中国水稻科学 ›› 2018, Vol. 32 ›› Issue (6): 610-616.DOI: 10.16819/j.1001-7216.2018.8045
• • 上一篇
孙磊1,2, 王玲1, 刘连盟1, 侯雨萱1, 黎起秦2,*(), 黄世文1,2,*()
收稿日期:
2018-04-16
修回日期:
2018-06-25
出版日期:
2018-11-27
发布日期:
2018-11-10
通讯作者:
黎起秦,黄世文
基金资助:
Lei SUN1,2, Ling WANG1, Lianmeng LIU1, Yuxuan HOU1, Qiqin LI2,*(), Shiwen HUANG1,2,*()
Received:
2018-04-16
Revised:
2018-06-25
Online:
2018-11-27
Published:
2018-11-10
Contact:
Qiqin LI, Shiwen HUANG
摘要:
目的 旨在确立稳定高效的水稻穗腐病人工接种技术,鉴定不同菌株致病力。利用已有的伏马菌素检测方法分析测定两种培养基中不同菌株的伏马菌素合成能力,基于上述方法筛选强致病力高产伏马菌素菌株。方法 分别在水稻孕穗期和抽穗期采用注射法和喷雾法接种,观察不同时期、不同接种方法下层出镰刀菌的致病性和稳定性;利用适合的接种方法和液相色谱-串联质谱检测法比较不同菌株的致病力和产毒能力。结果 在花粉母细胞减数分裂期-花粉母细胞成熟期采用注射法接种水稻穗腐病,发病率较高且稳定;在花粉母细胞形成期-始穗期接种对水稻产量影响较大。基于该方法成功筛选出了强致病力菌株FP4、FP6、FP8、FP9、FP10;经HPLC-MS/MS分析测定了层出镰刀菌产生伏马菌素能力,获得了强致病力高产毒菌株FP4和FP9。稻谷培养基比玉米培养基更适合层出镰刀菌合成伏马菌素。结论 水稻穗腐病初侵染为花粉母细胞形成期-花粉母细胞减数分裂期,最佳侵染时期为花粉母细胞形成期-齐穗期;穗腐病对水稻产量的影响与感病时期密切相关。
中图分类号:
孙磊, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文. 水稻穗腐病菌强致病力且高产伏马菌素菌株筛选[J]. 中国水稻科学, 2018, 32(6): 610-616.
Lei SUN, Ling WANG, Lianmeng LIU, Yuxuan HOU, Qiqin LI, Shiwen HUANG. Screening for Strains of Rice Spikelet Rot Disease Pathogenic Fungus with High Fumonisin Production and Strong Pathogenicity[J]. Chinese Journal OF Rice Science, 2018, 32(6): 610-616.
生育期 Rice growth stage | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 穗重 Panicle weight/g |
---|---|---|---|
清水 Clean water | 92.42±3.10 a | 21.06±0.22 a | 3.45±0.22 a |
颖花分化期-雌雄蕊分化形成期 Spikelet differentiation to pistil and stamen formation stage(Ⅰ) | 91.46±2.54 a | 21.32±0.21 a | 3.42±0.26 ab |
花粉母细胞形成期-花粉母细胞减数分裂期 Pollen mother cell formation to meiosis(Ⅲ) | 21.27±1.90 d | 14.71±0.31 f | 2.18±0.14 c |
花粉母细胞减数分裂期-花粉母细胞成熟期 Pollen mother cell meiosis to maturing stage(Ⅳ) | 24.14±2.03 d | 15.14±0.18 e | 2.23±0.09 c |
破口期-始穗期 Rupturing to initial heading(Ⅴ) | 24.15±3.06 d | 16.41±0.26 d | 2.41±0.35 c |
始穗期-抽穗盛期 Initial heading to heading(Ⅵ) | 53.79±2.04 c | 17.46±0.16 c | 2.96±0.31 b |
抽穗盛期-齐穗期 Heading to full heading(Ⅶ) | 83.56±3.16 b | 18.32±0.21 b | 3.27±0.42 ab |
表1 不同生育期接种后穗部性状比较
Table 1 Comparison of panicle characteristics after inoculation at different growth stages.
生育期 Rice growth stage | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 穗重 Panicle weight/g |
---|---|---|---|
清水 Clean water | 92.42±3.10 a | 21.06±0.22 a | 3.45±0.22 a |
颖花分化期-雌雄蕊分化形成期 Spikelet differentiation to pistil and stamen formation stage(Ⅰ) | 91.46±2.54 a | 21.32±0.21 a | 3.42±0.26 ab |
花粉母细胞形成期-花粉母细胞减数分裂期 Pollen mother cell formation to meiosis(Ⅲ) | 21.27±1.90 d | 14.71±0.31 f | 2.18±0.14 c |
花粉母细胞减数分裂期-花粉母细胞成熟期 Pollen mother cell meiosis to maturing stage(Ⅳ) | 24.14±2.03 d | 15.14±0.18 e | 2.23±0.09 c |
破口期-始穗期 Rupturing to initial heading(Ⅴ) | 24.15±3.06 d | 16.41±0.26 d | 2.41±0.35 c |
始穗期-抽穗盛期 Initial heading to heading(Ⅵ) | 53.79±2.04 c | 17.46±0.16 c | 2.96±0.31 b |
抽穗盛期-齐穗期 Heading to full heading(Ⅶ) | 83.56±3.16 b | 18.32±0.21 b | 3.27±0.42 ab |
菌种 Strain | 接种后14 d 14 d after inoculation | 接种后21 d 21 d after inoculation | |||
---|---|---|---|---|---|
病情指数 Disease index/% | 病害严重度 Disease severity | 病情指数 Disease index/% | 病害严重度 Disease severity | ||
FP1 | 1.80±0.47 g | 低 Low | 2.98±0.27 ef | 低 Low | |
FP2 | 3.72±0.87 de | 中 Medium | 5.16±0.73 cd | 中 Medium | |
FP3 | 2.81±0.44 ef | 低 Low | 3.81±0.73 de | 中 Medium | |
FP4 | 5.71±1.40 c | 高 High | 8.21±1.11 a | 高 High | |
FP5 | 4.84±0.61 cd | 中 Medium | 4.58±0.31 cd | 中 Medium | |
FP6 | 8.34±0.34 a | 高 High | 8.62±0.45 a | 高 High | |
FP7 | 2.03±0.61 fg | 低 Low | 2.12±0.25 f | 低 Low | |
FP8 | 4.86±0.44 cd | 中 Medium | 6.87±0.92 ab | 高 High | |
FP9 | 8.47±0.48 a | 高 High | 9.29±0.53 ab | 高 High | |
FP10 | 6.90±0.38 b | 高 High | 6.96±0.66 bc | 中 Medium | |
FP11 | 4.51±0.34 d | 中 Medium | 4.63±1.23 cd | 中 Medium | |
FP12 | 3.09±0.35 ef | 低 Low | 3.68±0.22 de | 中 Medium |
表2 层出镰刀菌接种后的病情指数
Table 2 Disease index after inoculation with F. proliferatum
菌种 Strain | 接种后14 d 14 d after inoculation | 接种后21 d 21 d after inoculation | |||
---|---|---|---|---|---|
病情指数 Disease index/% | 病害严重度 Disease severity | 病情指数 Disease index/% | 病害严重度 Disease severity | ||
FP1 | 1.80±0.47 g | 低 Low | 2.98±0.27 ef | 低 Low | |
FP2 | 3.72±0.87 de | 中 Medium | 5.16±0.73 cd | 中 Medium | |
FP3 | 2.81±0.44 ef | 低 Low | 3.81±0.73 de | 中 Medium | |
FP4 | 5.71±1.40 c | 高 High | 8.21±1.11 a | 高 High | |
FP5 | 4.84±0.61 cd | 中 Medium | 4.58±0.31 cd | 中 Medium | |
FP6 | 8.34±0.34 a | 高 High | 8.62±0.45 a | 高 High | |
FP7 | 2.03±0.61 fg | 低 Low | 2.12±0.25 f | 低 Low | |
FP8 | 4.86±0.44 cd | 中 Medium | 6.87±0.92 ab | 高 High | |
FP9 | 8.47±0.48 a | 高 High | 9.29±0.53 ab | 高 High | |
FP10 | 6.90±0.38 b | 高 High | 6.96±0.66 bc | 中 Medium | |
FP11 | 4.51±0.34 d | 中 Medium | 4.63±1.23 cd | 中 Medium | |
FP12 | 3.09±0.35 ef | 低 Low | 3.68±0.22 de | 中 Medium |
图5 层出镰刀菌接种后病情^ A–弱致病力菌株;B–中等致病力菌株;C–强致病力菌株。
Fig. 5. Disease severity after inoculation with F. proliferatum.^ A, Weak pathogenic strain; B, Moderate pathogenic strain; C, Strong pathogenic strain.
菌株 Strain | FB1含量 FB1 content/(mg·kg-1) | FB2含量 FB2 content/(mg·kg-1) | |||
---|---|---|---|---|---|
玉米 Corn kernel | 稻谷 Paddy rice | 玉米 Corn kernels | 稻谷 Paddy rice | ||
FP4 | 54.49±1.46 a | 119.98±1.60 a | 22.75±0.03 a | 42.17±0.56 b | |
FP6 | 18.46±0.41 d | 57.04±0.82 c | 5.36±0.14 c | 31.85±0.87 c | |
FP8 | 0.75±0.03 e | 15.83±0.07 d | 0.23±0.00 d | 10.39±0.13 e | |
FP9 | 33.52±0.28 b | 118.16±0.55 a | 10.43±0.12 b | 45.99±0.48 a | |
FP10 | 24.84±0.68 c | 63.88±1.84 b | 10.53±0.43 b | 27.21±1.12 d |
表3 层出镰刀菌产生伏马菌素能力的比较
Table 3 Comparison of the ability of F. proliferatum to produce FB1 and FB2.
菌株 Strain | FB1含量 FB1 content/(mg·kg-1) | FB2含量 FB2 content/(mg·kg-1) | |||
---|---|---|---|---|---|
玉米 Corn kernel | 稻谷 Paddy rice | 玉米 Corn kernels | 稻谷 Paddy rice | ||
FP4 | 54.49±1.46 a | 119.98±1.60 a | 22.75±0.03 a | 42.17±0.56 b | |
FP6 | 18.46±0.41 d | 57.04±0.82 c | 5.36±0.14 c | 31.85±0.87 c | |
FP8 | 0.75±0.03 e | 15.83±0.07 d | 0.23±0.00 d | 10.39±0.13 e | |
FP9 | 33.52±0.28 b | 118.16±0.55 a | 10.43±0.12 b | 45.99±0.48 a | |
FP10 | 24.84±0.68 c | 63.88±1.84 b | 10.53±0.43 b | 27.21±1.12 d |
[1] | Huang S W, Wang L, Liu L M, Tang S Q, Zhu D F, Savary S.Rice spikelet rot disease in China: Ⅰ. Characterization of fungi associated with the disease.Crop Prot, 2011, 30(1): 1-9. |
[2] | Jiang Y, Chen Z, Guangren X U.Research progress of fumonisin toxicity in pigs.China Feed, 2016. |
[3] | Rheeder J P, Wfo M, Thiel P G, Sydenham E W, Shephard G S, Van Schalkwyk D [J].Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology, 1992, 82(3): 353-357. |
[4] | Shephard G S.Dietary fumonisin exposure in a rural population of South Africa.Food Chem Tox, 2010, 48(8/9): 2103-2108. |
[5] | Huang S W, Wang L, Liu L M, Tang S Q, Zhu D F, Savary S.Rice spikelet rot disease in China: Ⅱ. Pathogenicity tests, assessment of the importance of the disease, and preliminary evaluation of control options.Crop Prot, 2011, 30(1): 10-17. |
[6] | Woloshuk C P, Shim W B.Aflatoxins, fumonisins, and trichothecenes: A convergence of knowledge.Fems Microbiol Rev, 2013, 37(1): 94-109. |
[7] | Rheeder J P,Marasas W F O, Vismer H F. Production of Fumonisin Analogs byFusarium Species. Appl Environ Microbiol, 2002, 68(5): 2101-2105. |
[8] | Nelson P E, Desjardins A E, Plattner R D.Fumonisins, mycotoxins produced byFusarium Species: Biology, chemistry, and significance. Ann Rev Phytopathol, 1993, 31(1): 233-252. |
[9] | Marin S, Sanchis V, Ramos A J, Vinas I, Magan N.Environmental factors, in vitro interactions, and niche overlap between Fusarium moniliforme, F. proliferatum, and F. graminearum, Aspergillus and Penicillium species from maize grainMycol Res, 1998, 102(7): 831-837. |
[10] | Marín S, Magan N, Serra J, Ramos A J, Canela R, Sanchis V.Fumonisin B1 production and growth of Fusarium moniliforme and Fusarium proliferatum on maize, wheat, and barley grain. J Food Sci, 2010, 64(5): 921-924. |
[11] | 李正翔, 陈小龙, 曹赵云, 曹晓林, 巩佳第, 朱智伟. 液相色谱-串联质谱法测定粮谷中的伏马毒素. 分析测试学报, 2014, 339(2), 167-172. |
Li Z X, Chen X L, Cao Z Y, Cao X L, Gong J D, Zhu Z W.Determination of fumonisins in cereals using liquid chromatography-tandem mass spectrometry.J Instru Anal, 2014, 339(2), 167-172. | |
[12] | Zhang X, Zhou M, Ren LJ, Bai G H, Ma H X, Scholten O E.Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai.Euphytica, 2004, 139(1): 59-64. |
[13] | Bai G, Shaner G.Management and resistance in wheat and barley to Fusarium head blight1. Ann Rev Phytopathol, 2004, 42(1): 135-161. |
[14] | Ban T, Suenaga K.Genetic analysis of resistance to Fusarium head blight caused by Fusarium graminearum in Chinese wheat cultivar Sumai 3 and the Japanese cultivar Saikai 165. Euphytica, 2000, 113(2): 87-99. |
[15] | Boenisch M J,SchäFer W.Fusarium graminearum forms mycotoxin producing infection structures on wheat. .Bmc Plant Biol, 2011, 11(1): 110-110. |
[16] | Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P.Elucidation of the infection process of Ustilaginoidea virens(teleomorph: Villosiclava virens) in rice spikelets. Plant Pathol, 2013, 62(1): 1-8. |
[17] | Fan J, Yang J, Wang Y Q, Li G B, Li Y, Huang F, Wang W M.Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol Plant Pathol, 2015, 17(9): 1321-1330. |
[18] | Hu M, Luo L, Wang S, Liu Y, Li J.Infection processes of Ustilaginoidea virens, during artificial inoculation of rice panicles. Eur J Plant Pathol, 2014, 139(1): 67-77. |
[19] | Bluhm B H, Woloshuk C P.Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Mic Interact, 2005, 18(12): 1333-1339. |
[20] | Bluhm B H, Woloshuk C P.Fck1, a C-type cyclin-dependent kinase, interacts with Fcc1 to regulate development and secondary metabolism in Fusarium verticillioides. Fun Genet & Biol, 2006, 43(3): 146-154. |
[21] | Bluhm B H, Flaherty J E, Cousin M A, Woloshuk C P.Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin- producing species of Fusarium in cornmeal. J Food Prot, 2002, 65(12): 1955-1961. |
[22] | Keller S E, Sullivan T M, Chirtel S.Factors affecting the growth of Fusarium proliferatum, and the production of fumonisin B1 : Oxygen and pH. J Indus Microbiol & Biotechnol, 1997, 19(4): 305-309. |
[23] | Shim W B, Woloshuk C P.Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi. Fems Microbiol Lett, 1999, 177(1): 109-116. |
[24] | Shim W B, Flaherty J E, Woloshuk C P.Comparison of fumonisin B1 biosynthesis in maize germ and degermed kernels by Fusarium verticillioides. J Food Prot, 2003, 66(11):2116-2122. |
[25] | Shim W B, Woloshuk C P.Regulation of Fumonisin B1 Biosynthesis and Conidiation in Fusarium verticillioides by a Cyclin-Like (C-Type) Gene, FCC1. Appl & Environ Microbiol, 2001, 67(4): 1607-1612. |
[26] | Flaherty J E, Woloshuk C P.Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl & Environ Microbiol, 2004, 70(5): 2653-2659. |
[27] | Flaherty J E, Pirttilä A M, Bluhm B H.PAC1, a pH-Regulatory Gene from Fusarium verticillioides. Appl & Environ Microbiol, 2003, 69(9): 5222-5227. |
[28] | Bluhm B H, Kim H, Rae B, Woloshuk C P.Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mole Plant Pathol, 2010, 9(2): 203-211. |
[1] | 朱名海, 彭丹丹, 舒灿伟, 周而勋. 海南南繁区水稻纹枯病菌的遗传多样性与致病力分化[J]. 中国水稻科学, 2019, 33(2): 176-185. |
[2] | 丁慧, 俞咪娜, 王亚会, 于俊杰, 尹小乐, 薄惠文, 黄星, 刘永锋. 稻曲病菌T-DNA插入突变体B2510的插入位点分析[J]. 中国水稻科学, 2016, 30(5): 541-551. |
[3] | 王亚会, 刘永锋, 陆凡, 俞咪娜, 黄磊, 郑梦婷, 于俊杰, 尹小乐. 稻曲病菌T-DNA插入突变体B1464插入位点分析[J]. 中国水稻科学, 2015, 29(3): 311-318. |
[4] | 黄世文1,2,王玲1,刘连盟1,刘恩勇1,2,侯恩庆1,2,肖丹凤1,范锃岚1,2 . 水稻穗腐病病原分离、鉴定及生物学特性[J]. 中国水稻科学, 2012, 26(3): 341-350. |
[5] | 裴艳艳1,2,#,程曦1,#,徐春玲1,杨再福3,谢辉1,*. 中国水稻干尖线虫部分群体对水稻的致病力测定[J]. 中国水稻科学, 2012, 26(2): 218-226. |
[6] | 邹成佳,唐芳,杨媚,贺晓霞,李献军,周而勋. 华南3省(区)水稻纹枯病菌的生物学性状与致病力分化研究[J]. 中国水稻科学, 2011, 25(2): 206-202 . |
[7] | 王玲,黄雯雯,黄世文,刘连盟,刘恩勇, . 皖鄂地区水稻纹枯病菌致病力分化研究[J]. 中国水稻科学, 2010, 24(6): 623-629 . |
[8] | 陈涛,张震,柴荣耀,王教瑜,毛雪琴,邱海萍,杜新法,姜华,王立安. 浙江省水稻纹枯病菌的遗传分化与致病力研究[J]. 中国水稻科学, 2010, 24(1): 67-72 . |
[9] | 肖勇,刘明伟,李刚,周而勋,王玲霞,唐杰,谭芙蓉,郑爱萍,李平,. 四川省水稻立枯丝核菌(Rhizoctonia solani)的遗传分化与致病力[J]. 中国水稻科学, 2008, 22(1): 87-92 . |
[10] | 孙黛珍 江玲, 张迎信程遐年翟虎渠万建民. 水稻抗条纹叶枯病数量性状座位分析[J]. 中国水稻科学, 2007, 21(1): 95-98 . |
[11] | 郭亚辉, 许志刚, 胡白石, 沈秀萍, 陈志谊, 刘永峰. 中国南方水稻条斑病菌小种分化研究[J]. 中国水稻科学, 2004, 18(1): 83-85 . |
[12] | 张君成, 张炳欣, 陈志谊, 刘永锋, 陆凡. 稻曲病的接种方法及其效果初探[J]. 中国水稻科学, 2003, 17(4): 390-392 . |
[13] | 高同春, 叶钟音, 王 梅, 马严明. 水稻旱育秧苗立枯病致病镰刀菌分离、鉴定及致病性测定[J]. 中国水稻科学, 2001, 15(4): 320-322 . |
[14] | 陈俊炜 ,张哲涛 ,蒋金炜 ,王世明 ,郭玉杰 ,王念英 . 昆虫病原线虫防治麦田越冬稻象甲的室内研究[J]. 中国水稻科学, 1996, 10(2): 125-128 . |
[15] | 孙国昌, 孙漱沅,申宗坦. 水稻穗瘟离体接种技术研究[J]. 中国水稻科学, 1992, 6(1): 39-42 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||