[1] |
Paietta J V.12 Regulation of Sulfur Metabolism in Filamentous Fungi. Springer International Publishing, 2016: 305-319.
|
[2] |
Jakubowski H, Goldman E.Methionine-mediatedlethality in yeast cells at elevated temperature.J Bacteriol, 1993, 175(17): 5469-5476.
|
[3] |
Thomas D, Surdin-Kerjan Y.Metabolism of sulfur amino acids in Saccharomyces cerevisiae.Microbiol Mol Biol Rev, 1998, 61(4): 503-532.
|
[4] |
Borkovich K A, Alex L A, Yarden O, Freitag M, Turner G E, Read R D, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang F E, Radford A, Selitrennikoff G, Galagan J E, Dunlap J C, Loros J J, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker E U, Sachs M S, Marzluf G A, Paulsen I, Davis R, Ebbole D J, Zelter A, Kalkman E R, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism.Microbiol Mol Biol Rev, 2004, 68(1): 1-108.
|
[5] |
Natorff R, Brzywczy J, Paszewski A.The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes.Mol Microbiol, 2003, 49(4): 1081-1094.
|
[6] |
Suliman H S, Appling D R, Robertus J D.The gene for cobalamin-independent methionine synthase is essential in Candida albicans: A potential antifungal target.Arch Biochem Biophys, 2007, 467(2): 218-226.
|
[7] |
Seong K, Hou Z, Tracy M, Kistler H C, Xu J R.Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum.Phytopathology, 2005, 95(7): 744.
|
[8] |
Yang Z, Pascon R C, Alspaugh A, Cox G M, Mccusker J H.Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology, 2002, 148(8): 2617-2625.
|
[9] |
Pascon R C, Ganous T M, Kingsbury J M, Cox G M, Mccusker J H.Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology, 2004, 150(9): 3013-3023.
|
[10] |
Ebbole D J.Magnaporthe as a model for understanding host-pathogen interactions.Phytopathology, 2007, 45(45): 437-456.
|
[11] |
Balhadère P V, Foster A J, Talbot N J.Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis.Mol Plant-Microb Interact, 1999, 12(2): 129-142.
|
[12] |
Wilson R A, Fernandez J, Quispe C F, Gradnigo J, Seng A, Moriyama E, Wright J D.Towards defining nutrient conditions encountered by the rice blast fungus during host infection.PloS One, 2012, 7(10): e47392.
|
[13] |
Saint-macary M E, Barbisan C, Gagey M J, Frelin O, Beffa R, Lebrun M H, Droux M. Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae.PloS One, 2015, 10(4): e0111108.
|
[14] |
Talbot N J, Ebbole D J, Hamer J E.Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.Plant Cell, 1993, 5: 1575-1590.
|
[15] |
Wang J, Zhang Z, Wang Y, Li L, Chai R, Mao X, Jiang H, Qiu H, Du X, Lin F, Sun G.PTS1 peroxisomal import pathway plays shared and distinct roles to PTS2 pathway in development and pathogenicity of Magnaporthe oryzae.PloS One, 2013, 8(2): e55554.
|
[16] |
Wilson R A, Talbot N J.Under pressure: investigating the biology of plant infection by Magnaporthe oryzae.Nat Rev Microbiol, 2009, 7(3): 185-195.
|
[17] |
Fernandez J, Marroquinguzman M, Wilson R A.Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Ann Rev Phytopathol, 2014, 52(1): 155-174.
|
[18] |
Mcguire W G, Marzluf G A.Developmental regulation of choline sulfatase and aryl sulfatase in Neurospora crassa.Arch Biochem Biophys, 1974, 161(2): 360-368.
|
[19] |
Ferreira M E D S, Marques E D R, Malavazi I, Torres I, Restrepo A, Nunes L R, de Oliveira R C, Goldman M H, Goldman G H. Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis.Mol Genet Genom, 2006, 276(5): 450-463.
|
[20] |
Kertesz M A, Cook A M, Leisinger T.Microbial metabolism of sulfurand phosphorus-containing xenobiotics.Fems Microbiol Rev, 1994, 15(2-3): 195-215.
|
[21] |
Bourgis F, Roje S, Nuccio M L, Fisher D B, Tarczynski M C, Li C, Herschbach C, Rennenberg H, Pimenta M J, Shen T L, Gage D A, Hanson A D.S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase.Plant Cell, 1999, 11(8): 1485-1498.
|
[22] |
James F, Nolte K D, Hanson A D.Purification and properties of S-adenosyl-L-methionine: L-methionine S-methyltransferase from Wollastonia biflora leaves.J Biol Chem, 1995, 270(38): 22344-22350.
|
[23] |
Solomon P S, Oliver R P.The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum.Planta, 2001, 213(2): 241-249.
|
[24] |
Solomon P S, Tan K C, Oliver R P.The nutrient supply of pathogenic fungi: A fertile field for study.Mol Plant Pathol, 2003, 4(3): 203-210.
|
[25] |
Rouillon A, Surdin-Kerjan Y, Thomas D.Transport of sulfonium compounds characterization of the S-adenosylmethionine and S-methylmethionine permeases from the yeast Saccharomyces cerevisiae.J Biol Chem, 1999, 274(40): 28 096-28 105.
|
[26] |
Kaur J, Bachhawat A K.Yct1p, a novel, high-affinity, cysteine-specific transporter from the Saccharomyces cerevisiae.Genetics, 2007, 176(2): 877-890.
|
[27] |
Marzluf G A.Molecular genetics of sulfur assimilation in filamentous fungi and yeast.Ann Rev Microbiol, 1997, 51(1): 73-96.
|
[28] |
Piłsyk S, Natorff R, Sieńko M, Paszewski A.Sulfate transport in Aspergillus nidulans: A novel gene encoding alternative sulfate transporter.Fung Genet Biol, 2007, 44(8): 715-725.
|
[29] |
Thomas D, Surdin-Kerjan Y.Metabolism of sulfur amino acids in Saccharomyces cerevisiae.Microbiol Mol Biol Rev, 1998, 61(4): 503-532.
|