81** | 0.90** | 0.86** | 0.89** |
整株P含量 Whole plant P content | 0.61** | 0.60** | -0.15 | 0.54** | 0.54** | 0.63** | 0.65** | |
整株P累积量 Whole plant P accumulation | 0.88** | 0.85** | -0.21* | 0.77** | 0.84** | 0.85** | 0.86** | |
NO3--N | 整株生物量 Whole plant biomass | 0.97** | 0.87** | -0.24* | 0.77** | 0.91** | 0.86** | 0.93** |
整株P含量 Whole plant P content | 0.55** | 0.43** | -0.17 | 0.33** | 0.45** | 0.37** | 0.56** | |
整株P累积量 Whole plant P accumulation | 0.89** | 0.78** | -0.22* | 0.63** | 0.79** | 0.73** | 0.87** |
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | 因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | |
植株生物量 Whole plant biomass/g | Y1 | Y1=-2.37+2×10-3X1+0.19X2+10-3 X6+10-3X7 | 0.92** | Y4 | Y8=-0.30+5.60×10-2 X1+0.17X2 | 0.94** |
植株P含量 Whole plant P content/% | Y2 | Y2=0.01-4.09×10-7X7 | 0.27* | Y5 | Y11=0.27-1.03×10-5 X6+2.03×10-5 X7 | 0.40* |
植株P累积量 Whole plant P accumulation/g | Y3 | Y3=-22.75+8×10-3 X6 + 4×10-3 X7 | 0.82** | Y6 | Y12=-4.49+4×10-2 X1+1×10-3 X6 | 0.81** |
表4 不同氮形态供应下水稻营养指标与形态指标多元逐步回归分析
Table 4 Multiple linear regression of rice nutritional indices and morphological indices under different nitrogen conditions.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | 因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | |
植株生物量 Whole plant biomass/g | Y1 | Y1=-2.37+2×10-3X1+0.19X2+10-3 X6+10-3X7 | 0.92** | Y4 | Y8=-0.30+5.60×10-2 X1+0.17X2 | 0.94** |
植株P含量 Whole plant P content/% | Y2 | Y2=0.01-4.09×10-7X7 | 0.27* | Y5 | Y11=0.27-1.03×10-5 X6+2.03×10-5 X7 | 0.40* |
植株P累积量 Whole plant P accumulation/g | Y3 | Y3=-22.75+8×10-3 X6 + 4×10-3 X7 | 0.82** | Y6 | Y12=-4.49+4×10-2 X1+1×10-3 X6 | 0.81** |
[1] | Liedgens M, Soldati A, Stamp P.Root development of maize (Zea mays L.) as observed with minirhizotrons in lysimeters. Crop Sci, 2000, 40(6): 1665-1672. |
[2] | Yan X, Liao H, Beebe S E, Blair M W, Lynch J P.QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean.Plant & Soil, 2004, 265(1/2): 17-29. |
[3] | Bates T R, Lynch J P.Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability.Plant Cell & Environ, 1996, 19(5): 529-538. |
[4] | Jungk A.Root hairs and the acquisition of plant nutrients from soil.J Plant Nutr Soil Sci, 2015, 164(2):121-129 |
[5] | Bonser A M, Lynch J, Snapp S.Effect of phosphorus deficiency on growth angle of basal roots in phaseolus Vulgaris.New Phytol, 1996, 132(2): 281-288. |
[6] | Liao H, Rubio G, Yan X, Cao A Q, Brown K M, Lynch J P.Effect of phosphorus availability on basal root shallowness in common bean.Plant & Soil, 2001, 232(1/2): 69-79 |
[7] | 沈宏, 严小龙. 根系分泌作用及其诱导机制. 生态环境学报, 2001, 10(4): 339-342. |
Sheng H, Yan X L.Root exudation and their induced mechanism.Ecol Environ Sci, 2001, 10(4): 339-342 (in Chinese with English abstract) | |
[8] | 张平. 氮形态对低磷胁迫下苗期玉米磷素吸收的影响及其机理. 南京: 南京农业大学, 2012. |
Zhang P.Mechanisms and effects of nitrogen forms on phosphorus absorption of maize (Zea mays L.) under phosphorus stress at seedling stage. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[9] | 邹春琴, 杨志福. 氮素形态对春小麦根际pH与磷素营养状况的影响. 土壤通报, 1994(4): 175-177. |
Zhou C Q, Yang Z F. Effects of different form nitrogen on pH and phosphorus content of spring wheat rhizosphere. Chin J Soil Sci, 1994(4): 175-177. (in Chinese with English abstract) | |
[10] | 李朝霞. 磷匮乏影响玉米根系发育机制的研究. 济南: 山东大学, 2011. |
Li C X.Study on the mechanism of root developmental changes to phosphate deficiency in maize. Jinan: Shandong University, 2011. (in Chinese with English abstract) | |
[11] | Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S.Integrated soil-crop system management for food security.PNAS, 2011, 108(16): 6399-6404. |
[12] | 严小龙, 廖红, 戈振扬. 植物根构型特性与磷吸收效率. 植物学报, 2000, 17(6): 511-519. |
Yan X L, Liao H, Ge Z Y. root architectural characteristics and phosphorus acquisition efficiency in plants.Chin Bull Bot, 2000, 17(6): 511-519. (in Chinese) | |
[13] | 赵静, 付家兵, 廖红,罗锡文. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49(13): 1249-1257. |
Zhao J, Fu J B, Liao H, Luo X W.Properties evaluation of phosphorus efficiency on roots structure of soybean.Chin Sci Bull, 2004, 49(13): 1249-1257. (in Chinese) | |
[14] | Forde B, Lorenzo H.The nutritional control of root development. Interactions in the root environment: An Integrated Approach. 2002: 51-68. |
[15] | 刘灵, 廖红, 王秀荣, 严小龙. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系. 中国农业科学, 2008, 41(4): 1089-1099. |
Liu L, Liao H, Wang X R, Yan X L.Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency.Sci Agric Sin, 2008, 41(4): 1089-1099. (in Chinese with English abstract) | |
[16] | 李佳. 水稻根系应答根际水分与磷素环境变化的研究. 扬州: 扬州大学, 2015. |
Li J.Study on rhizosphere moisture and phosphorus environment change of rice root response. Yangzhou: Yangzhou University, 2015. (in Chinese with English abstract) | |
[17] | 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23(2): 333-341. |
Chen C, Gong H Q, Zhang J Z, Gao H J.Correlation between root morphology and nitrogen uptake of rice.J Plant Nutr Fert, 2017, 23(2): 333-341. (in Chinese with English abstract) | |
[18] | Lynch J.Root Architecture and Plant Productivity.Plant Physiol, 1995, 109(1): 7-13. |
[19] | 李宝珍, 王松伟, 冯慧敏, 徐国华. 氮素供应形态对水稻根系形态和磷吸收的影响. 中国水稻科学, 2008, 22(6): 665-668. |
Li B Z, Wang S W, Feng H M, Xu G H.Effects of nitrogen forms on root morphology and phosphate uptake in rice.Chin J Rice Sci, 2008, 22(6): 665-668 (in Chinese with English abstract) | |
[20] | Ladha J K, Kirk G J, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U.Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm.Field Crops Res, 1998, 56(1/2): 41-71. |
[21] | 廖红, 戈振扬, 戈振场, 严小龙. 水磷耦合胁迫下植物磷吸收的理想根构型:模拟与应用. 科学通报, 2001, 46(8): 641-646. |
Liao H, Ge Z Y, Yan X L, Yan X L,.Optimized root architecture for phosphorus acquisition under water and phosphorus stress: Simulation and application.Chin Sci Bull, 2001, 46(8): 641-646. (in Chinese with English abstract) | |
[22] | Muchhal U S, Pardo J M, Raghothama K G.Phosphate transporters from the higher plant Arabidopsis thaliana. PNAS, 1996, 93(19): 10519. |
[23] | 李宝珍, 辛伟杰, 徐国华. 氮饥饿水稻利用不同形态氮素的差异及其生理机制. 土壤学报, 2007, 44(2): 273-279. |
Li B Z, Xin W J, Xu G H.Physiological mechanisms in uptake and use of different forms of nitrogen by nitrogen starved rice crop.Acta Pedol Sin, 2007, 44(2):273-279. (in Chinese with English abstract) | |
[24] | 范志强. 氮磷营养及氮形态对水曲柳幼苗生长和生理的影响机制. 沈阳: 东北林业大学, 2004. |
Fan Z Q.Effects of nitrogen, phosphorus and nitrogen forms on growth and physiological traits of fraxinus mandshurica seedlings. Shenyang: Northeast Forestry University, 2004 (in Chinese with English abstract) | |
[25] | 张彦东, 范志强, 王庆成, 王政权. 不同形态N素对水曲柳幼苗生长的影响. 应用生态学报, 2000, 11(5): 665-667. |
Zhou Y D, Fan Z Q, Wang Q C, Wang Z Q.Effects of different nitrogen forms on growth of Fraxinus mandshurica seedlings. Chin J Appl Ecol, 2000, 11(5): 665-667.(in Chinese with English abstract) | |
[26] | Miller M H.Effects of nitrogen on phosphorus absorption by plants.Proc Plant Root Environ, 1974. |
[27] | Thien S J, Mcfee W W.Effect of Nitrogen on phosphorus transport systems in Zea Mays L. Soil Sci Soc Amer J, 1972, 36(4): 617-620. |
[28] | Smith F W, Jackson W A.Nitrogen enhancement of phosphate transport in roots of Zea mays L.: I. Effects of ammonium and nitrate pretreatment. Plant Physiol, 1987, 84(4): 1314-1318. |
[29] | Hirel B, Limami A M.Prospects for improving nitrogen use efficiency: Insights given by 15 N-labelling experiments.Phytochem Rev, 2002, 2(1/2): 133-144. |
[30] | Radin J W.Differential regulation of nitrate reductase induction in roots and shoots of cotton plants.Plant Physiol, 1975, 55(2): 178-182. |
[31] | Zhang H, Xue YG, Wang ZQ, Yang J, Zhang J.Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice.Field Crops Res, 2009, 113(1): 31-40. |
[32] | Mackown C T, Jackson W A, Volk R J.Restricted nitrate influx and reduction in corn seedlings exposed to nitrate and ammonium nutrition.Plant Physiol, 1982, 62(9): 353-359. |
[33] | Bonser A M, Lynch J, Snapp S.Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris.New Phytol, 1996, 132(2): 281-288. |
[34] | Ingestad T, Agren G I.The Influence of plant nutrition on biomass allocation.Ecol Appl A Publ Ecol Soc America, 1991, 1(2): 168. |
[35] | Serna M D, Borras R, Legaz F, Primo-Millo E.The influence of nitrogen concentration and ammonium /nitrate ratio on N-uptake, mineral composition and yield of citrus.Plant & Soil, 1992, 147(1): 13-23. |
[36] | Muchhal U S, Pardo J M, Raghothama K G.Phosphate transporters from the higher plant Arabidopsis thaliana. PNAS, 1996, 93(19): 10519. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||