中国水稻科学 ›› 2018, Vol. 1 ›› Issue (1): 146-154.DOI: 10.16819/j.1001-7216.2018.7068
周根友1, 翟彩娇1, 邓先亮2, 张蛟1, 张振良1, 戴其根2,*(), 崔士友1,*()
收稿日期:
2017-06-09
出版日期:
2018-01-10
发布日期:
2018-03-10
通讯作者:
戴其根,崔士友
基金资助:
Genyou ZHOU1, Caijiao ZHAI1, Xianliang DENG2, Jiao ZHANG1, Zhenliang ZHANG1, Qigeng DAI2,*(), Shiyou CUI1,*()
Received:
2017-06-09
Online:
2018-01-10
Published:
2018-03-10
Contact:
Qigeng DAI, Shiyou CUI
摘要: 【目的】江苏沿海滩涂种植水稻是促进盐土脱盐改良和开发利用滩涂的主要技术之一,研究盐逆境对水稻产量、光合特性和稻米品质的影响,可为发展滩涂种稻提供参考和理论依据。【方法】以耐盐性较好的通粳981、盐稻12、盐稻10号和南粳5055等4个粳稻品种为材料,设置非盐逆境(S0, 电导率0.207 dS/m)和逆境(S1,电导率1.112 dS/m)2个处理,分别测定产量及其构成因素、光合参数、稻米品质和淀粉黏滞特性。【结果】与非盐逆境相比,盐逆境下水稻产量显著下降,仅为非逆境的40.5%,单位面积穗数差异不显著,每穗粒数和千粒重显著减少;光合速率、胞间CO2浓度显著下降,而气孔导度和蒸腾速率差异不显著;稻米加工品质显著下降,外观品质变化不大,直链淀粉含量显著下降,蛋白质含量显著增加;峰值黏度、热浆黏度、最终黏度、崩解值和回复值均未发生显著的变化,消减值和起始糊化温度显著增高。【结论】盐逆境对水稻产量、光合参数、稻米品质等均有不利的影响,可在盐逆境对产量、品质影响的关键时期孕穗期和灌浆结实期采取措施缓解盐逆境的危害。
中图分类号:
周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 1(1): 146-154.
Genyou ZHOU, Caijiao ZHAI, Xianliang DENG, Jiao ZHANG, Zhenliang ZHANG, Qigeng DAI, Shiyou CUI. Performance of Yield, Photosynthesis and Grain Quality of japonicaRice Cultivars UnderSalinity Stress in Micro-plots[J]. Chinese Journal OF Rice Science, 2018, 1(1): 146-154.
盐逆境 Salt stress | 品种 Variety | 产量 Grain yield/(kg·m-2) | 单位面积穗数 Effective panicle number perm2 | 每穗粒数 Grain number per panicle | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|
S0 | V1 | 1.316±0.153 a | 275.1±26.7 b | 165.4±8.6 a | 28.9±0.6 a |
V2 | 1.127±0.135 a | 343.3±15.1 a | 128.4±10.6 b | 25.1±0.2 b | |
V3 | 1.188±0.314 a | 340.3±12.0 a | 126.2±12.8 b | 24.8±0.3 b | |
V4 | 0.931±0.083 b | 332.7±10.3 a | 108.1±7.2 b | 25.8±0.1 b | |
平均 Average | 1.140 | 322.8 | 132.0 | 26.2 | |
S1 | V1 | 0.523±0.126 a | 281.2±12.9 c | 76.0±9.1 a | 25.1±1.5 a |
V2 | 0.481±0.099 a | 327.7±14.0 a | 62.6±11.0 a | 22.7±2.4 b | |
V3 | 0.401±0.068 a | 319.7±4.6 ab | 61.8±9.4 a | 20.3±0.2 c | |
V4 | 0.443±0.037 a | 305.7±7.6 b | 68.6±5.4 a | 21.2±0.8 bc | |
平均 Average | 0.462 | 308.6 | 67.2 | 22.3 | |
变异来源 Source of variation | |||||
F值 | S | 103.90** | 7.39 | 293.06** | 62.90** |
F value | V | 5.01** | 31.35** | 23.08** | 33.69** |
S×V | 2.87 | 2.40 | 11.61** | 2.64 |
表1 盐逆境与非盐逆境下水稻产量及其构成因子的表现
Table 1 Effects of salt stress on yield and its components of four japonica varieties.
盐逆境 Salt stress | 品种 Variety | 产量 Grain yield/(kg·m-2) | 单位面积穗数 Effective panicle number perm2 | 每穗粒数 Grain number per panicle | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|
S0 | V1 | 1.316±0.153 a | 275.1±26.7 b | 165.4±8.6 a | 28.9±0.6 a |
V2 | 1.127±0.135 a | 343.3±15.1 a | 128.4±10.6 b | 25.1±0.2 b | |
V3 | 1.188±0.314 a | 340.3±12.0 a | 126.2±12.8 b | 24.8±0.3 b | |
V4 | 0.931±0.083 b | 332.7±10.3 a | 108.1±7.2 b | 25.8±0.1 b | |
平均 Average | 1.140 | 322.8 | 132.0 | 26.2 | |
S1 | V1 | 0.523±0.126 a | 281.2±12.9 c | 76.0±9.1 a | 25.1±1.5 a |
V2 | 0.481±0.099 a | 327.7±14.0 a | 62.6±11.0 a | 22.7±2.4 b | |
V3 | 0.401±0.068 a | 319.7±4.6 ab | 61.8±9.4 a | 20.3±0.2 c | |
V4 | 0.443±0.037 a | 305.7±7.6 b | 68.6±5.4 a | 21.2±0.8 bc | |
平均 Average | 0.462 | 308.6 | 67.2 | 22.3 | |
变异来源 Source of variation | |||||
F值 | S | 103.90** | 7.39 | 293.06** | 62.90** |
F value | V | 5.01** | 31.35** | 23.08** | 33.69** |
S×V | 2.87 | 2.40 | 11.61** | 2.64 |
盐逆境 Salt stress | 品种 Variety | 光合速率 Photosynthetic rate /(μmol·m-2s-1) | 气孔导度 Stomatal conductance /(mol·m-2·s-1) | 胞间CO2浓度 CO2 concentration /(μmol·mol-1) | 蒸腾速率 Evaporation rate /(mmol·m-2s-1) |
---|---|---|---|---|---|
S0 | V1 | 28.3±0.8 a | 11.5±9.2 a | 361.0±20.4 a | 1.2±1.0 a |
V2 | 29.5±2.5 a | 19.7±8.7 a | 345.3±91.6 a | 1.9±0.8 a | |
V3 | 27.2±2.0 a | 23.3±20.4 a | 364.0±27.3 a | 2.4±2.1 a | |
V4 | 29.7±5.2 a | 27.2±21.4 a | 355.7±40.2 a | 2.8±2.1 a | |
平均 Average | 28.7 | 20.4 | 356.5 | 2.1 | |
S1 | V1 | 18.6±4.1 a | 25.5±11.6 a | 272.5±21.0 a | 2.9±1.3 a |
V2 | 19.3±5.3 a | 40.1±33.1 a | 271.8±35.4 a | 4.5±3.4 a | |
V3 | 20.6±3.3 a | 44.7±28.1 a | 222.6±29.8 a | 4.7±2.9 a | |
V4 | 16.6±4.6 a | 29.1±214.0 a | 270.4±27.0 a | 3.0±1.3 a | |
平均 Average | 18.8 | 34.8 | 259.3 | 3.8 | |
变异来源 Source of variation | |||||
F值 | S | 168.78** | 2.92 | 46.10** | 3.99 |
F value | V | 0.14 | 0.87 | 0.52 | 0.81 |
S×V | 0.78 | 0.40 | 1.12 | 0.57 |
表2 盐逆境对水稻光合特性的影响
Table 2 Influence of salt stress on photosynthetic characteristics of the four japonica varieties.
盐逆境 Salt stress | 品种 Variety | 光合速率 Photosynthetic rate /(μmol·m-2s-1) | 气孔导度 Stomatal conductance /(mol·m-2·s-1) | 胞间CO2浓度 CO2 concentration /(μmol·mol-1) | 蒸腾速率 Evaporation rate /(mmol·m-2s-1) |
---|---|---|---|---|---|
S0 | V1 | 28.3±0.8 a | 11.5±9.2 a | 361.0±20.4 a | 1.2±1.0 a |
V2 | 29.5±2.5 a | 19.7±8.7 a | 345.3±91.6 a | 1.9±0.8 a | |
V3 | 27.2±2.0 a | 23.3±20.4 a | 364.0±27.3 a | 2.4±2.1 a | |
V4 | 29.7±5.2 a | 27.2±21.4 a | 355.7±40.2 a | 2.8±2.1 a | |
平均 Average | 28.7 | 20.4 | 356.5 | 2.1 | |
S1 | V1 | 18.6±4.1 a | 25.5±11.6 a | 272.5±21.0 a | 2.9±1.3 a |
V2 | 19.3±5.3 a | 40.1±33.1 a | 271.8±35.4 a | 4.5±3.4 a | |
V3 | 20.6±3.3 a | 44.7±28.1 a | 222.6±29.8 a | 4.7±2.9 a | |
V4 | 16.6±4.6 a | 29.1±214.0 a | 270.4±27.0 a | 3.0±1.3 a | |
平均 Average | 18.8 | 34.8 | 259.3 | 3.8 | |
变异来源 Source of variation | |||||
F值 | S | 168.78** | 2.92 | 46.10** | 3.99 |
F value | V | 0.14 | 0.87 | 0.52 | 0.81 |
S×V | 0.78 | 0.40 | 1.12 | 0.57 |
盐逆境 Salt stress | 品种 Variety | 糙米率 Brown rice /% | 精米率 Total milled rice /% | 整精米率 Head rice /% | 长宽比 Ratio of length to width | 垩白米率 Chalky grain rate/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content /% | 直链淀粉含量 Amylose content /% |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 84.35±0.38 b | 72.24±0.68 c | 62.55±5.26 a | 1.74±0.03 a | 30.10±1.89 c | 9.53±0.66 b | 8.64±0.37 b | 14.25±0.70 a |
V2 | 84.26±0.17 b | 75.40±0.38 b | 67.71±6.18 a | 1.71±0.01 a | 19.76±1.75 d | 5.40±0.14 c | 10.04±0.08 a | 14.99±0.60 a | |
V3 | 85.76±0.42 a | 77.24±0.66 a | 67.73±1.64 a | 1.62±0.03 b | 100.00±0.00 a | 60.31±0.97 a | 8.56±0.09 b | 1.90±0.96 c | |
V4 | 84.64±0.19 ab | 75.41±0.43 b | 62.06±5.66 a | 1.49±0.02 c | 48.35±3.55 b | 12.69±1.17 b | 9.75±0.09 a | 8.94±0.39 b | |
平均 Average | 84.75 | 75.07 | 54.38 | 16.40 | 49.55 | 21.95 | 9.24 | 10.02 | |
S1 | V1 | 83.64±0.75 a | 73.55±1.09 b | 42.09±2.36 b | 1.72±0.06 a | 17.81±2.78 c | 5.56±1.28 c | 10.05±0.54 c | 11.62±1.24 a |
V2 | 83.95±0.92 a | 75.51±1.14 a | 63.28±3.05 a | 1.65±0.04 b | 17.41±3.41 c | 3.70±0.58 c | 11.20±0.22 b | 12.85±0.26 a | |
V3 | 83.27±0.76 a | 74.37±0.83 ab | 56.88±5.90 a | 1.61±0.03 b | 100.00±0.00 a | 69.74±0.72 a | 12.45±0.66 a | 2.31±0.78 c | |
V4 | 83.91±0.25 a | 74.51±0.75 ab | 55.27±3.64 a | 1.51±0.04 c | 72.59±7.54 b | 17.33±6.26 b | 10.97±0.22 b | 7.85±0.70 b | |
平均 Average | 83.69 | 74.49 | 54.38 | 16.20 | 51.95 | 24.08 | 11.17 | 8.66 | |
变异来源 Source of variation | |||||||||
F值 | S | 58.86** | 12.91* | 95.11** | 1.70 | 2.33 | 4.20 | 199.06** | 42.94** |
F value | V | 1.16 | 17.86** | 11.87** | 59.53** | 1227.52** | 1310.12** | 26.96** | 357.43** |
S×V | 5.31** | 8.23** | 4.64* | 2.04 | 51.78** | 15.24** | 33.99** | 5.55** |
表3 盐逆境对水稻主要米质指标的影响
Table 3 Effects of salt stress on the main grain quality of the four japonica rice varieties.
盐逆境 Salt stress | 品种 Variety | 糙米率 Brown rice /% | 精米率 Total milled rice /% | 整精米率 Head rice /% | 长宽比 Ratio of length to width | 垩白米率 Chalky grain rate/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content /% | 直链淀粉含量 Amylose content /% |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 84.35±0.38 b | 72.24±0.68 c | 62.55±5.26 a | 1.74±0.03 a | 30.10±1.89 c | 9.53±0.66 b | 8.64±0.37 b | 14.25±0.70 a |
V2 | 84.26±0.17 b | 75.40±0.38 b | 67.71±6.18 a | 1.71±0.01 a | 19.76±1.75 d | 5.40±0.14 c | 10.04±0.08 a | 14.99±0.60 a | |
V3 | 85.76±0.42 a | 77.24±0.66 a | 67.73±1.64 a | 1.62±0.03 b | 100.00±0.00 a | 60.31±0.97 a | 8.56±0.09 b | 1.90±0.96 c | |
V4 | 84.64±0.19 ab | 75.41±0.43 b | 62.06±5.66 a | 1.49±0.02 c | 48.35±3.55 b | 12.69±1.17 b | 9.75±0.09 a | 8.94±0.39 b | |
平均 Average | 84.75 | 75.07 | 54.38 | 16.40 | 49.55 | 21.95 | 9.24 | 10.02 | |
S1 | V1 | 83.64±0.75 a | 73.55±1.09 b | 42.09±2.36 b | 1.72±0.06 a | 17.81±2.78 c | 5.56±1.28 c | 10.05±0.54 c | 11.62±1.24 a |
V2 | 83.95±0.92 a | 75.51±1.14 a | 63.28±3.05 a | 1.65±0.04 b | 17.41±3.41 c | 3.70±0.58 c | 11.20±0.22 b | 12.85±0.26 a | |
V3 | 83.27±0.76 a | 74.37±0.83 ab | 56.88±5.90 a | 1.61±0.03 b | 100.00±0.00 a | 69.74±0.72 a | 12.45±0.66 a | 2.31±0.78 c | |
V4 | 83.91±0.25 a | 74.51±0.75 ab | 55.27±3.64 a | 1.51±0.04 c | 72.59±7.54 b | 17.33±6.26 b | 10.97±0.22 b | 7.85±0.70 b | |
平均 Average | 83.69 | 74.49 | 54.38 | 16.20 | 51.95 | 24.08 | 11.17 | 8.66 | |
变异来源 Source of variation | |||||||||
F值 | S | 58.86** | 12.91* | 95.11** | 1.70 | 2.33 | 4.20 | 199.06** | 42.94** |
F value | V | 1.16 | 17.86** | 11.87** | 59.53** | 1227.52** | 1310.12** | 26.96** | 357.43** |
S×V | 5.31** | 8.23** | 4.64* | 2.04 | 51.78** | 15.24** | 33.99** | 5.55** |
盐逆境 Salt stress | 品种 Variety | 峰值黏度 Peak viscosity /(mPa·s) | 热浆黏度 Trough viscosity /(mPa·s) | 最终黏度 Final viscosity /(mPa·s) | 崩解值 Breakdown /(mPa·s) | 消减值 Setback /(mPa·s) | 回复值 Consistence /(mPa·s) | 起始糊化温度 Pasting temperature /oC | |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 3583.1±262.0 a | 1575.4±126.9 b | 2745.7±153.5 b | 2007.7±143.0 a | –837.4±126.5 bc | 1170.4±28.9 b | 78.4±0.0 a | |
V2 | 3126.5±120.2 b | 1849.0±98.9 a | 3129.4±105.6 a | 1277.5±62.0 b | 2.9±46.6 a | 1280.4±17.1 a | 73.1±0.7 a | ||
V3 | 1473.3±362.5 d | 383.9±135.7 d | 506.1±218.5 d | 1089.4±344.1 b | –969.6±320.8 c | 122.2±91.0 d | 69.1±0.6 a | ||
V4 | 2603.6±117.6 c | 1352.5±54.7 c | 1979.4±72.9 c | 1251.1±89.5 b | –624.3±89.1 b | 626.9±28.2 c | 71.5±0.4 a | ||
平均 Average | 2696.6 | 1290.2 | 2090.1 | 1406.4 | –608.1 | 800.0 | 73.0 | ||
S1 | V1 | 3563.5±295.9 a | 1818.5±136.6 b | 2008.3±124.9 b | 1745.0±171.5 a | –555.2±184.3 b | 1189.7±13.6 b | 79.8±0.4 a | |
V2 | 3153.0±30.5 b | 2045.7±84.6 a | 3297.0±73.1 a | 1107.3±59.8 b | 144.0±47.9 a | 1251.3±12.0 a | 86.0±0.3 a | ||
V3 | 1306.0±42.9 d | 499.7±49.6 d | 672.0±51.4 d | 806.2±18.5 c | –634.0±18.9 b | 172.2±3.8 d | 70.1±0.4 b | ||
V4 | 2689.7±6.2 c | 1415.5±37.7 c | 2121.7±30.8 c | 1254.2±42.2 b | –547.7±48.2 b | 706.2±9.9 c | 72.8±0.5 b | ||
平均 Average | 2678.1 | 1444.8 | 2024.7 | 1228.2 | –398.2 | 829.8 | 77.2 | ||
变异来源 Source of variation | |||||||||
F值 | S | 0.03 | 7.51 | 7.95 | 7.00 | 12.56* | 8.89 | 345.31** | |
F value | V | 241.52** | 427.54** | 940.67** | 59.42** | 61.07** | 1627.48** | 1099.22** | |
S×V | 0.79 | 1.60 | 0.49 | 1.62 | 1.43 | 3.25* | 379.68** |
表4 盐逆境对稻米淀粉黏滞特性的影响
Table 4 Influences of salt stress on RVA profile characteristics of four japonica rice genotypes.
盐逆境 Salt stress | 品种 Variety | 峰值黏度 Peak viscosity /(mPa·s) | 热浆黏度 Trough viscosity /(mPa·s) | 最终黏度 Final viscosity /(mPa·s) | 崩解值 Breakdown /(mPa·s) | 消减值 Setback /(mPa·s) | 回复值 Consistence /(mPa·s) | 起始糊化温度 Pasting temperature /oC | |
---|---|---|---|---|---|---|---|---|---|
S0 | V1 | 3583.1±262.0 a | 1575.4±126.9 b | 2745.7±153.5 b | 2007.7±143.0 a | –837.4±126.5 bc | 1170.4±28.9 b | 78.4±0.0 a | |
V2 | 3126.5±120.2 b | 1849.0±98.9 a | 3129.4±105.6 a | 1277.5±62.0 b | 2.9±46.6 a | 1280.4±17.1 a | 73.1±0.7 a | ||
V3 | 1473.3±362.5 d | 383.9±135.7 d | 506.1±218.5 d | 1089.4±344.1 b | –969.6±320.8 c | 122.2±91.0 d | 69.1±0.6 a | ||
V4 | 2603.6±117.6 c | 1352.5±54.7 c | 1979.4±72.9 c | 1251.1±89.5 b | –624.3±89.1 b | 626.9±28.2 c | 71.5±0.4 a | ||
平均 Average | 2696.6 | 1290.2 | 2090.1 | 1406.4 | –608.1 | 800.0 | 73.0 | ||
S1 | V1 | 3563.5±295.9 a | 1818.5±136.6 b | 2008.3±124.9 b | 1745.0±171.5 a | –555.2±184.3 b | 1189.7±13.6 b | 79.8±0.4 a | |
V2 | 3153.0±30.5 b | 2045.7±84.6 a | 3297.0±73.1 a | 1107.3±59.8 b | 144.0±47.9 a | 1251.3±12.0 a | 86.0±0.3 a | ||
V3 | 1306.0±42.9 d | 499.7±49.6 d | 672.0±51.4 d | 806.2±18.5 c | –634.0±18.9 b | 172.2±3.8 d | 70.1±0.4 b | ||
V4 | 2689.7±6.2 c | 1415.5±37.7 c | 2121.7±30.8 c | 1254.2±42.2 b | –547.7±48.2 b | 706.2±9.9 c | 72.8±0.5 b | ||
平均 Average | 2678.1 | 1444.8 | 2024.7 | 1228.2 | –398.2 | 829.8 | 77.2 | ||
变异来源 Source of variation | |||||||||
F值 | S | 0.03 | 7.51 | 7.95 | 7.00 | 12.56* | 8.89 | 345.31** | |
F value | V | 241.52** | 427.54** | 940.67** | 59.42** | 61.07** | 1627.48** | 1099.22** | |
S×V | 0.79 | 1.60 | 0.49 | 1.62 | 1.43 | 3.25* | 379.68** |
淀粉RVA谱特征 RVA profile characteristics | 非盐逆境 Normal condition | 盐逆境 Salt stress | |||
---|---|---|---|---|---|
直链淀粉含量 Amylose content | 蛋白质含量 Protein content | 直链淀粉含量 Amylose content | 蛋白质含量 Protein content | ||
峰值黏度 Peak viscosity | 0.917** | 0.264 | 0.929** | –0.866** | |
热浆黏度 Trough viscosity | 0.954** | 0.615* | 0.972** | –0.724** | |
最终黏度 Final viscosity | 0.980** | 0.535* | 0.982** | –0.733** | |
崩解值 Breakdown | 0.540* | –0.330 | 0.640* | –0.897** | |
消减值Setback | 0.611* | 0.809** | 0.623* | –0.022 | |
回复值 Consistence | 0.984** | 0.423 | 0.982** | –0.728** | |
起始糊化温度 Pasting temperature | -0.172 | –0.468 | 0.903** | –0.464 |
表5 盐逆境与非盐逆境下直链淀粉、蛋白质含量与稻米淀粉RVA谱特征的相关
Table 5 Relationships of amylose content and protein content with RVA profile characteristics under salt stress and normal conditions.
淀粉RVA谱特征 RVA profile characteristics | 非盐逆境 Normal condition | 盐逆境 Salt stress | |||
---|---|---|---|---|---|
直链淀粉含量 Amylose content | 蛋白质含量 Protein content | 直链淀粉含量 Amylose content | 蛋白质含量 Protein content | ||
峰值黏度 Peak viscosity | 0.917** | 0.264 | 0.929** | –0.866** | |
热浆黏度 Trough viscosity | 0.954** | 0.615* | 0.972** | –0.724** | |
最终黏度 Final viscosity | 0.980** | 0.535* | 0.982** | –0.733** | |
崩解值 Breakdown | 0.540* | –0.330 | 0.640* | –0.897** | |
消减值Setback | 0.611* | 0.809** | 0.623* | –0.022 | |
回复值 Consistence | 0.984** | 0.423 | 0.982** | –0.728** | |
起始糊化温度 Pasting temperature | -0.172 | –0.468 | 0.903** | –0.464 |
[1] | 崔士友, 张蛟蛟, 碳管理:盐土治理的一种新思路.农学学报, 2015, 5(12): 44-50. |
Cui S Y, Zhang JJ.Carbon management: A new approach to the governance of saline soils.J Agric, 2015,5(12):44-50.(in Chinese with English abstract) | |
[2] | 国家统计局.中国统计年鉴.北京: 中国统计出版社, 2014. |
National Bureau of Statistics.China Statistical Yearbook.Bejing: China Statistics Press, 2016.(in Chinese) | |
[3] | Horie T, Karahara I, Katsuhara M.Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants.Rice, 2012, 5(1):11. |
[4] | Zeng L, Shannon M C, Grieve C M.Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters.Euphytica, 2002, 127(2):235-245. |
[5] | Zeng L, Poss J A, Wilson C, Ase D, Gregorio G B, Grieve C M.Evaluation of salt tolerance in rice genotypes by physiological characters.Euphytica, 2003, 129(3):281-292. |
[6] | Heenan D P, Lewin L G, Mccaffery D W.Salinity tolerance in rice varieties at different growth stages. Australian J ExpAgric, 1988, 28(3):343-349. |
[7] | Xie J H, Zapataarias F J, Shen M, Afza R.Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica,2000, 116(2): 105-110. |
[8] | 杨福, 梁正伟, 王志春.水稻耐盐碱鉴定标准评价及建议与展望.植物遗传资源学报, 2011, 12(4): 625-628. |
Yang F, Liang Z W, Wang Z C.Evaluation, suggestion and prospect on identification standards of saline-alkali tolerance in rice.J Plant Genetic Resour, 2011, 12(4): 625-628. (in Chinese with English abstract) | |
[9] | 陈志德, 仲维功, 杨杰, 黄转运.水稻新种质资源的耐盐性鉴定评价.植物遗传资源学报, 2004, 5(4): 351-355. |
Chen Z D, Chong W G, Yang J, Huang Z Y.Evaluation of salt tolerance of rice (Oryza sativa L.) germplasm. J Plant GenetResour, 2004, 5(4): 351-355.(in Chinese with English abstract) | |
[10] | 方先文, 汤陵华, 王艳平.耐盐水稻种质资源的筛选.植物遗传资源学报, 2004, 5(3): 295-298. |
Fang X W, Tang L H, Wang Y P.Selection on rice germplasm tolerant to salt stress.J Plant Genet Resour, 2004, 5(3): 295-298.(in Chinese with English abstract) | |
[11] | Zeng L H, Shannon M C.Effects of salinity on grain yield and yield components of rice at different seeding densities.Agron J, 2000, 92(3):418-423. |
[12] | Zeng L H, Shannon M C.Salinity effects on seedling growth and yield components of rice.Crop Sci, 2000, 40(4):996-1003. |
[13] | 朱萍, 王华, 夏伟, 顾艾节, 汤梅林, 周士良.微酸性有机肥用量对滩涂土壤理化性状及水稻产量的影响.上海农业学报, 2015(6): 101-103. |
Zhu P, Wang H, Xia W, GuA J, Tang M L, Zhou S L. Effects of acidulous organic fertilizer rates on both beach soil physicochemical properties and rice yield.ActaAgric Shanghai,2015(6):101-103. (in Chinese with English abstract) | |
[14] | Julino B O.The chemical basis of rice grain quality∥Chemical aspect of rice grain quality. Manila: IRRI, 1979: 69-90. |
[15] | 张文绪, 汤圣祥.我国水稻品种蒸煮品质的初步研究.中国农业科学, 1981, 14(6): 1-4. |
Zhang W X, Tang S X.A preliminary study on the cooking qualities of chines rice varieties (O. sativa L.).SciAgric Sin, 1981, 14(6): 1-4.(in Chinese with English abstract) | |
[16] | 陈能, 罗玉坤, 朱智伟, 张伯平, 郑有川, 谢黎虹.优质食用稻米品质的理化指标与食昧相关性研究.中国水稻科学, 1997, 11(2): 70-76. |
Chen N, Luo Y K, Zhu Z W, Zhang B P, Zheng Y C, Xie L H.Correlation between eating quality and physico-chemical properties of high grain quality rice.Chin J Rice Sci, 1997, 11(2): 70-76.(in Chinese with English abstract) | |
[17] | 张欣, 施利利, 丁得亮, 王松文, 崔晶.74份优质粳稻品种的理化特征和食味特性研究.食品科技, 2010, (9): 178-181. |
Zhang X, Shi L L, Ding D L, Wang S W, Cui J.Study on physicochemical properties and palatability characteristics of 74 high-quality rice varieties.Food Sci&Technol, 2010, (9): 178-181. (in Chinese with English abstract) | |
[18] | 崔世友, 张蛟蛟.盐分逆境对园艺作物品质的影响.农学学报, 2014, (12): 60-62. |
Cui S Y, Zhang J J.Effects of salt stress on the quality of horticultural crops.JAgric, 2014 (12): 60-62. (in Chinese with English abstract) | |
[19] | 李红宇, 潘世驹, 钱永德, 马艳, 司洋, 高尚, 郑桂萍, 姜玉伟, 周健.混合盐碱胁迫对寒地水稻产量和品质的影响.南方农业学报, 2015, 46(12): 2100-2105. |
Li H Y, Pan S J, Qian Y D, Ma Y, Si Y, Gao S, Zheng J P, Jiang Y W, Zhou J.Effects of saline-alkali stress on yield and quality of rice in cold region.J SouthAgric, 2015, 46(12): 2100-2105. (in Chinese with English abstract) | |
[20] | 杨福, 梁正伟, 王志春, 张军, 陈渊.水稻耐盐碱品种(系)筛选试验与省区域试验产量性状的比较.吉林农业大学学报, 2007, 29(6): 596-600. |
Yang F, Liang Z W, Wang Z C, Zhang J, Chen Y.Comparison of yield characters between screening test of saline-alkali tolerant rice varieties and regional experiment.J Jilin AgricUniv, 2007, 29(6): 596-600.(in Chinese with English abstract) | |
[21] | 步金宝, 赵宏伟, 刘化龙, 王敬国, 兴旺.盐碱胁迫对寒地粳稻产量形成机理的研究.农业现代化研究, 2012, 33(4): 485-488. |
BuJ B, ZhaoH W,LiuH L,WangJ G,Xing W. Study on yield formation mechanism of salinity and alkalinity stress in japonica rice of cold region. ResAgricModern, 2012, 33(4): 485-488. (in Chinese with English abstract) | |
[22] | 刘晓龙, 徐晨, 徐克章, 崔菁菁, 安久海, 凌凤楼, 张治安, 武志海.盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响.作物杂志, 2014, (2): 88-92. |
Liu X L, Xu C, Xu K Z, Cui J J, An J H, Ling F L, Zhang Z A, Wu Z H.Effects on characteristics of photosynthesis and chlorophyll fluorescence of rice under salt stress.Crops, 2014, (2): 88-92. (in Chinese with English abstract) | |
[23] | 王仁雷, 华春, 刘友良.盐胁迫对水稻光合特性的影响.南京农业大学学报, 2002, 25(4): 11-14. |
Wang R L, Hua C, Liu Y L.Effect of salt stress on photosynthetic characteristics in rice.J Nanjing AgriUniv, 2002, 25(4):11-14.(in Chinese with English abstract) | |
[24] | 徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡.盐胁迫对不同水稻品种光合特性和生理生化特性的影响.中国水稻科学, 2013, 27(3): 280-286. |
Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P.Effect of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties.Chin J Rice Sci, 2013, 27(3): 280-286.(in Chinese with English abstract) | |
[25] | Desamero N V, Romero M V, Aquino D V, Tibayan P A, Guloy M B, Valdez R E, Ablaza M J C, Dimaano Y A, Chico M V, Cardenas C C, Orbon C A, Cavite O V. Rice grain quality as affected by salt stress.Philipp J Crop Sci, 2003, 28(S1): 70-70. |
[26] | Surekha Rao P, Mishra B, Gupta S R.Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes.Rice Sci, 2013, 20(4): 284-291. |
[27] | 余为仆. 秸秆还田条件下盐胁迫对水稻产量与品质形成的影响.扬州: 扬州大学. 2014. |
Yu W P.Effect of salt stress associated with straw returning on yield and quality of rice. Yangzhou: Yangzhou University, 2014. (in Chinese with English abstract) | |
[28] | 高焕晔, 王三根, 宗学凤, 腾中华, 赵芳明, 刘照.灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响.中国生态农业学报, 2012, 20(1): 40-47. |
Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z.Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage.Chin J Eco-Agric, 2012, 20(1): 40-47. (in Chinese with English abstract) | |
[29] | 张桂莲, 廖斌, 李博, 蔡志欢.花后高温对稻米品质及胚乳淀粉粒结构的影响.中国农学通报, 2016, 32(9): 10-14. |
Zhang G L, Liao B, Li B, Cai Z H.Effect of high temperature after anthesis on rice quality and starch granule structure of endosperm.Chin AgricSci Bull, 2012, 20(1): 40-47. (in Chinese with English abstract) | |
[30] | 杨东雷, 董伟欣, 张迎迎, 何祖华.赤霉素调节植物对非生物逆境的耐性.中国科学: 生命科学, 2013, 43: 1119-1126. |
Yang D L, Dong W X, Zhang Y Y, He Z H.Gibberellins modulates abiotic stress tolerance in plant.Sci Sin Vitae, 2013, 43: 1119-1126. | |
[31] | 王静超, 王志琴.多胺在水稻产量形成与响应逆境中的作用.安徽农业科学, 2012, 40(8): 4473-4477. |
Wang J C, Wang Z Q.Functions of polyamines in the rice yield formation and response to stress.J Anhui AgricSci, 2012, 40(8): 4473-4477. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[4] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[5] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[6] | 彭显龙, 董强, 张辰, 李鹏飞, 李博琳, 刘智蕾, 于彩莲. 不同土壤条件下秸秆还田量对土壤还原性物质及水稻生长的影响[J]. 中国水稻科学, 2024, 38(2): 198-210. |
[7] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
[8] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
[9] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[10] | 邹宇傲, 吴启侠, 周乾顺, 朱建强, 晏军. 孕穗期杂交中稻对淹涝胁迫的响应[J]. 中国水稻科学, 2023, 37(6): 642-656. |
[11] | 袁沛, 周旋, 杨威, 尹凌洁, 靳拓, 彭建伟, 荣湘民, 田昌. 化肥减氮配施对洞庭湖区双季稻产量和田面水氮磷流失风险的影响[J]. 中国水稻科学, 2023, 37(5): 518-528. |
[12] | 肖大康, 胡仁, 韩天富, 张卫峰, 侯俊, 任科宇. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529-542. |
[13] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[14] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[15] | 王文婷, 马佳颖, 李光彦, 符卫蒙, 李沪波, 林洁, 陈婷婷, 奉保华, 陶龙兴, 符冠富, 秦叶波. 高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J]. 中国水稻科学, 2023, 37(3): 253-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||