中国水稻科学 ›› 2018, Vol. 32 ›› Issue (6): 549-556.DOI: 10.16819/j.1001-7216.2018.8015
冯冰, 孙雅菲, 艾昊, 刘秀丽, 杨晶, 刘璐, 高飞燕, 徐国华, 孙淑斌*()
收稿日期:
2018-02-05
修回日期:
2018-06-11
出版日期:
2018-11-27
发布日期:
2018-11-10
通讯作者:
孙淑斌
基金资助:
Bing FENG, Yafei SUN, Hao AI, Xiuli LIU, Jing YANG, Lu LIU, Feiyan GAO, Guohua XU, Shubin SUN*()
Received:
2018-02-05
Revised:
2018-06-11
Online:
2018-11-27
Published:
2018-11-10
Contact:
Shubin SUN
摘要:
目的 磷对植物细胞内蔗糖和淀粉合成有重要影响,它们之间的关系还有许多方面有待阐明。方法 本研究利用转基因技术获得OsSUT1超表达材料,通过水培和盆栽实验研究了超表达该基因对蔗糖、磷含量以及植株形态和生理性状的影响。结果 转录水平上的表达分析显示,缺磷诱导OsSUT1在水稻根系中表达。水培实验显示,与野生型相比,正常供磷条件下OsSUT1超表达导致水稻植株地上部蔗糖含量下降,同时水稻植株内的磷含量升高;而在缺磷条件下植株体内蔗糖及磷含量均无显著变化。盆栽实验显示,超表达OsSUT1提高了水稻的分蘖数、有效分蘖数、磷含量、粒长和粒宽。结论 这些结果说明OsSUT1对水稻的蔗糖和磷含量以及种子的生长发育有重要作用。
中图分类号:
冯冰, 孙雅菲, 艾昊, 刘秀丽, 杨晶, 刘璐, 高飞燕, 徐国华, 孙淑斌. 超表达蔗糖转运蛋白基因OsSUT1对水稻形态和生理的影响[J]. 中国水稻科学, 2018, 32(6): 549-556.
Bing FENG, Yafei SUN, Hao AI, Xiuli LIU, Jing YANG, Lu LIU, Feiyan GAO, Guohua XU, Shubin SUN. Overexpression of Sucrose Transporter OsSUT1 Affects Rice Morphology and Physiology[J]. Chinese Journal OF Rice Science, 2018, 32(6): 549-556.
图1 OsSUT1基因在正常供磷和缺磷条件下的相对表达量^图中所显示数据为平均值±标准差(n=3)。柱上标不同字母表示差异达0.05显著水平。
Fig. 1. Relative expression level of OsSUT1 under Pi-sufficient and Pi-deficient conditions.^ Values are mean±SD(n=3) and different letters indicate that the values differ significantly (P < 0.05).
图2 qRT-PCR鉴定OsSUT1-Ox植株超表达效果^图中所显示数据为平均值±标准差(n=3)。柱上标不同字母表示差异未达0.05显著水平。WT–野生型。
Fig. 2. qRT-PCR analysis of the expression levels of OsSUT1 in OsSUT1-Ox plants.^ Values are means±SD(n=3) and different letters indicate that the values differ significantly (P < 0.05). WT, Wild type.
图3 不同供磷条件下野生型和超表达材料蔗糖含量^图中数据为平均值±标准差(n=5)柱上不同小写字母表示差异达0.05显著水平。
Fig. 3. Sucrose concentration of WT and over-expressed plants under Pi-sufficient and Pi-deficient conditions.^ Values are mean±SD (n = 5) and different lowercase letters indicate that the values differ significantly (P < 0.05).
图4 不同供磷条件下野生型与超表达材料表型分析^ A和D,正常供磷(A)和缺磷(D)条件下野生型和OsSUT1超表达材料的苗期表型,标尺为5 cm;图中数据为平均值±标准差,n = 5。柱上标相同小写字母者表示差异未达0.05显著水平。
Fig. 4. Phenotype analysis of wild type(WT) and over-expressed plants under Pi-sufficient and Pi-deficient conditions.^ A and D, Phenotype under Pi-sufficient (A) and Pi-deficient (D) conditions, Bar = 5 cm; Values are mean±SD (n = 5) and different letters indicate that the values differ significantly (P < 0.05).
图5 不同供磷条件下野生型和超表达材料有效磷含量^ A,正常供磷条件下野生型和OsSUT1超表达材料有效磷含量;B,缺磷条件下野生型和OsSUT1超表达材料有效磷含量;图中显示数据为平均值±标准差,n = 5。柱上标相同小写字母者表示差异未达0.05显著水平。
Fig. 5. Pi concentration of wild type(WT) and over-expressed plants under Pi-sufficient and Pi-deficient conditions.^ A, Pi concentration of WT and OsSUT1-Ox materials under Pi-sufficient conditions; B, Pi concentration of WT and OsSUT1-Ox materials under Pi-deficient conditions. Values are mean±SD (n = 5) and different letters indicate that the values differ significantly (P < 0.05).
图6 正常供磷条件下盆栽实验中野生型和超表达材料各部位总磷含量^图中显示数据为平均值±标准差,n = 5。柱上标相同小写字母者表示差异未达0.05显著水平。
Fig. 6. Total P concentration in different tissues of WT and over-expressed plants in Pi-sufficient pot experiments.^ Values are mean±SD (n = 5) and different letters on the histograms indicate that the values differ significantly (P< 0.05).
图7 正常供磷条件下盆栽实验中野生型和超表达材料表型^ A–野生型和OsSUT1突变体材料成熟期盆栽表型,标尺为10 cm;B–成熟期野生型和OsSUT1突变体材料的植株高度;C–成熟期野生型和OsSUT1突变体材料的分蘖数;D,成熟期野生型和OsSUT1突变体材料的有效分蘖数。平均值±标准差,n=10, 柱上标相同字母者表示差异未达0.05显著水平。
Fig. 7. Phenotype of wild type(WT) and over-expressed plants in Pi-sufficient pot experiments.^ A, WT and OsSUT1 mutant in mature stage, Bar = 10cm; B, Plant height of WT and OsSUT1 mutant; C, Tiller number of WT and OsSUT1 mutant; D, Effective tiller number of WT and OsSUT1 mutant. Values are mean±SD (n = 10) and different letters indicate that the values differ significantly (P < 0.05).
图8 野生型与OsSUT1超表达材料种子形态和统计数据^ A和B–野生型和OsSUT1超表达材料籽粒表型;标尺为1 cm。 C–粒长;D–粒宽。生物学重复为20个;图中显示数据为平均值±标准差,n = 20。柱上不同小写字母者表示差异未达0.05显著水平。。
Fig. 8. Seed morphology and statistics of WT and OsSUT1-Ox materials.^ A and B, Grain phenotype of WT and OsSUT1-Ox materials; Bar = 1 cm. C, Grain length; D, Grain width. Values are mean±SD (n=20) and different letters indicate that the values differ significantly (P < 0.05).
[1] | 郭志奇. 我国水稻栽培现状、高产栽培技术及展望. 南方农业, 2014(8): 92-93. |
Guo Z Q.Current status of rice cultivation, high yield cultivation techniques and prospects in China.South China Agric, 2014(8): 92-93. | |
[2] | 张亮, 孙文献, 孙雅菲, 裴文霞, 罗闻真, 孙瑞, 张占田, 徐国华, 孙淑斌. 水稻转录因子基因OsPHR3在磷素利用过程中的作用. 中国水稻科学, 2016, 30(4): 397-405. |
Zhang L, Sun W X, Sun Y F, Pei W X, Luo W Z, Sun R, Zhang Z T, Xu G H, Sun S B.Roles of transcription factor gene OsPHR3 on the utilization of phosphate in rice. Chin J Rice Sci, 2016, 30(4): 397-405. (in Chinese with English abstract) | |
[3] | Patrick J W, Botha F C, Birch R G.Metabolic engineering of sugars and simple sugar derivatives inplants.Plant Biotechnol J, 2013, 11: 142-156. |
[4] | 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001. |
Li H S.Physiological and biochemical experimental principles and techniques. Beijing: Higher Education Press, 2001. (in Chinese) | |
[5] | Rae A L, Perroux J M, Grof C P.Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: A potential role for the ShSUT1 sucrose transporter.Planta, 2005, 220: 817-825. |
[6] | Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B.Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.Science, 2012, 335: 207-211. |
[7] | Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londoño A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for theArabidopsis embryo. Plant Cell, 2015, 27: 607-619. |
[8] | Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y.Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling.Plant Cell Physiol, 2017, 58: 863-873. |
[9] | Heldt H W, Flugge U I.Metabolite transport in plant cells.Sem Ser: Soc Exper Biol, 1992(50): 21-47. |
[10] | Lalonde S, Wipf D, Frommer W B.Transport mechanisms for organic forms of carbon and nitrogen between source and sink.Annu Rev Plant Biol, 2004, 55: 341-372. |
[11] | Williams L E, Lemoine R, Sauer N.Sugar transporters in higher plants-A diversity of roles and complex regulation.Trends Plant Sci, 2000, 5: 283-290. |
[12] | Scofield G N, Hirose T, Aoki N, Furbank R T.Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Eex Bot, 2007, 58: 3155-3169. |
[13] | Wang L, Lu Q, Wen X, Lu C.Enhanced sucrose loading improves rice yield by increasing grain size.Plant Physiol, 2015, 169: 2848-2862. |
[14] | Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J.Sugar uptake and transport in rice embryo: Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light.Plant Physiol, 2000, 124: 85-93. |
[15] | Cai Y, Tu W, Zu Y, Yan J, Xu Z, Lu J, Zhang Y.Overexpression of a grapevine sucrose transporter (VvSUC27) in tobacco improves plant growth rate in the presence of sucrosein vitro.Front Plant Sci, 2017, 8: 1069. |
[16] | Chen J Y, Liu S L, Wei S, Wang S J.Hormone and sugar effects on rice sucrose transporter OsSUT1, expression in germinating embryos.Acta Physiol Plant, 2010, 32: 749-756. |
[17] | Zakhleniuk O V, Raines C A,Lloyd J C. pho3: A phosphorus-deficient mutant of Arabidopsis thaliana. Planta, 2001, 212: 529-534. |
[18] | Lloyd J C, Zakhleniuk O V.Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of theArabidopsis mutant, pho3. J Exp Bot, 2004, 55: 1221-1230. |
[19] | Wang L, Lu Q, Wen X, Lu C.Enhanced sucrose loading improves rice yield by increasing grain size.Plant Physiol, 2015, 169: 2848-2862. |
[20] | Jansson C.Mutation: sugar signaling mutants inArabidopsis. Prog Bot, 2005, 66: 50-67. |
[21] | Chiou T J, Bush D R.Sucrose is a signal molecule in assimilate partitioning.Proc Natl Acad Sci USA, 1998, 95: 4784-4788. |
[22] | Eom J S, Choi S B, Ward J M, Jeon J S.The mechanism of phloem loading in rice (Oryza sativa). Mol Cells, 2012, 33: 431-438. |
[23] | Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama K G, Liu D.Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation inArabidopsis. Plant Physiol, 2011, 156: 1116-1130. |
[24] | Scofield G N, Aoki N, Hirose T, Takano M, Jenkins C L, Furbank R T.The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants.J Exp Bot, 2007, 58: 483-495. |
[25] | Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, Nishizawa N K, Nakazono M, Kondo M.Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase.Rice, 2015, 8: 0015-0057. |
[26] | Tognetti J A, Pontis H G, Martínez-Noël G M A. Sucrose signaling in plants: A world yet to be explored. Plant Signal Behav, 2013, 8: 3, e23316. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||