[1] |
Allshire R C, Karpen G H.Epigenetic regulation of centromeric chromatin: Old dogs, new tricks?Nat Rev Genet, 2008, 9: 923-937.
|
[2] |
Malik H S, Henikoff S.Major evolutionary transitions in centromere complexity.Cell, 2009, 138: 1067-1082.
|
[3] |
Henikoff S, Ahmad K, Malik H S.The centromere paradox: Stable inheritance with rapidly evolving DNA.Science, 2001, 293: 1098-1102.
|
[4] |
Sullivan B A, Blower M D, Karpen G H.Determining centromere identity: Cyclical stories and forking paths.Nat Rev Genet, 2001, 2: 584-596.
|
[5] |
Lefrancois P, Auerbach R K, Yellman C M, Roeder G S, Snyder M.Centromere-like regions in the budding yeast genome.PLoS Genet, 2013, 9: e1003209.
|
[6] |
Clarke L.Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes.Curr Opin Genet&Dev, 1998, 8: 212-218.
|
[7] |
Cheeseman I M, Drubin D G, Barnes G.Simple centromere, complex kinetochore: Linking spindle microtubules and centromeric DNA in budding yeast.J Cell Biol, 2002, 157: 199-203.
|
[8] |
Schueler M G, Higgins A W, Rudd M K, Gustashaw K, Willard H F.Genomic and genetic definition of a functional human centromere.Science, 2001, 294: 109-115.
|
[9] |
Sun X, Le H D, Wahlstrom J M, Karpen G H.Sequence analysis of a functional Drosophila centromere.Genome Res, 2003, 13: 182-194.
|
[10] |
Ananiev E V, Phillips R L, Rines H W.Chromosome- specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Scie USA, 1998, 95: 13073-13078.
|
[11] |
Kamm A, Galasso I, Schmidt T, Heslop-Harrison J S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol, 1995, 27: 853-862.
|
[12] |
Cheng Z, Dong F, Langdon T, Ouyang S, Buell C R, Gu M, Blattner F R, Jiang J.Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon.Plant Cell, 2002, 14: 1691-1704.
|
[13] |
Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T.Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro.Proc Natl Acad Sci USA, 2000, 97: 7266-7271.
|
[14] |
Cleveland D W, Mao Y, Sullivan K F.Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling.Cell, 2003, 112: 407-421.
|
[15] |
Talbert P B, Masuelli R, Tyagi A P, Comai L, Henikoff S.Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant.Plant Cell, 2002, 14: 1053-1066.
|
[16] |
Earnshaw W C, Rothfield N.Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma.Chromosoma, 1985, 91: 313-321.
|
[17] |
Jin W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J.Maize centromeres: Organization and functional adaptation in the genetic background of oat.Plant Cell, 2004, 16: 571-581.
|
[18] |
Nagaki K, Terada K, Wakimoto M, Kashihara K, Murata M.Centromere targeting of alien CENH3s in Arabidopsis and tobacco cells.Chrom Res, 2010, 18: 203-211.
|
[19] |
Kurumizaka H, Horikoshi N, Tachiwana H, Kagawa W.Current progress on structural studies of nucleosomes containing histone H3 variants.Curr Opin Struct Biol, 2013, 23: 109-115.
|
[20] |
Palmer D K, O'Day K, Wener M H, Andrews B S, Margolis R L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones.J Cell Biol, 1987, 104: 805-815.
|
[21] |
Bui M, Dimitriadis E K, Hoischen C, An E, Quenet D, Giebe S, Nita-Lazar A, Diekmann S, Dalal Y.Cell- cycle-dependent structural transitions in the human CENP-A nucleosome in vivo.Cell, 2012, 150: 317-326.
|
[22] |
Malvezzi F, Litos G, Schleiffer A, Heuck A, Mechtler K, Clausen T, Westermann S.A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors.EMBO J, 2013, 32: 409-423.
|
[23] |
Hori T, Shang W H, Takeuchi K, Fukagawa T.The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly.J Cell Biol, 2013, 200: 45-60.
|
[24] |
Blower M D, Karpen G H.The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions.Nat Cell Biol, 2001, 3: 730-739.
|
[25] |
Howman E V, Fowler K J, Newson A J, Redward S, MacDonald A C, Kalitsis P, Choo K H. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice.Proc Natl Acad Sci USA, 2000, 97: 1148-1153.
|
[26] |
Nagaki K, Cheng Z, Ouyang S, Talbert P B, Kim M, Jones K M, Henikoff S, Buell C R, Jiang J.Sequencing of a rice centromere uncovers active genes.Nat Genet, 2004, 36: 138-145.
|
[27] |
Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J, Dawe R K.Centromeric retroelements and satellites interact with maize kinetochore protein CENH3.Plant Cell, 2002, 14: 2825-2836.
|
[28] |
Nagaki K, Murata M.Characterization of CENH3 and centromere-associated DNA sequences in sugarcane.Chrom Res, 2005, 13: 195-203.
|
[29] |
van Lente F, Jackson J F, Weintraub H. Identification of specific crosslinked histones after treatment of chromatin with formaldehyde.Cell, 1975, 5: 45-50.
|
[30] |
Jackson V.Studies on histone organization in the nucleosome using formaldehyde as a reversible cross- linking agent. Cell, 1978, 15: 945-954.
|
[31] |
Jackson V, Chalkley R.A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA.Cell, 1981, 23: 121-134.
|
[32] |
Jackson V, Chalkley R.Use of whole-cell fixation to visualize replicating and maturing simian virus 40: Identification of new viral gene product. Proc Natl Acad Sci USA, 1981, 78: 6081-6085.
|
[33] |
Solomon M J, Varshavsky A.Formaldehyde-mediated DNA-protein crosslinking: A probe for in vivo chromatin structures.Proc Natl Acad Sci USA, 1985, 82: 6470-6474.
|
[34] |
Lee H R, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J.Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species.Proc Natl Acad Sci USA, 2005, 102: 11793-11798.
|
[35] |
Nagaki K, Talbert P B, Zhong C X, Dawe R K, Henikoff S, Jiang J.Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres.Genetics, 2003, 163: 1221-1225.
|