中国水稻科学 ›› 2017, Vol. 31 ›› Issue (6): 568-579.DOI: 10.16819/j.1001-7216.2017.7003
张习春, 鲁菲菲, 吕育松, 罗荣剑, 焦桂爱, 邬亚文, 唐绍清, 胡培松, 魏祥进*()
收稿日期:
2017-01-06
修回日期:
2017-02-13
出版日期:
2017-11-25
发布日期:
2017-11-10
通讯作者:
魏祥进
基金资助:
Xichun ZHANG, Feifei LU, Yusong LÜ, Rongjian LUO, Guiai JIAO, Yawen WU, Shaoqing TANG, Peisong HU, Xiangjin WEI*()
Received:
2017-01-06
Revised:
2017-02-13
Online:
2017-11-25
Published:
2017-11-10
Contact:
Xiangjin WEI
摘要:
【目的】 研究两个水稻垩白突变体胚乳垩白的形成机制,为稻米品质改良提供理论基础。【方法】 以从中花11的EMS突变体库中筛选出的两个稳定遗传的垩白突变体eb6、eb7为材料,对其进行农艺性状、稻米理化性质和遗传学分析,并利用eb6与南京11衍生的F2群体对控制垩白的基因进行图位克隆。同时对候选基因的表达模式及淀粉合成相关基因在突变体及野生型中表达情况进行了分析。【结果】 与野生型相比,两个突变体胚乳中央部位呈现白色且不透明,淀粉复合颗粒形状不规则且排列疏松,而突变体胚乳边缘部位与野生型无异,都为半透明状,淀粉复合颗粒呈多面体且排列致密。相对于野生型,突变体eb6、eb7成熟种子中的直链淀粉含量和胶稠度显著降低,蛋白质含量显著升高。RVA谱分析显示突变体淀粉黏滞性明显低于野生型。同时,支链淀粉聚合度分析显示突变体eb6中聚合度(DP)小于16的短链显著增加,DP为16~23的中长链显著减少。遗传分析表明突变体eb6、eb7胚乳垩白表型由单隐性核基因控制,并且它们为一对等位突变体。利用突变体eb6与南京11杂交衍生的F2群体将突变体基因定位在第1染色体长臂上物理距离86.6 kb的区间内。该区间包含22个开放阅读框(ORF),其中ORF13编码腺苷二磷酸葡萄糖焦磷酸化酶大亚基2(OsAGPL2)。序列分析发现eb6与eb7分别在OsAGPL2第3、第7外显子上发生1个单碱基替换,并分别导致一个氨基酸替换。RT-PCR及原位杂交结果显示,OsAGPL2主要在水稻发育中的籽粒中表达。同时OsAGPL2的突变导致了多个淀粉合成相关基因在水稻籽粒灌浆过程中的表达模式发生改变。【结论】 突变体eb6、eb7籽粒胚乳出现严重垩白表型为OsAGPL2突变所致。本研究进一步证明了OsAGPL2在调控水稻籽粒胚乳中淀粉的合成、淀粉复合颗粒的形成及稻米理化性质的平衡中起着重要的作用。
中图分类号:
张习春, 鲁菲菲, 吕育松, 罗荣剑, 焦桂爱, 邬亚文, 唐绍清, 胡培松, 魏祥进. 两个垩白突变体的鉴定及突变基因的图位克隆[J]. 中国水稻科学, 2017, 31(6): 568-579.
Xichun ZHANG, Feifei LU, Yusong LÜ, Rongjian LUO, Guiai JIAO, Yawen WU, Shaoqing TANG, Peisong HU, Xiangjin WEI. Identification and Gene Mapping-based Clone of Two Chalkiness Mutants in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(6): 568-579.
标记 Marker | 正向引物序列 Forward(5′-3′) | 反向引物序列 Reverse(5′-3′) | 片段大小 Product size/bp |
---|---|---|---|
RM7405 | TTGGCTCGCCCATATATAGG | CAGTCAGTCATCACTGGTAGTCG | 92 |
RM7341 | GCTTTGCTTGGTGGTCATTC | TGCAAGCTGAGTGTGAAACC | 145 |
M1 | TGCAACTTCTAGCTGCTCGA | GCATCCGATCTTGATGGG | 112 |
M2 | ACACCGCACCTAAACCCAAGACC | AGGCGCGTGAGAGAGGAATGG | 151 |
M4 | GACAACAATGGCCTCATCTTCC | GTCGTCGTCCTCGTAGTTCACG | 99 |
M5 | CCAGTGCACAACAGCACAAGC | GTTGGCTACTTGGCTTTCGATGG | 151 |
M7 | GTTCGTTTCCGAGATGTCACTGG | CGGGAGAGGGTACGATGAGTACG | 157 |
M10 | CTCCCCTTGTATTGGTAGA | TGAGAAACATCATACTCCATA | 174 |
M11 | CTCCCTCCCCAGGCAAGCAC | TGCAGCACAGACACGAGACC | 106 |
M12 | CATAACCCTGAAGTGGTGTGACG | GTGCTTGATGATATGGTCCTTGC | 149 |
M13 | GGAACTGCAGATTTGATGGAGAGG | CATATTCCACTGGGCGTCTGG | 106 |
M16 | AAAGCCTGGATAAGATGGTTCG | CTGTAGTTGCTGTTTGCCTGTCC | 124 |
M17 | GTGGAGGAGCGAAGGGAACACG | CCTCCCATATAAACCGGCGAACC | 140 |
M19 | ACGAGCACTACAGCACACATGC | AATGCTGCAACCTCTTCTTCTCC | 144 |
表1 突变体eb6基因精细定位所用分子标记
Table 1 Markers for fine mapping of eb6.
标记 Marker | 正向引物序列 Forward(5′-3′) | 反向引物序列 Reverse(5′-3′) | 片段大小 Product size/bp |
---|---|---|---|
RM7405 | TTGGCTCGCCCATATATAGG | CAGTCAGTCATCACTGGTAGTCG | 92 |
RM7341 | GCTTTGCTTGGTGGTCATTC | TGCAAGCTGAGTGTGAAACC | 145 |
M1 | TGCAACTTCTAGCTGCTCGA | GCATCCGATCTTGATGGG | 112 |
M2 | ACACCGCACCTAAACCCAAGACC | AGGCGCGTGAGAGAGGAATGG | 151 |
M4 | GACAACAATGGCCTCATCTTCC | GTCGTCGTCCTCGTAGTTCACG | 99 |
M5 | CCAGTGCACAACAGCACAAGC | GTTGGCTACTTGGCTTTCGATGG | 151 |
M7 | GTTCGTTTCCGAGATGTCACTGG | CGGGAGAGGGTACGATGAGTACG | 157 |
M10 | CTCCCCTTGTATTGGTAGA | TGAGAAACATCATACTCCATA | 174 |
M11 | CTCCCTCCCCAGGCAAGCAC | TGCAGCACAGACACGAGACC | 106 |
M12 | CATAACCCTGAAGTGGTGTGACG | GTGCTTGATGATATGGTCCTTGC | 149 |
M13 | GGAACTGCAGATTTGATGGAGAGG | CATATTCCACTGGGCGTCTGG | 106 |
M16 | AAAGCCTGGATAAGATGGTTCG | CTGTAGTTGCTGTTTGCCTGTCC | 124 |
M17 | GTGGAGGAGCGAAGGGAACACG | CCTCCCATATAAACCGGCGAACC | 140 |
M19 | ACGAGCACTACAGCACACATGC | AATGCTGCAACCTCTTCTTCTCC | 144 |
引物名称 Primer name | 登录号 Accession number | 正向引物序列 Forward(5′-3′) | 反向引物序列 Reverse(5′-3′) | |
---|---|---|---|---|
Actin | X16280 | CATGCTATCCCTCGTCTCGACCT | CGCACTTCATGATGGAGTTGTAT | |
OsAGPS1 | AK073146 | AGAATGCTCGTATTGGAGAAAATG | GGCAGCATGGAATAAACCAC | |
OsAGPS2a | AK071826 | ACTCCAAGAGCTCGCAGACC | GCCTGTAGTTGGCACCCAGA | |
OsAGPS2b | AK103906 | AACAATCGAAGCGCGAGAAA | GCCTGTAGTTGGCACCCAGA | |
OsAGPL1 | AK069296 | GGAAGACGGATGATCGAGAAAG | CACATGAGATGCACCAACGA | |
OsAGPL2 | AK071497 | GTTACTGGAACTGCACGATG | CTCCACCCAAAATGACAGC | |
OsAGPL3 | AK100910 | AAGCCAGCCATGACCATTTG | CACACGGTAGATTCACGAGACAA | |
OsAGPL4 | AK121036 | TCAACGTCGATGCAGCAAAT | ATCCCTCAGTTCCTAGCCTCATT | |
GBSSⅠ | AK070431 | TCCGAGAGGTTCAGGTCATC | ATGAGCTCCTCGGCGTAGTA | |
OsSSI | AK109458 | GGGCCTTCATGGATCAACC | CCGCTTCAAGCATCCTCATC | |
OsSSⅡa | AF419099 | GCTTCCGGTTTGTGTGTTCA | CTTAATACTCCCTCAACTCCACCAT | |
OsISA1 | AB093426 | TGCTCAGCTACTCCTCCATCATC | AGGACCGCACAACTTCAACATA | |
OsISA2 | AC132483 | TAGAGGTCCTCTTGGAGG | AATCAGCTTCTGAGTCACCG | |
OsISA3 | AP005574 | ACAGCTTGAGACACTGGGTTGAG | GCATCAAGAGGACAACCATCTG | |
OsBEI | AK068920 | CAAACTTTGACTAACAGGAGA | TTGATGGTAGGTGAAGCAG | |
OsBEⅡb | AK108535 | ATGCTAGAGTTTGACCGC | AGTGTGATGGATCCTGCC | |
OsPHOL | AK063766 | TTGGCAGGAAGGTTTCGCT | CGAAGCCTGAAGTGAACTTGCT |
表2 淀粉合成相关基因实时荧光定量PCR分析所用的引物
Table 2 Primers associated with starch synthesis used in RT-PCR.
引物名称 Primer name | 登录号 Accession number | 正向引物序列 Forward(5′-3′) | 反向引物序列 Reverse(5′-3′) | |
---|---|---|---|---|
Actin | X16280 | CATGCTATCCCTCGTCTCGACCT | CGCACTTCATGATGGAGTTGTAT | |
OsAGPS1 | AK073146 | AGAATGCTCGTATTGGAGAAAATG | GGCAGCATGGAATAAACCAC | |
OsAGPS2a | AK071826 | ACTCCAAGAGCTCGCAGACC | GCCTGTAGTTGGCACCCAGA | |
OsAGPS2b | AK103906 | AACAATCGAAGCGCGAGAAA | GCCTGTAGTTGGCACCCAGA | |
OsAGPL1 | AK069296 | GGAAGACGGATGATCGAGAAAG | CACATGAGATGCACCAACGA | |
OsAGPL2 | AK071497 | GTTACTGGAACTGCACGATG | CTCCACCCAAAATGACAGC | |
OsAGPL3 | AK100910 | AAGCCAGCCATGACCATTTG | CACACGGTAGATTCACGAGACAA | |
OsAGPL4 | AK121036 | TCAACGTCGATGCAGCAAAT | ATCCCTCAGTTCCTAGCCTCATT | |
GBSSⅠ | AK070431 | TCCGAGAGGTTCAGGTCATC | ATGAGCTCCTCGGCGTAGTA | |
OsSSI | AK109458 | GGGCCTTCATGGATCAACC | CCGCTTCAAGCATCCTCATC | |
OsSSⅡa | AF419099 | GCTTCCGGTTTGTGTGTTCA | CTTAATACTCCCTCAACTCCACCAT | |
OsISA1 | AB093426 | TGCTCAGCTACTCCTCCATCATC | AGGACCGCACAACTTCAACATA | |
OsISA2 | AC132483 | TAGAGGTCCTCTTGGAGG | AATCAGCTTCTGAGTCACCG | |
OsISA3 | AP005574 | ACAGCTTGAGACACTGGGTTGAG | GCATCAAGAGGACAACCATCTG | |
OsBEI | AK068920 | CAAACTTTGACTAACAGGAGA | TTGATGGTAGGTGAAGCAG | |
OsBEⅡb | AK108535 | ATGCTAGAGTTTGACCGC | AGTGTGATGGATCCTGCC | |
OsPHOL | AK063766 | TTGGCAGGAAGGTTTCGCT | CGAAGCCTGAAGTGAACTTGCT |
杂交组合 Cross | 野生型植株 Number of wild type plants | 突变体植株 Number of mutant plants | χ2(3:1 ) |
---|---|---|---|
eb6/南京11 eb6/Nanjing 11 | 310 | 119 | 1.72 |
eb7/93-11 | 253 | 96 | 1.17 |
表3 突变基因eb6的遗传分析
Table 3 Genetic analysis of the eb6.
杂交组合 Cross | 野生型植株 Number of wild type plants | 突变体植株 Number of mutant plants | χ2(3:1 ) |
---|---|---|---|
eb6/南京11 eb6/Nanjing 11 | 310 | 119 | 1.72 |
eb7/93-11 | 253 | 96 | 1.17 |
图7 野生型和突变体在种子发育过程胚乳中淀粉合成相关基因定量表达分析
Fig. 7. Expression profiles of starch synthesis genes during seed development in the wild type(WT) and the mutants.
[1] | 江良荣, 李义珍, 王侯聪, 黄育民. 稻米外观品质的研究进展与分子改良策略. 分子植物育种, 2003, 1(2): 243-255. |
Jiang L R, Li Y Z, Wang H C, Huang Y M.Research progresses on appearance quality of rice grain and strategies for its molecular improvement.Mol Plant Breed, 2003, 1(2): 243-255. | |
[2] | 江户一雄, 江幡守衞. 心白米.に する的研究第2. 日本作物学会纪事, 1959, 28(1): 46-50. |
Nagato K, Ebata M.Studies on white-core rice kernel: II. On the physical properties of the kernel.Jpn J Crop Sci, 1959, 28(1): 46-50. (in Japanese) | |
[3] | Cheng F M, Zhong L J, Wang F, Zhang G P.Differences in cooking and eating properties between chalky and translucent parts in rice grains .Food Chem, 2005, 90(1): 39-46. |
[4] | 程方民, 钟连进, 舒庆尧, 黄华宏, 石春海, 吴平. 早籼水稻垩白部位淀粉的蒸煮食味品质特征. 作物学报, 2002, 28(3): 363-368. |
Cheng F M, Zhong L J, Shu Q Y, Huang H H, Shi C H, Wu P.Studies on the cooking and eating quality properties in chalky milled grains of early indica rice.Acta Agron Sin, 2002, 28(3): 363-368. (in Chinese with English abstract) | |
[5] | 田代亨, 江幡守衞. 腹白米に する的研究第2 . 日本作物学会纪事, 1974, 43(1/2): 105 |
Tashiro T,Ebata M.Studies on white-belly rice kernel: II. Location on the panicle on occurrence of white-belly kernel.Jpn J Crop Sci, 1974, 43(1): 105-110. (in Japanese) | |
[6] | 程方民, 胡东维, 丁元树. 人工控温条件下稻米垩白形成变化及胚乳扫描结构观察. 中国水稻科学, 2000, 14(2): 83-87. |
Cheng F M, Hu D W, Ding Y S.Dynamic change of chalkiness and observation of grain endosperm structure with scanning electron microscope under controlled temperature condition.Chin J Rice Sci, 2000, 14(2): 83-87. (in Chinese with English abstract) | |
[7] | Invertases S A.Primary structures, functions, and roles in plant development and sucrose partitioning.Plant Physiol, 1999, 121(1): 1-8. |
[8] | Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu C Y, Tasa Y, Satozawa T, Sakamoto M, Shimada H.Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development phosphorylation of sucrose synthase is a possible factor.Plant Cell, 2002, 14(3): 619-628. |
[9] | Abe T, Niiyama H, Sasahara T.Cloning of cDNA for UDP-glucose pyrophosphorylase and the expression of mRNA in rice endosperm.Theor Appl Genet, 2002, 105(2/3): 216-221. |
[10] | Cho J I, Ryoo N, Ko S, Lee S K, Lee J, Jung K H, Lee Y H, Bhoo S H, Winderickx J, An G, Hahn T R, Jeon J S.Structure, expression, and functional analysis of the hexokinase gene family in rice(Oryza sativa L.). Planta, 2006, 224(3): 598-611. |
[11] | Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y.Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm.Plant J, 2005, 42(2): 164-174. |
[12] | Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y.The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm.Plant Physiol, 1999, 121(2): 399-410. |
[13] | Hirose T, Terao T.A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.) . Planta, 2004, 220(1): 9-16. |
[14] | Ball S, Guan H P, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J.From glycogen to amylopectin: a model for the biogenesis of the plant starch granule.Cell, 1996, 86(3): 349-352. |
[15] | She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H.A novel factorFLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22(10): 3280-3294. |
[16] | Wang Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lü J, Zhou K N, Su N, Bao Y Q, Wan J M.OsRab5a regulates endo- membrane organization and storage protein trafficking in rice endosperm cells. Plant J, 2010, 64(5): 812-824. |
[17] | Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H;An G, Hahn T R, Jeon J S.Knockout of a starch synthase geneOsSSIIIa/Flo5 causes white-core floury endosperm in rice(Oryza sativa L.). Plant Cell Rep, 2007, 26(7): 1083-1095. |
[18] | Cakir B, Shiraishi S, Tuncel A, Matsusaka H, Satoh R, Singh S, Crofts N, Hosaka Y, Fujita N, Hwang S K, Satoh H, Okita T W.Analysis of the rice ADP-glucose transporter(OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiol, 2016, 170(3): 1271-1283. |
[19] | Li Y, Fan C, Xing Y,Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y.Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet, 2014, 46(4): 398-404. |
[20] | Ballicora M A, Iiglesias A A, Preiss J.ADP-glucose pyrophosphorylase: A regulatory enzyme for plant starch synthesis.Photosyn Res, 2004, 79(1): 1-24. |
[21] | Lee S K, Hwang S K, Han M, Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S H, An G, Hahn T R, Okita T W, Jeon J S.Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol, 2007, 65(4): 531-556. |
[22] | Hwang S K, Okita T W.Understanding structure- function relationship of ADP-glucose pyrophos- phorylase by deciphering its mutant forms//Tetlow I. Starch: Origins, Structure and Metabolism. Vol.5. London UK: the Society for Experimental Biology, 2012: 77-114. |
[23] | Harn C H, Bae J M, Lee S S, Liu J R.Presence of multiple cDNAs encoding an isoform of ADP-glucose pyrophosphorylase large subunit from sweet potato and characterization of expression levels.Plant & Cell Physiol, 2000, 41(11): 1235-1242. |
[24] | Akihiro T, Mizuno K, Fujimura T.Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant&Cell Physiol, 2005, 46(6): 937-946. |
[25] | Nielsen T H, Krapp A, Röper-Schwarz U, Stitt M.The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen.Plant, Cell & Environ, 1998, 21(5): 443-454. |
[26] | Haugen T H, Ishaque A, Preiss J.Biosynthesis of bacterial glycogen. Characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (EC 2.7. 7.27).J Biol Chem, 1976, 251(24): 880-7885. |
[27] | Okita T W, Nakata P A, Anderosin J M, Sowokinos J, Morell M, Preiss J.The subunit structure of potato tuber ADPglucose pyrophosphorylase.Plant Physiol, 1990, 93(2): 785-790. |
[28] | Smith-White B J, Preiss J. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources.J Mol Evol,1992, 34(5): 449-464. |
[29] | Villand P, Olsen O A, Kleczkowski L A.Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase fromArabidopsis thaliana. Plant Mol Biol, 1993, 23(6): 1279-1284. |
[30] | Cross J M, Clancy M, Shaw J R, Okita T W, Hannah L C.Both subunits of ADP-glucose pyrophosphorylase are regulatory.Plant Physiol, 2004, 135(1): 137-144. |
[31] | Georgelis N, Braun E L, Shaw J R, Hannah L C.The two AGPase subunits evolve at different rates in angiosperms, yet they are equally sensitive to activity-altering amino acid changes when expressed in bacteria.Plant Cell, 2007, 19(5): 1458-1472. |
[32] | Hwang S K, Hamada S, Okita T W.Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit.Phytochemistry, 2007, 68(4): 464-477. |
[33] | Ohdan T, Francisco P B, Sawadat T, Hirose T, Terao T, Satoh H, Nakamura Y.Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot, 2005, 56(422): 3229-3244. |
[34] | Cook F R, Fahy B, Trafford K.A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield.Funct Plant Biol,2012,39(12): 1068-1078. |
[35] | Sikka V K, Choi S B, Kavakli I H, Sakulsingharoj C, Gupta S, Lto H, Okita T W.Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci, 2001, 161(3): 461-468. |
[36] | Burton R A, Johnson P E, Beckles D M, Fincher G B, Jenner H L, Naldrett M J, Naldrett M J, Denyer K.Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophos- phorylase in wheat endosperm.Plant Physiol, 2002, 130(3): 1464-1475. |
[37] | Denyer K, Dunlap F, Thorbj R T, Keeling P, Smith A M.The major form of ADP-glucose pyrophos- phorylase in maize endosperm is extra-plastidial.Plant Physiol, 1996, 112(2): 779-785. |
[38] | Tang X J, Peng C, Zhang J, Cai Y, You X M, Kong F, Yan H G, Wang G X, Wang L, Jin J, Chen W W, Chen X G, Ma J, Wang P, Jiang L, Zhang W W, Wan J M.ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Sci, 2016, 249: 70-83. |
[39] | Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita T W, Hwang S K, Satoh H.The rice endosperm ADP-glucose pyrophos- phorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme.Plant&Cell Physiol, 2014, 55(6): 1169-1183. |
[40] | Zhang D P, Wu J G, Zhang Y J, Shi C H.Phenotypic and candidate gene analysis of a new floury endosperm mutant (osagpl2-3) in rice. Plant Mol Biol Rep, 2012, 30(6): 1303-1312. |
[41] | Masahiro Y, Isono Y, Satoh H, Omura T.Gene analysis of sugary and shrunken mutants of rice,Oryza sativa L. Jpn J Breeding, 1984, 34(1): 43-49. |
[42] | 中华人民共和国农业部.米质测定方法NY 147–88.北京: 中国标准出版社, 2002. |
Ministry of Agriculture of the People’s Republic of China. Detection Method for Rice Quality NY 147–88. Beijing: China Standard Publishing House, 2002. (in Chinese) | |
[43] | 孙成效, 段彬伍, 谢黎虹, 陈能. 利用近红外透射光谱技术同步测定糙米的多项品质指标初报. 中国水稻科学, 2006, 20(4): 451-454. |
Sun C X, Duan B W, Xie L H, Chen N.Determination of several quality characteristics of brown rice by near infrared transmission spectroscopy.Chin J Rice Sci, 2006, 20(4): 451-454. (in Chinese with English abstract) | |
[44] | Han X H, Wang Y H, Liu X, Jiang L, Ren Y L, Liu F, Peng C, Li J J, Jin X M, Wu F Q, Wang J L, Guo X P, Zhang X, Cheng Z J, Wan J M.The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice.J Exp Bot, 2012, 63: 121-130. |
[45] | 康海岐, 常红叶. 杂交水稻主要亲本材料的垩白性状及其胚乳结构电镜扫描. 中国农学通报, 2007, 23(4): 180-185. |
Kang H Q, Chang H Y.Study on chalkiness characters and endosperm structures of the main parents’ kernel of hybrid rice. Chin Agric Sci Bull, 2007, 23(4): 180-185. (in Chinese with English abstract) | |
[46] | Li Z W,Trick H N.Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch .BioTechniques, 2005, 38(6): 872-876. |
[47] | Bahaji A, Li J, Sánchez-López Á M, Fernández E B, Muñoz F J, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Romero J P. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields.Biotechnol Adv, 2014, 32(1): 87-106. |
[48] | 刘霞, 付艳苹, 朱晔荣, 李艳萍, 王勇. 水稻垩白形成的生理和遗传机制. 植物生理学通讯, 2007, 43(3): 569-574. |
Liu X, Fu Y P, Zhu Y R, Li Y P, Wang Y.Physiological and genetic mechanism of rice chalkiness formation.Plant Physoil Commun, 2007, 43(3): 569-574. (in Chinese) | |
[49] | 周立军, 江玲, 翟虎渠, 万建民. 水稻垩白的研究现状与改良策略. 遗传, 2009, 31(6): 563-572. |
Zhou L J, Jiang L, Zhai H Q, Wan J M.Current status and strategies for improvement of rice grain chalkiness.Hereditas(Beijing), 2009, 31(6): 563-572. (in Chinese with English abstract) | |
[50] | Zhang L, Ren Y, Lu B, Yang C Y, Feng Z M, Liu Z, Chen J, Ma W W, Wang Y, Yu X W, Wang Y L, Zhang W W, Wang Y H, Liu S J, Wu F Q, Zhang X, Guo X P, Bao Y Q, Jiang L, Wan J M.FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice.J Exp Bot, 2016, 67(3): 633-647. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||