中国水稻科学 ›› 2018, Vol. 32 ›› Issue (4): 311-324.DOI: 10.16819/j.1001-7216.2018.8027
• • 下一篇
李志康, 严冬, 薛张逸, 顾逸彪, 李思嘉, 刘立军, 张耗, 王志琴, 杨建昌, 顾骏飞*()
收稿日期:
2018-03-14
修回日期:
2018-05-05
出版日期:
2018-07-10
发布日期:
2018-07-10
通讯作者:
顾骏飞
基金资助:
Zhikang LI, Dong YAN, Zhangyi XUE, Yibiao GU, Sijia LI, Lijun LIU, Hao ZHANG, Zhiqin WANG, Jianchang YANG, Junfei GU*()
Received:
2018-03-14
Revised:
2018-05-05
Online:
2018-07-10
Published:
2018-07-10
Contact:
Junfei GU
摘要:
细胞分裂素(cytokinin, CTK)对植物的形态、生理及产量有重要调控作用,是调控氮素吸收、转运与代谢的主要因子之一。本文概述了氮素的吸收、转运、代谢以及CTK的代谢、转运和信号转导路径,重点阐述了CTK与氮素协作调控根-冠关系的生理机制,即反式玉米素(tZ)及其核苷(tZR)受氮素诱导在根中合成,并转运至地上部,调控地上部氮的转运及分布,影响氮代谢酶的生理特性,从而影响植株光合特性及产量;冠层中氮能够诱导异戊烯基腺嘌呤(iP)及其腺苷(iPR)的合成,并通过韧皮部转运至根系,抑制根系氮素吸收、转运,抑制根系形态建成。在此基础上,进一步论述了CTK在协调源-库关系及提高籽粒充实度方面的作用,分析了栽培措施对CTK生理代谢的影响及其与作物生长相关的机理。同时探讨了CTK上述功能应用于水稻大田生产时存在的问题,并对今后的研究方向提出了建议。
中图分类号:
李志康, 严冬, 薛张逸, 顾逸彪, 李思嘉, 刘立军, 张耗, 王志琴, 杨建昌, 顾骏飞. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4): 311-324.
Zhikang LI, Dong YAN, Zhangyi XUE, Yibiao GU, Sijia LI, Lijun LIU, Hao ZHANG, Zhiqin WANG, Jianchang YANG, Junfei GU. Regulations of Plant Growth and Development by Cytokinins and Their Applications in Rice Production[J]. Chinese Journal OF Rice Science, 2018, 32(4): 311-324.
图1 细胞分裂素合成及代谢路径黑色箭头代表代谢路径,箭头的粗细代表每步代谢中合成物质的比例;IPT–异戊烯基转移酶;CYP735A–细胞色素单氧化酶P450;tRNA-specific IPT–特异性tRNA异戊烯基转移酶;LOG–细胞分裂素磷酸核糖水解酶;CKX–细胞分裂素脱氢酶;UGT–N-葡糖基转移酶;ZOG–玉米素-O-葡糖基转移酶;GLU–β-葡糖苷酶;iPRTP–三磷酸异戊烯基腺苷;iPRDP–二磷酸异戊烯基腺苷;iPRMP–单磷酸异戊烯基腺苷;iPR–异戊烯基腺苷;iP–异戊烯基腺嘌呤;tZRTP–三磷酸反式玉米素核苷;tZRDP–二磷酸反式玉米素核苷;tZRMP–单磷酸反式玉米素核苷;tZR–反式玉米素核苷;tZ–反式玉米素;prenylated tRNA–异戊烯基tRNA;cZRMP–单磷酸顺式玉米素核苷;cZ–顺式玉米素;N, O-gulcosylation–N, O-葡萄糖基;DMAPP–二甲基烯丙基焦磷酸;ATP–三磷酸腺苷;ADP–二磷酸腺苷;AMP–单磷酸腺苷;HMBPP–4-羟基-3-甲基-2-(E)-丁烯二磷酸。下同。
Fig. 1. Cytokinin synthesis and metabolic pathways. The black arrows represent the metabolic pathway, the thickness of each arrow represents the proportion of the synthetic substances in each step of metabolism; IPT, Isopentenyltransferase; CYP735A, Cytochrome P450 monooxygenase; tRNA-specific IPT, tRNA-specific isopentenyltransferase; LOG, Cytokinins phosphoribohydrolase, Lonely guy; CKX, Cytokinins dehydrogenase; UGT, N-glucosyltransferase; ZOG, Zeatin-O-glucosyltransferase; GLU, β-glucosidase; iPRTP, iPR trphosphate; iPRDP, iPR diphosphate; iPRMP, iPR monophosphate; iPR, iP riboside;iP, N6-(Δ2-isopentenyl)adenine; tZRTP, tZR 5′-trphosphate; tZRDP, tZR 5′-diphosphate; tZRMP, tZR 5′-monophosphate; tZR, tZ riboside; tZ, trans-zeatin; cZRMP, cZR 5′-monophosphate; cZ, cis-zeatin; DMAPP, Dimethylallylpyrophosphate; ATP, Adenosine triphosphate; ADP, Adenosine diphosphate; AMP, Adenosine monophosphate; HMBPP, 4-hydroxy- 3-methyl-2-(E)-butenyl diphosphate. The same as below.
图2 氮素与细胞分裂素根冠协调作用模式黑色箭头代表物质转运路径;紫色箭头代表细胞分裂素代谢路径;红色箭头代表正向信号调控;红色虚线平头箭头代表反向信号调控;红色曲线代表木质部蒸腾流;黄色底纹代表细胞分裂素代谢酶;蓝色底纹代表氮转运蛋白。
Fig. 2. Model for coordinated and interdependent regulation of nitrogen and cytokinin. The black arrow represents the transport pathway; the purple arrow represents the cytokinin metabolism pathway; the red arrow represents the positive signal regulation; the red blunt arrow represents the reverse signal regulation; the red curve represents the xylem transpiration stream; the words in yellow shading represents the cytokinin metabolism enzyme; the words in blue shading represents nitrogen transporter.
基因名称 Gene name | AGI 码 AGI code | 蛋白名称 Protein name | 互作效应 Interaction response | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
反式玉米素型 细胞分裂素 tZ-CTK | 细胞分裂素 Cytokinin | 硝态氮 Nitrate | 铵态氮 Ammonium | 氮肥施用 Nitrogen application | |||||||||||||||
氮生理过程 Nitrogen physiological process | |||||||||||||||||||
无机氮素吸收 Inorganic nitrogen acquisition | |||||||||||||||||||
硝态氮 Nitrate | |||||||||||||||||||
AtNRT1.1 | At1g12110 | 双亲和硝酸盐转运蛋白1.1 Dual-affinity nitrate transporter 1.1 | D [101] | U [7] | |||||||||||||||
AtNRT1.2 | At1g69850 | 低亲和硝酸盐转运蛋白1.2 Low-affinity nitrate transporter 1.2 | D [101] | ||||||||||||||||
AtNRT2.1 | At1g08090 | 高亲和转运蛋白2.1 High-affinity nitrate transporter 2.1 | D [7,15,101] | U [7] | |||||||||||||||
AtNRT2.2 | At1g08100 | 高亲和硝酸盐转运蛋白2.2 High-affinity nitrate transporter 2.2 | D [101] | U [7] | |||||||||||||||
AtNRT2.3 | At5g60780 | 高亲和硝酸盐转运蛋白 2.3 High-affinity nitrate transporter 2.3 | D [7,15] | ||||||||||||||||
AtNRT2.4 | At5g60770 | 高亲和硝酸盐转运蛋白 2.4 High-affinity nitrate transporter 2.4 | D [101] | U [7] | |||||||||||||||
AtNRT2.6 | At3g45060 | 高亲和转运蛋白2.6 High-affinity nitrate transporter 2.6 | D [7] | ||||||||||||||||
AtNAR2.1 | At5g50200 | 类NAR蛋白 NAR-like protein | D [15] | ||||||||||||||||
OsNRT1.1b | Os10g40600 | 双亲和硝酸盐转运蛋白1.1b Dual-affinity nitrate transporter 1.1b | U [8] | ||||||||||||||||
OsNPF2.4 | Os03g48180 | 低亲和硝酸盐转运蛋白2.4 Low-affinity nitrate transporter 2.4 | U [8] | ||||||||||||||||
OsNRT2.1 | Os02g02170 | 高亲和硝酸盐转运蛋白2.1 High-affinity nitrate transporter 2.1 | U [8] | D [8] | |||||||||||||||
OsNRT2.2 | Os02g02190 | 高亲和硝酸盐转运蛋白2.2 High-affinity nitrate transporter 2.2 | U [8] | D [8] | |||||||||||||||
OsNRT2.3a | Os01g50820 | 高亲和硝酸盐转运蛋白2.3a High-affinity nitrate transporter 2.3a | U [8] | D [8] | |||||||||||||||
OsNRT2.3b | Os01g50820 | 高亲和硝酸盐转运蛋白2.3b High-affinity nitrate transporter 2.3b | I [8] | I [8] | |||||||||||||||
OsNRT2.4 | Os01g36720 | 可能的高亲和硝酸盐转运蛋白2.4 Putative high-affinity nitrate transporter 2.4 | U [8] | D [8] | |||||||||||||||
OsNAR2.1 | Os02g38230 | 类NAR蛋白 NAR-like protein | U [8] | D [8] | |||||||||||||||
铵态氮 Ammonium | |||||||||||||||||||
AtAMT1;1 | At4g13510 | 双亲和铵态氮转运蛋白1;1 Dual-affinity amminion transporter | D [15] | D [7] | |||||||||||||||
AtAMT1;2 | At1g64780 | 铵态氮转运蛋白1;1 Ammonium transporter 1;2 | D [15] | ||||||||||||||||
AtAMT1;3 | At3g24290 | 铵态氮转运蛋白1;3 Ammonium transporter 1;3 | D [15] | U [7] | |||||||||||||||
AtAMT1;5 | At3g24290 | 铵态氮转运蛋白1;5 Ammonium transporter 1;5 | D [15] | U [8] | |||||||||||||||
OsAMT1;1 | Os04g43070 | 双亲和铵态氮转运蛋白1;1 Dual-affinity amminion transporter 1;1 | U [8] | R [8] | |||||||||||||||
OsAMT1;2 | Os02g40710 | 铵态氮转运蛋白1;2 Ammonium transporter 1;2 | U [8] | ||||||||||||||||
OsAMT1;3 | Os02g40730 | 铵态氮转运蛋白1;3 Ammonium transporter 1;3 | U [8] | ||||||||||||||||
OsAMT2;1 | Os05g39240 | 低亲和铵态氮转运蛋白2;1 Low-affinity ammonium transporter 2;1 | I [8] | I [8] | |||||||||||||||
OsAMT3;1 | Os01g65000 | 可能的铵态氮转运蛋白3;1 Putative ammonium transporter 3;1 | IN [8] | IN [8] | |||||||||||||||
氮素冠层分布 Nitrogen distribution in canopy | |||||||||||||||||||
AtNRT1.3 | At3g21670 | 低亲和硝酸盐转运蛋白1.3 Low-affinity nitrate transporter 1.3 | U [15] | ||||||||||||||||
AtNRT1.4 | At2g26690 | 低亲和硝酸盐转运蛋白1.4 Low-affinity nitrate transporter 1.4 | U [15] | ||||||||||||||||
AtNRT1.7 | At1g69870 | 低亲和硝酸盐转运蛋白1.7 Low-affinity nitrate transporter 1.7 | U [15] | ||||||||||||||||
AtNRT2.7 | At5g14570 | 高亲和硝酸盐转运蛋白2.7 High-affinity nitrate transporter 2.7 | U [15] | ||||||||||||||||
基因名称 Gene name | AGI 码 AGI code | 蛋白名称 Protein name | 互作效应 Interaction response | ||||||||||||||||
反式玉米素型细胞分裂素 tZ-CTK | 细胞分裂素 Cytokinis | 硝态氮 Nitrate | 铵态氮 Ammonium | 氮肥施用 Nitrogen application | |||||||||||||||
氮代谢 Nitrogen metabolism | |||||||||||||||||||
硝态氮还原 Nitrate reduction | |||||||||||||||||||
NIA1 | At1g77760 | 硝酸还原酶1 Nitrate reductase 1 | U [7] | U [7] | |||||||||||||||
NIA2 | At1g37130 | 硝酸还原酶2 Nitrate reductase 2 | U [7] | ||||||||||||||||
NII | At2g15620 | 亚硝酸还原酶 Nitrite reductase | U [7] | ||||||||||||||||
辅因子 Cofactor | |||||||||||||||||||
CNX2 | At2g31955 | 钼喋呤合成酶 Molybdopterin synthetase | U [7] | ||||||||||||||||
UPM | At5g40850 | 硫-腺苷甲硫氨酸尿卟啉原III S-adenosylmethionine uroporphyrinogen III | U [7] | ||||||||||||||||
氨同化 Ammonia assimilation | |||||||||||||||||||
GLN1;1 | At5g37600 | 谷氨酰胺合成酶1;1 Glutamine synthetase 1;1 | D [7] | D [7] | |||||||||||||||
GLN1;2 | At1g66200 | 谷氨酰胺合成酶1;2 Glutamine synthetase 1;2 | D [7] | U [7] | |||||||||||||||
GLN2 | At5g35630 | 谷氨酰胺合成酶2 Glutamine synthetase 2 | U [7] | ||||||||||||||||
GLT1 | At5g53460 | NADH-谷氨酸合成酶1 NADH-glutamate synthase 1 | U [7] | ||||||||||||||||
氨基酸代谢 Amino acid metabolism | |||||||||||||||||||
GDH1 | At5g18170 | 谷氨酸脱氢酶1 Glutamate dehydrogenase 1 | U [7] | ||||||||||||||||
GDH2 | At5g07440 | 谷氨酸脱氢酶2 Glutamate dehydrogenase 2 | U [7] | ||||||||||||||||
ASP1 | At2g30970 | 天冬氨酸转氨酶1 Aspartase aminotransferase 1 | D [7] | U [7] | |||||||||||||||
ASN1 | At3g47340 | 天冬酰胺合成酶1 Asparagine synthetase 1 | U [7] | ||||||||||||||||
ASN2 | At5g65010 | 天冬酰胺合成酶2 Asparagine synthetase 2 | U [7] | U [7] | |||||||||||||||
细胞分裂素生理过程 Cytokinin physiological process | |||||||||||||||||||
细胞分裂素合成 Cytokinins biosynthesis | |||||||||||||||||||
AtIPT3 | At3g63110 | 异戊烯基转移酶3 Isopentenyltransferase 3 | U [7] | ||||||||||||||||
OsIPT4 | Os03g0810100 | 异戊烯基转移酶4 Isopentenyltransferase 4 | U [91] | ||||||||||||||||
OsIPT5 | Os07g0211700 | 异戊烯基转移酶5 Isopentenyltransferase 5 | U [91] | ||||||||||||||||
OsIPT7 | Os05g0551700 | 异戊烯基转移酶5 Isopentenyltransferase 7 | U [91] | ||||||||||||||||
OsIPT8 | Os01g0688300 | 异戊烯基转移酶8 Isopentenyltransferase 8 | U [91] | ||||||||||||||||
CYP735A2 | At1g67110 | 细胞分裂素反式羟化酶 Cytokinin trans-hydroxylase | U [7] | U [7] | |||||||||||||||
细胞分裂素代谢 Cytokinins metabolism | |||||||||||||||||||
CKX4 | At4g29740 | 细胞分裂素氧化酶4 Cytokinin oxidase 4 | U [7] | U [7] | |||||||||||||||
CKX5 | At1g75450 | 细胞分裂素氧化酶5 Cytokinin oxidase 5 | U [7] | ||||||||||||||||
转录调控 Transcriptional control | |||||||||||||||||||
ARR3 | At1g59940 | A型反应调控因子3 Type-A response regulator 3 | U [7] | U [7] | |||||||||||||||
ARR4 | At1g10470 | A型反应调控因子4 Type-A response regulator 4 | U [7] | ||||||||||||||||
ARR5 | At3g48100 | A型反应调控因子5 Type-A response regulator 5 | U [7] | U [7] | |||||||||||||||
ARR6 | At5g62920 | A型反应调控因子6 Type-A response regulator 6 | U [7] | U [7] | |||||||||||||||
ARR7 | At1g19050 | A型反应调控因子7 Type-A response regulator 7 | U [7] | U [7] | |||||||||||||||
ARR8 | At2g41310 | A型反应调控因子8 Type-A response regulator 8 | U [7] | U [7] | |||||||||||||||
ARR9 | At3g57040 | A型反应调控因子9 Type-A response regulator 9 | U [7] | U [7] | |||||||||||||||
ARR15 | At1g74890 | A型反应调控因子15 Type-A response regulator 15 | U [7] | U [7] | |||||||||||||||
ARR16 | At1g74890 | A型反应调控因子16 Type-A response regulator 16 | U [7] |
表1 细胞分裂素及氮素对植物根系及冠层中无机氮素吸收、分布、代谢以及细胞分裂素合成、代谢及信号功能的调控
Table 1 Effects of CTK and nitrogen on the uptake, distribution and metabolism of inorganic nitrogen and the regulation of CTK biosynthesis, metabolism and signaling in plant roots and canopy.
基因名称 Gene name | AGI 码 AGI code | 蛋白名称 Protein name | 互作效应 Interaction response | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
反式玉米素型 细胞分裂素 tZ-CTK | 细胞分裂素 Cytokinin | 硝态氮 Nitrate | 铵态氮 Ammonium | 氮肥施用 Nitrogen application | |||||||||||||||
氮生理过程 Nitrogen physiological process | |||||||||||||||||||
无机氮素吸收 Inorganic nitrogen acquisition | |||||||||||||||||||
硝态氮 Nitrate | |||||||||||||||||||
AtNRT1.1 | At1g12110 | 双亲和硝酸盐转运蛋白1.1 Dual-affinity nitrate transporter 1.1 | D [101] | U [7] | |||||||||||||||
AtNRT1.2 | At1g69850 | 低亲和硝酸盐转运蛋白1.2 Low-affinity nitrate transporter 1.2 | D [101] | ||||||||||||||||
AtNRT2.1 | At1g08090 | 高亲和转运蛋白2.1 High-affinity nitrate transporter 2.1 | D [7,15,101] | U [7] | |||||||||||||||
AtNRT2.2 | At1g08100 | 高亲和硝酸盐转运蛋白2.2 High-affinity nitrate transporter 2.2 | D [101] | U [7] | |||||||||||||||
AtNRT2.3 | At5g60780 | 高亲和硝酸盐转运蛋白 2.3 High-affinity nitrate transporter 2.3 | D [7,15] | ||||||||||||||||
AtNRT2.4 | At5g60770 | 高亲和硝酸盐转运蛋白 2.4 High-affinity nitrate transporter 2.4 | D [101] | U [7] | |||||||||||||||
AtNRT2.6 | At3g45060 | 高亲和转运蛋白2.6 High-affinity nitrate transporter 2.6 | D [7] | ||||||||||||||||
AtNAR2.1 | At5g50200 | 类NAR蛋白 NAR-like protein | D [15] | ||||||||||||||||
OsNRT1.1b | Os10g40600 | 双亲和硝酸盐转运蛋白1.1b Dual-affinity nitrate transporter 1.1b | U [8] | ||||||||||||||||
OsNPF2.4 | Os03g48180 | 低亲和硝酸盐转运蛋白2.4 Low-affinity nitrate transporter 2.4 | U [8] | ||||||||||||||||
OsNRT2.1 | Os02g02170 | 高亲和硝酸盐转运蛋白2.1 High-affinity nitrate transporter 2.1 | U [8] | D [8] | |||||||||||||||
OsNRT2.2 | Os02g02190 | 高亲和硝酸盐转运蛋白2.2 High-affinity nitrate transporter 2.2 | U [8] | D [8] | |||||||||||||||
OsNRT2.3a | Os01g50820 | 高亲和硝酸盐转运蛋白2.3a High-affinity nitrate transporter 2.3a | U [8] | D [8] | |||||||||||||||
OsNRT2.3b | Os01g50820 | 高亲和硝酸盐转运蛋白2.3b High-affinity nitrate transporter 2.3b | I [8] | I [8] | |||||||||||||||
OsNRT2.4 | Os01g36720 | 可能的高亲和硝酸盐转运蛋白2.4 Putative high-affinity nitrate transporter 2.4 | U [8] | D [8] | |||||||||||||||
OsNAR2.1 | Os02g38230 | 类NAR蛋白 NAR-like protein | U [8] | D [8] | |||||||||||||||
铵态氮 Ammonium | |||||||||||||||||||
AtAMT1;1 | At4g13510 | 双亲和铵态氮转运蛋白1;1 Dual-affinity amminion transporter | D [15] | D [7] | |||||||||||||||
AtAMT1;2 | At1g64780 | 铵态氮转运蛋白1;1 Ammonium transporter 1;2 | D [15] | ||||||||||||||||
AtAMT1;3 | At3g24290 | 铵态氮转运蛋白1;3 Ammonium transporter 1;3 | D [15] | U [7] | |||||||||||||||
AtAMT1;5 | At3g24290 | 铵态氮转运蛋白1;5 Ammonium transporter 1;5 | D [15] | U [8] | |||||||||||||||
OsAMT1;1 | Os04g43070 | 双亲和铵态氮转运蛋白1;1 Dual-affinity amminion transporter 1;1 | U [8] | R [8] | |||||||||||||||
OsAMT1;2 | Os02g40710 | 铵态氮转运蛋白1;2 Ammonium transporter 1;2 | U [8] | ||||||||||||||||
OsAMT1;3 | Os02g40730 | 铵态氮转运蛋白1;3 Ammonium transporter 1;3 | U [8] | ||||||||||||||||
OsAMT2;1 | Os05g39240 | 低亲和铵态氮转运蛋白2;1 Low-affinity ammonium transporter 2;1 | I [8] | I [8] | |||||||||||||||
OsAMT3;1 | Os01g65000 | 可能的铵态氮转运蛋白3;1 Putative ammonium transporter 3;1 | IN [8] | IN [8] | |||||||||||||||
氮素冠层分布 Nitrogen distribution in canopy | |||||||||||||||||||
AtNRT1.3 | At3g21670 | 低亲和硝酸盐转运蛋白1.3 Low-affinity nitrate transporter 1.3 | U [15] | ||||||||||||||||
AtNRT1.4 | At2g26690 | 低亲和硝酸盐转运蛋白1.4 Low-affinity nitrate transporter 1.4 | U [15] | ||||||||||||||||
AtNRT1.7 | At1g69870 | 低亲和硝酸盐转运蛋白1.7 Low-affinity nitrate transporter 1.7 | U [15] | ||||||||||||||||
AtNRT2.7 | At5g14570 | 高亲和硝酸盐转运蛋白2.7 High-affinity nitrate transporter 2.7 | U [15] | ||||||||||||||||
基因名称 Gene name | AGI 码 AGI code | 蛋白名称 Protein name | 互作效应 Interaction response | ||||||||||||||||
反式玉米素型细胞分裂素 tZ-CTK | 细胞分裂素 Cytokinis | 硝态氮 Nitrate | 铵态氮 Ammonium | 氮肥施用 Nitrogen application | |||||||||||||||
氮代谢 Nitrogen metabolism | |||||||||||||||||||
硝态氮还原 Nitrate reduction | |||||||||||||||||||
NIA1 | At1g77760 | 硝酸还原酶1 Nitrate reductase 1 | U [7] | U [7] | |||||||||||||||
NIA2 | At1g37130 | 硝酸还原酶2 Nitrate reductase 2 | U [7] | ||||||||||||||||
NII | At2g15620 | 亚硝酸还原酶 Nitrite reductase | U [7] | ||||||||||||||||
辅因子 Cofactor | |||||||||||||||||||
CNX2 | At2g31955 | 钼喋呤合成酶 Molybdopterin synthetase | U [7] | ||||||||||||||||
UPM | At5g40850 | 硫-腺苷甲硫氨酸尿卟啉原III S-adenosylmethionine uroporphyrinogen III | U [7] | ||||||||||||||||
氨同化 Ammonia assimilation | |||||||||||||||||||
GLN1;1 | At5g37600 | 谷氨酰胺合成酶1;1 Glutamine synthetase 1;1 | D [7] | D [7] | |||||||||||||||
GLN1;2 | At1g66200 | 谷氨酰胺合成酶1;2 Glutamine synthetase 1;2 | D [7] | U [7] | |||||||||||||||
GLN2 | At5g35630 | 谷氨酰胺合成酶2 Glutamine synthetase 2 | U [7] | ||||||||||||||||
GLT1 | At5g53460 | NADH-谷氨酸合成酶1 NADH-glutamate synthase 1 | U [7] | ||||||||||||||||
氨基酸代谢 Amino acid metabolism | |||||||||||||||||||
GDH1 | At5g18170 | 谷氨酸脱氢酶1 Glutamate dehydrogenase 1 | U [7] | ||||||||||||||||
GDH2 | At5g07440 | 谷氨酸脱氢酶2 Glutamate dehydrogenase 2 | U [7] | ||||||||||||||||
ASP1 | At2g30970 | 天冬氨酸转氨酶1 Aspartase aminotransferase 1 | D [7] | U [7] | |||||||||||||||
ASN1 | At3g47340 | 天冬酰胺合成酶1 Asparagine synthetase 1 | U [7] | ||||||||||||||||
ASN2 | At5g65010 | 天冬酰胺合成酶2 Asparagine synthetase 2 | U [7] | U [7] | |||||||||||||||
细胞分裂素生理过程 Cytokinin physiological process | |||||||||||||||||||
细胞分裂素合成 Cytokinins biosynthesis | |||||||||||||||||||
AtIPT3 | At3g63110 | 异戊烯基转移酶3 Isopentenyltransferase 3 | U [7] | ||||||||||||||||
OsIPT4 | Os03g0810100 | 异戊烯基转移酶4 Isopentenyltransferase 4 | U [91] | ||||||||||||||||
OsIPT5 | Os07g0211700 | 异戊烯基转移酶5 Isopentenyltransferase 5 | U [91] | ||||||||||||||||
OsIPT7 | Os05g0551700 | 异戊烯基转移酶5 Isopentenyltransferase 7 | U [91] | ||||||||||||||||
OsIPT8 | Os01g0688300 | 异戊烯基转移酶8 Isopentenyltransferase 8 | U [91] | ||||||||||||||||
CYP735A2 | At1g67110 | 细胞分裂素反式羟化酶 Cytokinin trans-hydroxylase | U [7] | U [7] | |||||||||||||||
细胞分裂素代谢 Cytokinins metabolism | |||||||||||||||||||
CKX4 | At4g29740 | 细胞分裂素氧化酶4 Cytokinin oxidase 4 | U [7] | U [7] | |||||||||||||||
CKX5 | At1g75450 | 细胞分裂素氧化酶5 Cytokinin oxidase 5 | U [7] | ||||||||||||||||
转录调控 Transcriptional control | |||||||||||||||||||
ARR3 | At1g59940 | A型反应调控因子3 Type-A response regulator 3 | U [7] | U [7] | |||||||||||||||
ARR4 | At1g10470 | A型反应调控因子4 Type-A response regulator 4 | U [7] | ||||||||||||||||
ARR5 | At3g48100 | A型反应调控因子5 Type-A response regulator 5 | U [7] | U [7] | |||||||||||||||
ARR6 | At5g62920 | A型反应调控因子6 Type-A response regulator 6 | U [7] | U [7] | |||||||||||||||
ARR7 | At1g19050 | A型反应调控因子7 Type-A response regulator 7 | U [7] | U [7] | |||||||||||||||
ARR8 | At2g41310 | A型反应调控因子8 Type-A response regulator 8 | U [7] | U [7] | |||||||||||||||
ARR9 | At3g57040 | A型反应调控因子9 Type-A response regulator 9 | U [7] | U [7] | |||||||||||||||
ARR15 | At1g74890 | A型反应调控因子15 Type-A response regulator 15 | U [7] | U [7] | |||||||||||||||
ARR16 | At1g74890 | A型反应调控因子16 Type-A response regulator 16 | U [7] |
[1] | Yang J.Approaches to achieve high yield and high resource use efficiency in rice.Front Agric Sci Engin, 2015, 2(2): 115-123 |
[2] | GRiSP (Global Rice Science Partnership ). Rice Almanac. 4th edition, Los Baňos (Philippines): International Rice Research Institute, 2013, 283. |
[3] | 孙永健, 孙园园, 徐徽, 李玥, 严秦君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40(9):1639-1649. |
Sun Y J, Sun M M, Xu H, Li Y, Yan Q J, Jiang M J, Ma J.Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies.Acta Agron Sin, 2014, 40(9): 1639-1649. (in Chinese with English abstract) | |
[4] | 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪. 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015, 48(13): 2569-2579. |
Wang X C, Wang X H, Xiong S P, Ma X M, Ding S J, Wu K Y, Guo J B.Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels.Sci Agric Sin, 2015, 48(13): 2569-2579 (in Chinese with English abstract). | |
[5] | Kant S, Peng M, Rothstein S J.Genetic regulation by NLA and microRNA827 for maintaining nitrate- dependent phosphate homeostasis in Arabidopsis. PloS Genet, 2011, 7(3): e1002021. |
[6] | Xu G, Fan X, Miller A J.Plant nitrogen assimilation and use efficiency.Annu Rev Plant Biol, 2012, 63(1): 153-182. |
[7] | Sakakibara H, Takei K, Hirose N.Interactions between nitrogen and cytokinin in the regulation of metabolism and development.Trends Plant Sci, 2006, 11: 440-448. |
[8] | Xuan W, Beeckman T, Xu G.Plant nitrogen nutrition: sensing and signaling. Curr Opin Plant Biol, 2017, 39: 57-65. |
[9] | Ho C H, Tsay Y F.Nitrate, ammonium, and potassium sensing and signaling.Curr Opin Plant Biol, 2010, 13(5): 604-610. |
[10] | Yan M, Fan X, Feng H, Miller A J, Shen Q, Xu G.Rice OsNAR2. 1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges.Plant Cell Environ, 2011, 34(8): 1360. |
[11] | Wang Y Y, Hsu P K, Tsay Y F.Uptake, allocation and signaling of nitrate.Trends Plant Sci, 2012, 17(8): 458-467. |
[12] | Jameson P E.Cytokinins.Encycl Appl Plant Sci, 2017, 114(8): 391-402. |
[13] | Lima J E, Kojima S, Takahashi H, Wirén N V.Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter 1; 3-dependent manner. Plant Cell, 2010, 22(11): 3621-3633. |
[14] | Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants.J Exp Bot, 2017, 68(10): 2581-2592. |
[15] | Kiba T, Kudo T, Kojima M, Sakakibara H.Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin.J Exp Bot, 2011, 62(4): 1399-1409. |
[16] | Joshi R, Sahoo K K, Tripathi A K, Kumar R, Gupta B K, Pareek A, Singla-Pareek S L. Knockdown of an inflorescence meristem-specific cytokinin oxidase- OsCKX2 in rice reduces yield penalty under salinity stress condition.Plant Cell Environ, 2017: 1-11. |
[17] | Werner T, Schmülling T.Cytokinin action in plant development.Curr Opin Plant Biol, 2009, 12: 527-538. |
[18] | Hwang I, Sheen J, Müller B.Cytokinin signaling networks.Annu Rev Plant Biol, 2012, 63: 353-380. |
[19] | Kieber J J, Schaller G E.The Arabidopsis Book:Cytokinins, 2rd edn. Washington: The American Society of Plant Biologists Press, 2014. e0168. |
[20] | Gu J, Chen Y, Zhang H, Li Z K, Zhou Q, Yu C, Kong X S.Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice.Field Crop Res, 2017, 206: 74-85. |
[21] | Hikosaka K.Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover.Ann Bot-Londonn, 2005, 95: 521-533. |
[22] | Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S.Grain filling pattern and cytokinin content in the grains and roots of rice plants.Plant Growth Regul, 2000, 30: 261-270. |
[23] | Jameson P E, Song J.Cytokinin: A key driver of seed yield.J Exp Bot, 2015, 67: 593-606. |
[24] | Criado M V, Caputo C, Roberts I N, Castro M A, Barneix A J.Cytokinin-induced changes of nitrogen remobili zation and chloroplast ultrastructure in wheat ( Triticum aestivum ). J Plant Physiol, 2009, 166(16): 1775-1785. |
[25] | Reguera M, Peleg Z, Abdel-Tawab Y M, Tumimbang E B, Delatorre C A, Blumwald E. Stress-induced cytokinin synthesis increases drought tolerance through co-ordinated regulation of carbon and nitrogen assimilation in rice.Plant Physiol, 2013, 163: 1609-1622. |
[26] | Yang J, Zhang J.Grain-filling problem in ‘super’ rice.J Exp Bot, 2010, 61: 1-5. |
[27] | Hansen H, Dörffling K.Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: Interaction in the control of leaf diffusive resistance? Funct Plant Biol, 2003, 30: 365-375. |
[28] | Hu L, Wang Z, Huang B.Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress.Crop Sci, 2013, 53: 221-231. |
[29] | Dodd I C, Puértolas J, Huber K, Pérez-Pérez J G, Wright H R, Blackwell M S A. The importance of soil drying and re-wetting in crop phytohormonal and nutritional response to deficit irrigation.J Exp Bot, 2015, 66: 2239-2252. |
[30] | Zhang H, Li H, Yuan L, Wang Z, Zhang J.Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice.J Exp Bot, 2012, 63: 215-227. |
[31] | 胡春吉, 雷宁, 邹良平, 彭明. 植物中氮素利用及硝态氮转运蛋白的研究进展.分子植物育种, 2016(8): 2188-2196. |
Hu C J, Lei N, Zou L P, Peng M.Research progress on nitrogen utilization and nitrate transport protein in plant. Mol Plant Breeding, 2016, (8): 2188-2196 (in Chinese with English abstract). | |
[32] | Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Merry S, Daniel-Vedele, F. Nitrate transport and signaling in Arabidopsis. J Exp Bot, 2014, 65(3): 789-798. |
[33] | Dechorgnat J, Nguyen C T, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F.From the soil to the seeds: The long journey of nitrate in plants.J Exp Bot, 2011, 62(4): 1349-1359. |
[34] | Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B.A unified nomenclature of NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family members in plants.Trends Plant Sci, 2014, 19(1): 5-9. |
[35] | Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D.Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster.Plant Physiol, 2007, 143(1): 425-433. |
[36] | Kotur Z, Mackenzie N, Ramesh S, Tyerman S D, Kaiser B N, Glass A D M. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1.New Phytol, 2012, 194(3): 724-731. |
[37] | Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G.The osamt1.1 gene functions in ammonium uptake and ammonium- potassium homeostasis over low and high ammonium concentration ranges.J Genet Genom, 2016, 43(11): 639-649. |
[38] | Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.Plant Cell, 2007, 19(8): 2636-2652. |
[39] | Kiba T, Feria-Bourrellier A B, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants.Plant Cell, 2012, 24(1): 245-258. |
[40] | Wang Y Y, Tsay Y F.Arabidopsis nitrate transporter NRT1. 9 is important in phloem nitrate transport.Plant Cell, 2011, 23(5): 1945-1957. |
[41] | Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M.The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Biol, 1996, 47(1): 569-593. |
[42] | Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A.Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture.Ann Bot-Londonn, 2010, 105(7): 1141-1157. |
[43] | Letham D.Zeatin, a factor inducing cell division isolated from Zea Mays.Life Sci, 1963, 8: 569-573. |
[44] | 张红梅, 王俊丽, 廖祥儒. 细胞分裂素的生物合成、代谢和受体. 植物生理学通讯, 2003, 39: 267-272. |
Zhang H M, Wang J L, Liao X R.Biosynthesis, metabolism and receptor of cytokinins.Plant Physiol Commun, 2003, 39: 267-272 (in Chinese with English abstract). | |
[45] | 邓岩, 王兴春, 杨淑华, 左建儒. 细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良. 植物学报, 2006, 23(5): 478-498. |
Deng Y, Wang X C, Yang S H, Zuo J R.New insights into cytokinins: Metabolism, signal transduction, cross talks and potentials in agricultural applications.Acta Bot Sin, 2006, 23(5): 478-498. (in Chinese with English abstract) | |
[46] | Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Kiba T, Sakakibara H.Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation. Plant J, 2012, 69(2): 355-365. |
[47] | Houba-hérin N, Pethe C, D’Alayer J, Laloue M. Cytokinin oxidase from Zea mays: Purification, cDNA cloning and expression in moss protoplasts. Plant J, 1999, 17(6): 615-626. |
[48] | Morris R, Bilyeu K, Laskey J, Cheikh N N.Isolation of a gene encoding a glycosylated cytokinin oxidase from Maize.Biochem Biophys Res Commun, 1999, 255: 328-333. |
[49] | Osugi A, Sakakibara, H.How do plants respond to cytokinins and what is their importance?BMC Biol, 2015, 13(1): 102. |
[50] | Letham D S.Cytokinins as phytohormones-sites of biosynthesis, translocation and function of translocated cytokinin// Mok D W S, Mok M C. Cytokinins Chemistry Activity & Function. Boca Raton, FL: CRC Press, 1994: 57-80. |
[51] | Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H.Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants, 2017, 3: 17112. |
[52] | Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakabara H.AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol, 2004, 45: 1053-1062. |
[53] | Werner T, Motyka V, Laucou V, Smets R, Onckelen H V, Schmülling T.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003, 15: 2532-2550. |
[54] | Miyawaki K, Matsumoto-Kitano M, Kakimoto T.Expression of cytokinin biosynthetic isopentenyl transferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate.Plant J, 2004, 37: 128-138. |
[55] | Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H.Functional analyses of LONELY GUY cytokinin- activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell, 2009, 21: 3152-3169. |
[56] | Kiba T, Takei K, Kojima M, Sakakibara H.Side-chain modification of cytokinins controls shoot growth in Arabidopsis.Dev Cell, 2013, 27: 452-461. |
[57] | Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H.Regulation of cytokinin biosynthesis, compartmentalization and translocation.J Exp Bot, 2008, 59: 75-83. |
[58] | Kudo T, Kiba T, Sakakibara H.Metabolism and long-distance translocation of cytokinins.J Integr Plant Biol, 2010, 52: 53-60. |
[59] | Zürcher E, Müller B.Cytokinin synthesis, signaling, and function-advances and new insights.Int Rev Cel Mol Biol, 2016, 324: 1-38. |
[60] | Lacombe B, Achard P.Long-distance transport of phytohormones through the plant vascular system.Curr Opin Plant Biol, 2016, 34: 1-8. |
[61] | Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim K Y, Kwon M, Endler A, Song W Y, Martinoia E, Sakakibara H, Lee Y.Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. PNAS, 2014, 111: 7150-7155. |
[62] | Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu C.Arabidopsis abcg14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun, 2014, 5: 3274. |
[63] | Girke C, Daumann M, Niopek-Witz S, Möhlmann T.Nucleobase and nucleoside transport and integration into plant metabolism.Front Plant Sci, 2014, 5: 443. |
[64] | Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N.Cytokinins on the Move.Front Plant Sci, 2017, 8: 146. |
[65] | Qi Z, Xiong L.Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. J Integr Plant Biol, 2013, 55: 1119-1135. |
[66] | Stolz A, Riefler M, Lomin S N, Achazi K, Romanov G A, Schmülling T.The specificity of cytokinin signaling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J Cell Mol Biol, 2011, 67: 157-168. |
[67] | Lomin S N, Krivosheev D M, Steklov M Y, Arkhipov D V, Osolodkin D I, Schmülling T, Romanov G A.Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands.J Exp Bot, 2015, 66: 1851-1863. |
[68] | Heyl A, Riefler M, Romanov G A, Schmülling T.Properties, functions and evolution of cytokinin receptors.Eur J Cell Biol, 2012, 91: 246-256. |
[69] | Müller B.Generic signal-specific responses: cytokinin and context-dependent cellular responses.J Exp Bot, 2011, 62(10): 3273-3288. |
[70] | Wallmeroth N, Anastasia A K, Harter K, Berendzen K W, Mira-Rodado V.Arabidopsis response regulator 22 inhibits cytokinin-regulated gene transcription in vivo. Protoplasma, 2017, 254(1): 597-601. |
[71] | Rashotte A M, Mason M G, Hutchison C E, Ferreira F J, Schaller G E, Kieber J J.A subset of Arabidopsis ap2 transcription factors mediates cytokinin responses in concert with a two-component pathway. PNAS, 2006, 103(29): 11081-11085. |
[72] | Takei K, Sakakibara H, Taniguchi M, Sugiyama T.Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator.Plant Cell Physiol, 2001, 2(1): 85-93. |
[73] | Shtratnikova V Y, Kudryakova N V, Kudoyarova G R, Korobova A V, Akhiyarova G R, Danilova M N, Kusnetsov V V, Kulaeva O N.Effects of nitrate and ammonium on growth of Arabidopsis thaliana plants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium. Russ J Plant Physiol, 2015, 62(6): 741-752. |
[74] | Roche J, Love J, Guo Q, Song J, Cao M, Fraser K, Huege J, Jones C, Novák O, Turnbull M H, Jameson, P E.Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. Physiol Plant, 2016, 156(4): 497-511. |
[75] | Long S P, Zhu X, Naidu S L, Ort D R.2006. Can improvement in photosynthesis increase crop yields?Plant Cell Environ, 29: 315-330. |
[76] | Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area.J Agric Sci, 1997, 128: 377-396. |
[77] | Dreccer M F, Slafer G A, Rabbinge R.Optimization of vertical distribution of canopy nitrogen: An alternative trait to increase yield potential in winter cereals.J Crop Prod, 1998, 1: 47-77. |
[78] | Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy.Oecologia, 1987, 72: 520-526. |
[79] | Hikosaka K, Terashima I, Katoh S.Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Ipomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 1994, 97: 451-457 |
[80] | Drouet J L, Bonhomme R.Do variations in local leaf irradiance explain changes to leaf nitrogen within row maize canopies?Ann Bot-Lond, 1999, 84: 61-69. |
[81] | Pons T L, Schieving F, Hirose T, Werger M J A. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris// Lambers H,Cambridge M L, Konings H, Pons T L. Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. The Hague, The Netherlands: SPB Academic Publishing, 1989: 175-186. |
[82] | Anten N, Schieving F, Werger M.Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species.Oecologia, 1995, 101: 504-513. |
[83] | Yin X, Lantinga E A, Schapendonk A H, Zhong X.Some quantitative relationships between leaf area index and canopy nitrogen content and distribution.Ann Bot-Lond, 2003, 91: 893-903. |
[84] | Hikosaka K.Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.Plant Cell Environ, 2014, 37: 2077-2085. |
[85] | Dingkuhn M, Penning d V F W T, De Datta S K, Van Laar H H. Concepts for a new plant type for direct seeded flooded tropical rice//Direct Seeded Flooded Rice in the Tropics. Los Baños,Philippines: International Rice Research Institute 1991: 17-38. |
[86] | Boonman A, Pons T L.Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients,Plant Physiol, 2007, 143: 1841-1852. |
[87] | Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M.Shoot-derived cytokinins systemically regulate root nodulation.Nat Commun, 2014, 5: 4983. |
[88] | Krouk G.Hormones and nitrate: A two-way connection.Plant Mol Biol, 2016, 91: 599-606. |
[89] | Rahayu Y S, Walchliu P, Neumann G, Römheld V, von Wirén N, Bangerth F. Root-derived cytokinins as long-distance signals for NO3–-induced stimulation of leaf growth.J Exp Bot, 2005, 56: 1143-1152. |
[90] | Müller D, Waldie T, Miyawaki K, To J P C, Melnyk C W, Kieber J J, Kakimoto T, Leyser O. Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J, 2015, 82: 874-886. |
[91] | Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H.Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: The role of glutamine metabolism as an additional signal.Plant Cell Physiol, 2013, 54: 1881-1893. |
[92] | Boonman A, Prinsen E, Voesenek L A, Pons T L.Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density.J Exp Bot, 2009, 60: 1179-1190. |
[93] | Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F.The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate.Plant Cell, 2009, 21(9): 2750-2761. |
[94] | Cortleven A, Nitschke S, Klaumünzer M, Abdelgawad H, Asard H, Grimm B, Riefler M, Schmülling T.A novel protective function for cytokinin in the light stress response is mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 receptors.Plant Physiol, 2014, 164: 1470-1483. |
[95] | Medford J I, Horgan R, El-Sawi Z, Klee H J.Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene.Plant Cell, 1989, 1: 403-413. |
[96] | Li X, Mo X, Shou H, Wu P.Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis.Plant Cell Physiol, 2006, 47: 1112-1123. |
[97] | Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez M B, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell, 2007, 19: 3889-3900. |
[98] | Franco-Zorrilla J M, Martin A C, Solano R, Rubio V, Leyva A, Paz-Ares J. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant J, 2002, 32: 353-360. |
[99] | Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H.A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/ AHK4-mediated cytokinin-dependent regulation. Plant J, 2004, 38: 779-789. |
[100] | Séguéla M, Briat J F, Vert G, Curie C.Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.Plant J, 2008, 55: 289-300. |
[101] | Guo Q, Love J, Song J, Roche J, Turnbull M H, Jameson P E.Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in Brassica napus. Funct Plant Biol, 2017, 44(8): 832-844. |
[102] | Sun J, Hirose N, Wang X, Wen P, Xue L, Sakakibara H, Zuo J.The Arabidopsis SOI33/A/ENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta.J Integr Plant Biol, 2005, 47: 588-603 |
[103] | Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J.Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res, 2009, 19: 1178-1190. |
[104] | Werner T, Nehnebajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T.Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco.Plant Cell, 2010, 22: 3905-3920. |
[105] | Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R.Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.J Exp Bot, 2016, 67: 1839-1851. |
[106] | Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C, Sheen J, Nam H G, Hwang I.Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. PNAS, 2006, 103: 814-819. |
[107] | Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R.Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes.J Exp Bot, 2016, 67: 1839-1851. |
[108] | Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C L, Sheen J, Nam H G, Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphory lation of ARR2 in Arabidopsis. PNAS, 2006, 103: 814-819. |
[109] | Gregersen P L, Culetic A, Boshian L, Krupinska K.Plant senescence and crop productivity.Plant Mol Biol, 2013, 82: 603-622. |
[110] | Han Y, Yang H, Jiao Y.Regulation of inflorescence architecture by cytokinins.Front Plant Sci, 2014, 5: 669. |
[111] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M.Cytokinin oxidase regulates rice grain production.Science, 2005, 309: 741-745. |
[112] | Bartrina I, Otto E, Strnad M, Werner T, Schmülling T.Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation and thus seed yield in Arabidopsis thaliana. Plant Cell, 2011 |
[113] | Zhang H, Chen T, Wang Z, Yang J, Zhang J.Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation.J Exp Bot, 2010, 61: 3719-3733. |
[114] | Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L.Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice.Ann Bot-Lond, 2002, 90: 369-377. |
[115] | 付景, 杨建昌. 超级稻高产栽培生理研究进展. 中国水稻科学, 2011, 25(4): 343-348. |
Fu J, Yang J C.Research Advance in Physiology of Super Rice under High-Yielding Cultivation.Chin J Rice Sci, 2011, 25(4): 343-348. (in Chinese with English abstract) | |
[116] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17): 3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China.Sci Agric Sin, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[117] | 吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许珂. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007, 40(2): 250-257. |
Wu W G, Zhang H C, Wu G C, Qu C Q, Chen Y F, Chen Y, Xu J, Dai Q G, Xu K.Preliminary study on super rice population sink characters.Sci Agric Sin, 2007, 40(2): 250-257. (in Chinese with English abstract) | |
[118] | Ju C, Buresh R J, Wang Z, Zhang H, Liu L, Yang J.Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application.Field Crop Res, 2015, 175: 47-55. |
[119] | 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001(2): 201-206. |
Chen F M, Jiang D A, Wu P, Shi C H.Change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it.Acta Agron Sin, 2001(2): 201-206. (in Chinese with English abstract) | |
[120] | Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F.Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crop Res, 2006, 96: 37-47. |
[121] | 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004(4): 490-496. |
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D.Different nitrogen management and influence on grain yield and quality in rice.Sci Agric Sin, 2004(4): 490-496. (in Chinese with English abstract) | |
[122] | Peng S, Tang Q, Zou Y.Current status and challenges of rice production in China.Plant Prod Sci, 2009, 12: 3-8. |
[1] | 吴子牛, 何丽梅, 熊莹, 陈凯瑞, 杨志远, 孙永健, 吕旭, 马均. 氮素穗肥对杂交籼稻籽粒灌浆影响及其与淀粉合成关键酶活性间关系[J]. 中国水稻科学, 2024, 38(1): 48-56. |
[2] | 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异[J]. 中国水稻科学, 2024, 38(1): 57-71. |
[3] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[4] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[5] | 马兆惠, 石一涵, 程海涛, 宋文雯, 路连吉, 刘仁广, 吕文彦. 水稻种子胚形态与胚乳组成对稻米留胚特性的影响[J]. 中国水稻科学, 2023, 37(3): 265-275. |
[6] | 任维晨, 常庆霞, 张亚军, 朱宽宇, 王志琴, 杨建昌. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制[J]. 中国水稻科学, 2022, 36(6): 586-600. |
[7] | 陆丹丹, 雍明玲, 陶钰, 叶苗, 张祖建. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应[J]. 中国水稻科学, 2022, 36(5): 520-530. |
[8] | 张露, 吴龙龙, 黄晶, 田仓, 祈军, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 增氧处理对稻田土壤微生物量碳、氮和酶活性的影响[J]. 中国水稻科学, 2022, 36(4): 410-418. |
[9] | 张小祥, 邵士梅, 赵步洪, 张耗, 季红娟, 肖宁, 潘存红, 李育红, 吴云雨, 蔡跃, 刘建菊, 吉春明, 张秀琴, 刘广青, 周长海, 黄年生, 李爱宏. 氮肥减施模式对不同穗型迟熟中粳水稻产量及氮素吸收利用的影响[J]. 中国水稻科学, 2022, 36(3): 278-294. |
[10] | 陈志青, 刘梦竹, 王锐, 崔培媛, 卢豪, 魏海燕, 张洪程, 张海鹏. 纳米镁对水稻产量形成和氮素吸收利用的影响[J]. 中国水稻科学, 2022, 36(2): 195-206. |
[11] | 孙雅菲, 宋科, 秦秦, 孙丽娟, 薛永. 磷酸盐转运蛋白OsPT4影响水稻氮磷积累与利用的机理研究[J]. 中国水稻科学, 2021, 35(6): 565-572. |
[12] | 孙园园, 张桥, 孙永健, 唐源, 郭长春, 刘芳艳, 武云霞, 杨志远, 马均. 不同育秧方式下播种量和插秧机具对机插稻氮素利用和产量的影响[J]. 中国水稻科学, 2021, 35(6): 595-605. |
[13] | 王亚梁, 朱德峰, 陈惠哲, 张玉屏, 向镜, 王志刚, 张义凯. 籼粳杂交稻精准条播育秧机插减氮增产的效应研究[J]. 中国水稻科学, 2021, 35(5): 495-502. |
[14] | 周娟, 舒小伟, 赖上坤, 许高平, 黄建晔, 姚友礼, 杨连新, 董桂春, 王余龙. 不同类型水稻品种产量和氮素吸收利用对大气CO2浓度升高响应的差异[J]. 中国水稻科学, 2020, 34(6): 561-573. |
[15] | 彭志芸, 向开宏, 杨志远, 唐源, 谌洁, 张宇杰, 何艳, 严田蓉, 孙永健, 马均. 麦/油-稻轮作下秸秆还田与氮肥管理对直播杂交稻氮素利用特征的影响[J]. 中国水稻科学, 2020, 34(1): 57-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||