中国水稻科学 ›› 2018, Vol. 1 ›› Issue (1): 119-127.DOI: 10.16819/j.1001-7216.2018.7112
孟帅, 徐鹏, 张迎信, 王宏, 曹立勇, 程式华, 沈希宏*()
收稿日期:
2017-09-11
出版日期:
2018-01-10
发布日期:
2018-03-10
通讯作者:
沈希宏
基金资助:
MENGShuai, Peng XU, Yingxin ZHANG, Hong WANG, Liyong CAO, Shihua CHENG, SHENXihong*()
Received:
2017-09-11
Online:
2018-01-10
Published:
2018-03-10
Contact:
SHENXihong
摘要: 【目的】花时不遇是影响杂交水稻制种产量的直接因素之一,已有研究表明水稻粒型差异对花时有影响。本研究采用GS3功能缺失突变来研究粳稻花时差异,以期为粒型影响花时提供佐证。【方法】利用CRISPR/Cas9技术来定向编辑控制粒长基因GS3,获得13对粒型差异的近等基因系粳稻,小区种植,采用目测法来调查花时。【结果】获得转基因T0植株并对其T1植株测序分析,发现长白25、吉粳102、浙粳88、武运粳27和J42均发生单碱基插入移码突变,垦鉴稻6号、空育131、浙粳22、扬粳4227、南粳9108、J5933、J6167和J5938均发生部分碱基缺失突变。对T1植株粒型考查表明,gs3突变体的粒长均显著长于野生型。对稳定的后代花时统计分析发现,粒型变长的突变体均比野生型花时有所提前,且吉粳102、空育131、浙粳88、武运粳27、扬粳4227这5个材料的gs3突变体花时均显著早于野生型,其余材料开花也提早,但不显著。【结论】长粒型粳稻GS3突变体的花时早于短粒粳稻野生型,这一研究可为粳稻粒型育种提供参考,加速长粒粳稻亲本选育,有望推动杂交粳稻发展。
中图分类号:
孟帅, 徐鹏, 张迎信, 王宏, 曹立勇, 程式华, 沈希宏. 利用CRISPR/Cas9技术编辑粒长基因GS3改善粳稻花时[J]. 中国水稻科学, 2018, 1(1): 119-127.
MENGShuai, Peng XU, Yingxin ZHANG, Hong WANG, Liyong CAO, Shihua CHENG, SHENXihong. CRISPR/Cas9-mediated Editing of GS3to ImproveFloweringTime injaponicaRice[J]. Chinese Journal OF Rice Science, 2018, 1(1): 119-127.
图1 GS3基因结构与CRISPR/Cas9编辑靶位点信息红色字母表示起始密码子,蓝色字母表示PAM序列。线条表示内含子,黑盒子代表外显子。
Fig.1. Schematic diagram of the gene GS3 and the targeted site. The red letters are the initiation codon, the blue letters the protospacer adjacent motif (PAM) sequences. The line represents the intron, black boxesthe exons.
引物名称 Primer name | 引物序列 Sequence(5′-3′) |
---|---|
GS3-CAS9F | GGCAGTGACATGGCAATGGCGG |
GS3-CAS9R | AAACCCGCCATTGCCATGTCAC |
T3 | ATTAACCCTCACTAAAGGGA |
CAS9F | ACCAGACACGAGACGACTAA |
CAS9R | ATCGGTGCGGGCCTCTTC |
Hyg-F | GCTGTTATGCGGCCATTGTC |
Hyg-R | GACGTCTGTCGAGAAGTTTC |
GS3-F | CTATACATAGCTGCTGCACCGTCT |
GS3-R | CAATCACGTACTCATCATGGCAGCA |
表1 本研究所用引物
Table 1 Primers used in this research.
引物名称 Primer name | 引物序列 Sequence(5′-3′) |
---|---|
GS3-CAS9F | GGCAGTGACATGGCAATGGCGG |
GS3-CAS9R | AAACCCGCCATTGCCATGTCAC |
T3 | ATTAACCCTCACTAAAGGGA |
CAS9F | ACCAGACACGAGACGACTAA |
CAS9R | ATCGGTGCGGGCCTCTTC |
Hyg-F | GCTGTTATGCGGCCATTGTC |
Hyg-R | GACGTCTGTCGAGAAGTTTC |
GS3-F | CTATACATAGCTGCTGCACCGTCT |
GS3-R | CAATCACGTACTCATCATGGCAGCA |
图2 GS3靶位点表达载体结构 HPT–潮霉素磷酸转移酶基因;LB–左边界;RB–右边界;Cas9蛋白的启动子是35S;GS3的sgRNA的启动子为U3。
Fig. 2. Schematic diagram illustrating the structure of CRISPR/Cas9-expressing vector targeting with GS3. HPT, Hygromycin Phosphotransferase gene; LB, Left border. RB, Right border; The Cas9 cassette is driven by the 35S promoter, while the GS3sgRNA is controlled by the U3 promoter.
图3 13个粳稻品种T1代突变类型分析靶序列为红色部分,PAM序列用蓝色部分,碱基插入的用蓝色小写字母表示,缺碱基的用蓝色连字表示。WT–野生型;CB25–长白25; KJD6–垦鉴稻6号;JJ102–吉粳102;KY131–空育131;ZJ22–浙粳22;NJ9108–南粳9108;ZJ88–浙粳88;WYJ27–武运粳27;YJ4227–扬粳4227。图4和表3中的品种代号与该图相同。
Fig. 3. Mutation types at GS3 loci of thirteen japonica varieties in T1 generation. The targeted sequence is highlighted in red and PAM sequence in blue. Mutations with 1 bp insertion are represented by blue lowercase letters. The deleted sequences are shown by blue hyphens.WT, Wild type; CB25, Changbai25; KJD6, Kenjiandao6; JJ102, Jijing102; KY131, Kongyu131; ZJ22, Zhejing22; NJ9108, Nanjing9108; ZJ88, Zhejing88; WYJ27, Wuyunjing27; YJ4227, Yangjing4227; The same as that in Fig. 4 and Table 3.
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比Length/Width ratio | 株高 Plant height/cm | 花时 Flowering time/min | 播始历期 Sowing to heading/d |
---|---|---|---|---|---|---|
WT-CB25 | 6.64±0.04 | 3.00±0.06 | 2.23±0.06 | 83.1±1.0 | 558.0±3.5 | 77.8±1.1 |
gs3-CB25 | 7.47±0.07** | 2.92±0.02 | 2.58±0.03** | 81.7±1.4* | 553.0±4.3 | 77.2±0.8 |
WT-KJD6 | 6.40±0.02 | 3.07±0.02 | 2.10±0.01 | 61.9±1.9 | 541.0±3.4 | 68.0±0.7 |
gs3-KJD6 | 7.11±0.06** | 3.09±0.04 | 2.33±0.03** | 58.4±1.1* | 538.0±4.8 | 68.2±0.2 |
WT-JJ102 | 6.36±0.02 | 2.74±0.02 | 2.25±0.02 | 67.8±1.3 | 555.7±6.3 | 69.0±0.7 |
gs3-JJ102 | 7.09±0.15** | 2.75±0.03 | 2.65±0.06** | 67.6±1.1* | 544.5±6.0* | 69.8±1.1 |
WT-KY131 | 6.42±0.16 | 3.06±0.02 | 2.13±0.03 | 68.5±1.7 | 545.0±5.9 | 69.3±0.5 |
gs3-KY131 | 7.36±0.06** | 3.09±0.03 | 2.41±0.02** | 66.8±0.9* | 531.0±4.2** | 69.5±0.5 |
WT-ZJ22 | 6.73±0.05 | 2.99±0.02 | 2.34±0.03 | 69.7±1.2 | 721.0±6.2 | 86.3±0.6 |
gs3-ZJ22 | 6.99±0.06* | 2.97±0.02 | 2.41±0.04* | 64.4±1.3* | 718.0±6.5 | 85.3±0.8 |
WT-NJ9108 | 6.00±0.02 | 3.02±0.06 | 2.05±0.02 | 46.0±1.3 | 571.2±6.4 | 80.5±0.5 |
gs3-NJ9108 | 6.27±0.02* | 3.06±0.03 | 2.13±0.02* | 44.4±0.9 | 566.0±6.1 | 79.7±0.6 |
WT-ZJ88 | 6.10±0.05 | 2.89±0.08 | 2.24±0.07 | 62.3±0.9 | 629.0±6.0 | 76.7±0.6 |
gs3-ZJ88 | 6.33±0.05** | 2.84±0.06 | 2.47±0.03** | 54.3±1.5* | 620.0±6.0* | 77.3±0.5 |
WT-WYJ27 | 6.57±0.03 | 3.02±0.04 | 2.24±0.04 | 65.2±1.4 | 573.3±4.1 | 76.0±1.0 |
gs3-WYJ27 | 6.87±0.03** | 3.04±0.07 | 2.35±0.02** | 58.2±1.2* | 566.5±2.4** | 76.3±0.6 |
WT-YJ4227 | 6.13±0.02 | 3.04±0.03 | 2.13±0.03 | 58.1±1.3 | 560.0±6.5 | 76.7±0.6 |
gs3-YJ4227 | 6.39±0.09** | 3.04±0.07 | 2.25±0.05** | 57.6±1.3* | 555.0±6.7 | 77.7±0.6 |
WT-J5933 | 8.68±0.02 | 2.48±0.02 | 3.67±0.37 | 80.8±0.4 | 567.7±5.5 | 83.3±0.5 |
gs3-J5933 | 8.88±0.03* | 2.48±0.01 | 3.85±0.22* | 80.5±0.7 | 561.0±6.1 | 82.7±0.6 |
WT-J6167 | 7.37±0.02 | 2.38±0.01 | 3.11±0.26 | 78.5±0.7 | 537.0±5.2 | 88.2±1.1 |
gs3-J6167 | 7.53±0.03** | 2.36±0.02 | 3.23±0.30** | 76.0±1.4* | 535.0±6.2 | 88.7±0.9 |
WT-J5938 | 9.59±0.01 | 2.46±0.02 | 3.84±0.22 | 87.2±1.2 | 557.0±5.2 | 92.0±0.7 |
gs3-J5938 | 9.64±0.02* | 2.48±0.02 | 3.96±0.24* | 85.9±1.3* | 551.8±6.4 | 91.3±0.5 |
WT-J42 | 7.46±0.02 | 2.66±0.04 | 2.89±0.37 | 88.4±1.1 | 518.0±3.5 | 83.3±0.5 |
gs3-J42 | 7.82±0.02** | 2.60±0.05 | 2.91±0.36* | 87.0±1.0* | 518.3±3.7 | 82.7±0.6 |
*和**分别表示野生型与突变体在0.05,0.01水平上显著差异。 *,** Significant difference between WT and mutant at 0.05, 0.01 level, respectively. |
表3 T1植株13份材料及其突变体的农艺性状
Table 3 Agronomic traits of the materials and their T1 mutants.
材料 Material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比Length/Width ratio | 株高 Plant height/cm | 花时 Flowering time/min | 播始历期 Sowing to heading/d |
---|---|---|---|---|---|---|
WT-CB25 | 6.64±0.04 | 3.00±0.06 | 2.23±0.06 | 83.1±1.0 | 558.0±3.5 | 77.8±1.1 |
gs3-CB25 | 7.47±0.07** | 2.92±0.02 | 2.58±0.03** | 81.7±1.4* | 553.0±4.3 | 77.2±0.8 |
WT-KJD6 | 6.40±0.02 | 3.07±0.02 | 2.10±0.01 | 61.9±1.9 | 541.0±3.4 | 68.0±0.7 |
gs3-KJD6 | 7.11±0.06** | 3.09±0.04 | 2.33±0.03** | 58.4±1.1* | 538.0±4.8 | 68.2±0.2 |
WT-JJ102 | 6.36±0.02 | 2.74±0.02 | 2.25±0.02 | 67.8±1.3 | 555.7±6.3 | 69.0±0.7 |
gs3-JJ102 | 7.09±0.15** | 2.75±0.03 | 2.65±0.06** | 67.6±1.1* | 544.5±6.0* | 69.8±1.1 |
WT-KY131 | 6.42±0.16 | 3.06±0.02 | 2.13±0.03 | 68.5±1.7 | 545.0±5.9 | 69.3±0.5 |
gs3-KY131 | 7.36±0.06** | 3.09±0.03 | 2.41±0.02** | 66.8±0.9* | 531.0±4.2** | 69.5±0.5 |
WT-ZJ22 | 6.73±0.05 | 2.99±0.02 | 2.34±0.03 | 69.7±1.2 | 721.0±6.2 | 86.3±0.6 |
gs3-ZJ22 | 6.99±0.06* | 2.97±0.02 | 2.41±0.04* | 64.4±1.3* | 718.0±6.5 | 85.3±0.8 |
WT-NJ9108 | 6.00±0.02 | 3.02±0.06 | 2.05±0.02 | 46.0±1.3 | 571.2±6.4 | 80.5±0.5 |
gs3-NJ9108 | 6.27±0.02* | 3.06±0.03 | 2.13±0.02* | 44.4±0.9 | 566.0±6.1 | 79.7±0.6 |
WT-ZJ88 | 6.10±0.05 | 2.89±0.08 | 2.24±0.07 | 62.3±0.9 | 629.0±6.0 | 76.7±0.6 |
gs3-ZJ88 | 6.33±0.05** | 2.84±0.06 | 2.47±0.03** | 54.3±1.5* | 620.0±6.0* | 77.3±0.5 |
WT-WYJ27 | 6.57±0.03 | 3.02±0.04 | 2.24±0.04 | 65.2±1.4 | 573.3±4.1 | 76.0±1.0 |
gs3-WYJ27 | 6.87±0.03** | 3.04±0.07 | 2.35±0.02** | 58.2±1.2* | 566.5±2.4** | 76.3±0.6 |
WT-YJ4227 | 6.13±0.02 | 3.04±0.03 | 2.13±0.03 | 58.1±1.3 | 560.0±6.5 | 76.7±0.6 |
gs3-YJ4227 | 6.39±0.09** | 3.04±0.07 | 2.25±0.05** | 57.6±1.3* | 555.0±6.7 | 77.7±0.6 |
WT-J5933 | 8.68±0.02 | 2.48±0.02 | 3.67±0.37 | 80.8±0.4 | 567.7±5.5 | 83.3±0.5 |
gs3-J5933 | 8.88±0.03* | 2.48±0.01 | 3.85±0.22* | 80.5±0.7 | 561.0±6.1 | 82.7±0.6 |
WT-J6167 | 7.37±0.02 | 2.38±0.01 | 3.11±0.26 | 78.5±0.7 | 537.0±5.2 | 88.2±1.1 |
gs3-J6167 | 7.53±0.03** | 2.36±0.02 | 3.23±0.30** | 76.0±1.4* | 535.0±6.2 | 88.7±0.9 |
WT-J5938 | 9.59±0.01 | 2.46±0.02 | 3.84±0.22 | 87.2±1.2 | 557.0±5.2 | 92.0±0.7 |
gs3-J5938 | 9.64±0.02* | 2.48±0.02 | 3.96±0.24* | 85.9±1.3* | 551.8±6.4 | 91.3±0.5 |
WT-J42 | 7.46±0.02 | 2.66±0.04 | 2.89±0.37 | 88.4±1.1 | 518.0±3.5 | 83.3±0.5 |
gs3-J42 | 7.82±0.02** | 2.60±0.05 | 2.91±0.36* | 87.0±1.0* | 518.3±3.7 | 82.7±0.6 |
*和**分别表示野生型与突变体在0.05,0.01水平上显著差异。 *,** Significant difference between WT and mutant at 0.05, 0.01 level, respectively. |
图5 5份材料及其突变体的花时 A–田间试验。B–温室调查。JJ102-吉粳102;KY131–空育131;ZJ88–浙粳88;WYJ27–武运粳27;YJ4227–扬粳4227;WT–野生型。*表示差异达0.05显著水平; **表示差异达0.01显著水平。
Fig. 5. Flowering time of five materials and their mutants. A,In the fields. B,Ingreenhouse.JJ102, Jijing102; KY131, Kongyu131; ZJ88, Zhejing88; WYJ27, Wuyunjing27; YJ4227, Yangjing4227; WT, Wild type.*, Significant difference at 0.05 level.**, Significant difference at 0.01 level.
[1] | 金成海, 高明晶, 周广春, 全东兴, 孟维韧, 朴红梅. 北方杂交粳稻恢复系育种研究进展. 现代农业科技, 2014, 34(23):63-64. |
Jin C H, Gao M J, Zhou G C, Quan D X, Meng W R, Pu H M.Research advance on restorer lines of japonica hybrid rice in Northern China.Modern AgricSci&Technol, 2014, 34(23):63-64.(in Chinese with English abstract) | |
[2] | 林建荣, 宋昕蔚, 吴明国. 4份籼粳中间型广亲和恢复系的生物学特性及其杂种优势利用. 中国水稻科学, 2012, 26(6):656-662. |
Lin J R, Song X W, Wu M G.Biological characteristics and heterosis utilization of four indica-japonican intermediate type restorer lines with wide compatibility.Chin J Rice Sci, 2012, 26(6):656-662.(in Chinese with English abstract) | |
[3] | 徐美兰, 金正勋, 李晓光, 张忠臣, 刘海英, 张丰转, 赵书宇. 7个粳稻SSR和SRAP分子标记遗传距离比较及其与产量性状杂种优势的关系. 分子植物育种, 2009, 7(6):1084-1092. |
Xu M L, Jin Z X, Li X G, Zhang Z C, Liu H Y, Zhang F Z, Zhao S Y.Comparison of genetic distance among seven cultivars of japonica rice based on SSR and SRAP and its relationship with heterosis of yield traits.MolPlant Breed, 2009, 7(6):1084-1092. (in Chinese with English abstract) | |
[4] | 马启林. 杂交水稻制种花时不遇的生态生理机制研究: Ⅲ.亲本花时差异的生理基础. 湖北农学院学报, 2000(2): 97-99,103. |
Ma Q L.Ecological physiology of blooming time unoverlapping in hybrid rice seed production: III.Physiological foundation of blooming time unoverlapping.JHubei AgricColl, 2000(2): 97-99,103.(in Chinese with English abstract) | |
[5] | 朱镇, 赵凌, 张亚东, 王才林. 粳型杂交水稻优势及相关分析. 金陵科技学院学报, 2007, 23(3):53-56. |
Zhu Z, Zhao L, Zhang Y D, Wang C L.Heterosis and correlation analysis for three-line japonica hybrid rice.JJinling InstTechnol, 2007, 23(3):53-56.(in Chinese with English abstract) | |
[6] | 姜健, 李金泉, 徐正进. 水稻籼粳杂交育种研究进展. 吉林农业科学, 2003, 28(1):9-14. |
Jiang J, Li J Q, Xu Z J, The advancement of hybrid breeding between indica and japonica rices.JJilin AgricSci, 2003, 28(1):9-14.(in Chinese with English abstract) | |
[7] | 黄友明. 雄性不育水稻的颖花开放习性研究综述. 宜春学院学报, 2009, 31(4):110-112. |
Huang Y M.Summary about the habit researching of floret opening on male sterile rice. JYichun College, 2009, 31(4):110-112.(in Chinese with English abstract) | |
[8] | 田大成. 水稻异交栽培学. 成都: 四川科学技术出版社, 1991:37-38. |
Tian D C.Outcrossing cultivation of rice. Chengdu: SichuanScience and Technology Press, 1991:37-38.(in Chinese) | |
[9] | 闫志强, 徐海, 马作斌, 高东昌,徐正进. 籼稻与粳稻花时对茉莉酸甲酯(MeJA)响应的敏感性差异. 中国农业科学, 2014, 47(13):2529-2540. |
Yan Z Q, Xu H, Ma Z B, Gao D C, Xu Z J.Differential response of floret opening to exo-methyl jasmonate between subsp.indica and subsp. japonica in rice.SciAgricSin, 2014, 47(13):2529-2540.(in Chinese with English abstract) | |
[10] | 李梅, 吴献强, 奉志高. 水稻光温敏核不育系特征特性和开花习性观察与分析. 安徽农业科学, 2008(17): 7169-7171. |
Li M, Wu X Q, Feng Z G.Observation and analysis on the characteristics and the flowering habits of rice photo-thermo sensitive genic male sterile lines.JAnhui AgricSci, 2008(17): 7169-7171.(in Chinese with English abstract) | |
[11] | 王小虎, 钟卫国, 王雪刚, 赵品恒, 苏月红,俞良,季向东,李标,孙菊英,梁国华. BT型长粒粳稻不育系常01-11A的选育及应用. 杂交水稻, 2014, 29(1): 10-14. |
Wang X H, Zhong W G, Wang X G, Zhao P H, Su Y H, Yu L, Ji X D, Li B, Sun J Y, Liang G H.Breeding and utilization of long-grain BT-type japonica CMS line Chang 01-11A in rice. Hybrid Rice,2014, 29(1): 10-14.(in Chinese with English abstract) | |
[12] | 马作斌, 詹瞻, 程效义, 高继平,何广生,刘迪,徐海,徐正进. 花时性状在籼粳交后代中的表现及其对外部环境的响应. 杂交水稻, 2011, 26(5): 70-76. |
Ma Z B, Zhan Z, Cheng X Y, Gao G S, Liu D, Xu H, Xu Z J.Flowering time in filial generations of cross between indica and japonica rice and its response to external environment.Hybrid Rice, 2011, 26(5): 70-76.(in Chinese with English abstract) | |
[13] | 李金军, 范国华, 张仁余, 高荣村. 不同水稻品种花时的比较试验. 浙江农业科学, 2007(1): 63-66. |
Li J J, Fan G H, Zhang R Y, Gao R C.Comparison test of flowering time in different rice varieties. JZhejiang AgricSci, 2007(1): 63-66.(in Chinese) | |
[14] | 张萌, 戴冬青, 李西明, 张华丽,马良勇. 水稻花时性状研究进展. 核农学报, 2016, 30(2): 267-274. |
Zhang M, Dai D Q, Li X M, Zhang H L, Ma L Y.Advances on the study of flowering time trait in hybrid rice.JNuclAgricSci, 2016, 30(2): 267-274.(in Chinese with English abstract) | |
[15] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.TheorApplGenet, 2006, 112(6):1164. |
[16] | Mao H, Sun S, Yao J, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. ProcNatl AcadSciUSA, 2010, 107(45):19579-19584. |
[17] | 沈兰, 李健, 付亚萍, 王俊杰,华宇峰,焦晓真. 利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状. 中国水稻科学, 2017, 31(3):223-231. |
Shen L, Li J, Fu Y P, Wang J J, Hua Y F, Jiao X Z.Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system.Chin J Rice Sci, 2017, 31(3):223-231.(in Chinese with English abstract) | |
[18] | WiedenheftB, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea.Nature, 2012, 482(7385): 331-338. |
[19] | Takuro H,Izuho H.Genome engineering using the CRISPR/Cas system.World JMedGenet, 2014(3): 69-76. |
[20] | Shan Q W, Wang Y P, Li J, Zhang Y, Chen K, Liang Z, Gao C X.Targeted genome editing in crop plants using a CRISPR/Cas system // GeneticsSociety of China. Plant Genomics in China: ⅩⅣ. Nanjing: Genetics Society of China, 2013. |
[21] | Baltes N J, Voytas D F.Enabling plant synthetic biology through genome engineering.TrendsBiotechnol, 2015, 33(2): 120-131. |
[22] | Belhaj K, Chaparrogarcia A, Kamoun S, Patron N J, Nekrasov V.Editing plant genomes with CRISPR/Cas9.CurrOpinBiotechnol, 2015, 32: 76-84. |
[23] | 李君, 张毅, 陈坤玲,单奇伟, 王延鹏, 梁振. CRISPR/Cas系统:RNA靶向的基因组定向编辑新技术. 遗传, 2013(11): 1265-1273. |
Li J, Zhang Y, Chen K L, Shan Q W, Wang Y P, Liang Z.CRISPR/Cas: A novel way of RNA-guided genome editing.Heredity, 2013(11): 1265-1273.(in Chinese with English abstract) | |
[24] | Miao J, Guo D, Zhang J, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J.Targeted mutagenesis in rice using CRISPR-Cas system.Cell Res, 2013, 23(10): 1233. |
[25] | Upadhyay S K, Kumar J, Alok A, Rahesh T.RNA-guided genome editing for target gene mutations in wheat.G3 (Bethesda, Md.), 2013, 3(12): 2233. |
[26] | Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K.Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013, 23(10): 1229. |
[27] | Shan Q, Wang Y, Li J, Cao C.Genome editing in rice and wheat using the CRISPR/Cas system.NatProtoc, 2014, 9(10): 2395. |
[28] | Rogers S O, Bendich A J.Extraction of Total Cellular DNA from Plants, Algae and Fungi Plant Molecular Biology Manual. Springer Netherlands, 1994: 183-190. |
[29] | Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J, Qiu J L, Gao C.Targeted genome modification of crop plants using a CRISPR-Cas system.NatBiotechnol, 2013, 31(8): 686-688. |
[30] | Ma X, Chen L, Zhu Q, Chen Y, Liu Y G.Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products.MolPlant, 2015, 8(8): 1285-1287. |
[31] | 万国, 冯跃, 张凤娇, 徐群,王一平,余汉勇,袁筱萍,彭锁堂. 水稻花时性状的QTL定位. 核农学报, 2013, 27(5): 562-567. |
Wan G, Feng Y, Zhang F J, Xu Q, Wang Y P, Yu H Y, Yuan X P, Peng S T.Mapping QTLs for flowering time in rice.JNuclAgricSci, 2013, 27(5): 562-567.(in Chinese with English abstract) | |
[32] | 袁隆平. 杂交水稻学. 北京:中国农业出版社, 2002:28-29. |
Yuan L P. Hybrid Rice.Beijing: China Agriculture Press, 2002:28-29.(in Chinese) | |
[33] | Kobayasi K, Matsui T, Yoshimoto M, Hasegawa T.Effects of temperature, solar, radiation, and vapor-pressure deficit on flowering time in rice.Plant ProdSci, 2015, 13(1): 21-28. |
[34] | 高继平, 隋阳辉, 张文忠, 姚晨, 高明超, 赵明辉, 徐正进. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响. 中国水稻科学, 2015, 29(5):501-510. |
Gao J P, Sui Y H, Zhang W Z, Yao C, Gao M C, Zhao M H, Xu Z J.Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice.Chin J Rice Sci, 2015, 29(5):501-510.(in Chinese with English abstract) | |
[35] | Webb B D, Bollich C N, Adair C R, Johnston T H.Characteristics of rice varieties in the U.S. Department of Agriculture Collection.Crop Sci, 1968, 8(3):361-365. |
[36] | 于亚辉, 刘郁, 陈广红, 王绍林,夏明,阕补超,郑英杰,徐正进. 控制水稻分蘖角度对群体生态特性的影响. 气象与环境学报, 2008(5): 67-71. |
Yu Y H, Liu Y, Chen G H, Wang S L, Xia M, Que B C, Zheng Y J, Xu Z J.Effect of controlling tiller angle on population ecological characteristics of paddy rice.JMeteorolEnviron,2008(5): 67-71.(in Chinese with English abstract) | |
[37] | 姚俊萌, 李迎春, 张金恩, 舒婷,陆魁东. 播期和抽穗期温度对水稻岳优9113生长及产量的影响. 浙江农业学报, 2015, 24(5): 718-723. |
Yao J M, Li Y C, Zhang J E, Shu T, Lu K D.Effects of sowing date and temperature on growth and yield of late rice Yueyou 9113.ActaAgricZhejiang, 2015, 24(5): 718-723.(in Chinese with English abstract) | |
[38] | Khush G S, Paule C M,Delacruz N M.Rice grain quality evaluation and improvement at IRRI//Proceedings of the Workshop on Chemical Aspects of Rice Grain Quality. Los Baños, Laguna, Philippines: IRRI, 1978: 21-31. |
[39] | 沈希宏, 程式华, 曹立勇, 傅秀民,占小登. 一种长粒杂交粳稻选育方法: CN102640701A[P].2012-08-22. |
Shen X H, Chen S H, Cao L Y, Fu X M, Zhan X D. The breeding method of selecting of long-grain japonica hybrid rice: CN102640701A[P].2012-08-22.(in Chinese) | |
[40] | 沈希宏, 程式华, 曹立勇,傅秀民,占小登. 一种长粒杂交粳稻恢复系选育方法: CN102657077A[P].2012-09-12. |
Shen X H, Chen S H, Cao L Y, Fu X M, Zhan X D. The breeding method of selecting restoring lines long-grain hybrid japonica rice: CN102657077A[P].2012-09-12.(in Chinese) | |
[41] | 沈希宏, 程式华, 曹立勇, 傅秀民,占小登. 长粒型优质抗病粳稻不育系长粳1A的选育. 杂交水稻, 2013, 28(4):15-17. |
Shen X H, Cheng S H, Cao L Y, Fu X M, Zhan X D.Breeding of long-grain japonicaCMS lineChangjing 1A with fine grain quality, and good disease resistance.Hybrid Rice, 2013, 28(4):15-17. (in Chinese with English abstract) | |
[42] | 李进波, 万丙良, 戚华雄. 水稻花器官发育的遗传研究进展. 湖北农业科学, 2010, 49(10):2563-2566. |
Li J B, Wan B L, Qin H X.Progress of genetic research on floral organ development of rice.Hubei AgricSci, 2010, 49(10):2563-2566.(in Chinese) | |
[43] | 付永琦, 向妙莲, 蒋海燕, 何永明,曾晓春. 水稻颖花开放前浆片转录组变化. 中国农业科学, 2016, 49(6): 1017-1033. |
Fu Y Q, Xiang M L, Jiang H Y, He Y M, Zeng X C.Transcriptome profiling of lodicules before floret opening inOryza sativa L. SciAgricSin, 2016, 49(6): 1017-1033.(in Chinese with English abstract) | |
[44] | Heslop-Harrison Y, Heslop-Harrison J S. Lodicule function and filament extension in the grasses: Potassium ion movement and tissue specialization.AnnBot, 1996, 77(6): 573-582. |
[45] | Qin Y, Yang J, Zhao J.Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis.Protoplasma, 2005, 225(1): 103-112. |
[46] | Liu L, Zou Z S, Qian K, Xia C, He Y, Zeng H L, Zhou X, Riemann M, Yin C S.Jasmonic acid deficiency leads to scattered floret opening time in cytoplasmic male sterile rice Zhenshan 97A. JExpBot, 2017, 68(16):4613-4625. |
[1] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[2] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[3] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
[4] | 李景芳, 温舒越, 赵利君, 陈庭木, 周振玲, 孙志广, 刘艳, 陈海元, 张云辉, 迟铭, 邢运高, 徐波, 徐大勇, 王宝祥. 基于CRISPR/Cas9技术创制耐盐香稻[J]. 中国水稻科学, 2023, 37(5): 478-485. |
[5] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
[6] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[7] | 段敏, 谢留杰, 高秀莹, 唐海娟, 黄善军, 潘晓飚. 利用CRISPR/Cas9技术创制广亲和水稻温敏雄性不育系[J]. 中国水稻科学, 2023, 37(3): 233-243. |
[8] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[9] | 姚姝, 赵春芳, 陈涛, 路凯, 周丽慧, 赵凌, 朱镇, 赵庆勇, 梁文化, 赫磊, 王才林, 张亚东. 低谷蛋白半糯型粳稻营养品质与蒸煮食味品质特征分析[J]. 中国水稻科学, 2023, 37(2): 178-188. |
[10] | 裴峰, 王广达, 高鹏, 冯志明, 胡珂鸣, 陈宗祥, 陈红旗, 崔傲, 左示敏. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1): 16-28. |
[11] | 王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36. |
[12] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
[13] | 张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578. |
[14] | 尹丽颖, 张元野, 李荣田, 何明良, 王芳权, 许扬, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制高效抗除草剂水稻[J]. 中国水稻科学, 2022, 36(5): 459-466. |
[15] | 周永林, 申小磊, 周立帅, 林巧霞, 王朝露, 陈静, 冯慧捷, 张振文, 陈晓婷, 鲁国东. OsLOX10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2022, 36(4): 348-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||