中国水稻科学 ›› 2017, Vol. 31 ›› Issue (5): 447-456.DOI: 10.16819/j.1001-7216.2017.7028 447
• • 下一篇
陈平1, 吴立文1, 王忠伟1, 张宇1,2, 郭龙彪1,*()
收稿日期:
2017-03-08
修回日期:
2017-06-06
出版日期:
2017-10-10
发布日期:
2017-09-10
通讯作者:
郭龙彪
基金资助:
Ping CHEN1, Liwen WU1, Zhongwei WANG1, Yu ZHANG1,2, Longbiao GUO1,*()
Received:
2017-03-08
Revised:
2017-06-06
Online:
2017-10-10
Published:
2017-09-10
Contact:
Longbiao GUO
摘要:
叶片是植物进行光合作用的主要场所,其衰老由内源遗传发育信号和外界环境胁迫所启动,是一个非常复杂有序的调控过程。烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD)是脱氢酶的辅酶,在糖酵解、糖异生、三羧酸循环以及呼吸链等代谢中发挥着不可替代的作用。最新研究表明,水稻NAD生物合成参与调控沉默信息调控因子Sirtuins的生物活性、组蛋白H3K9去乙酰化、植物激素茉莉酸(JA)和叶片衰老。本文综述了有关水稻叶片衰老的细胞生理特征、Sirtuins酶活、NAD生物合成以及水稻早衰的OsSRT1-NAD调控途径和OsSRT1-MeOH-JA调控途径,以期阐明水稻叶片衰老的分子机理及其调控途径,为高产育种提供相应的理论参考。
中图分类号:
陈平, 吴立文, 王忠伟, 张宇, 郭龙彪. 烟酰胺腺嘌呤二核苷酸(NAD)合成途径和水稻叶片早衰[J]. 中国水稻科学, 2017, 31(5): 447-456.
Ping CHEN, Liwen WU, Zhongwei WANG, Yu ZHANG, Longbiao GUO. Nicotinamide Adenine Dinucleotide(NAD) Biosynthesis Pathway and Leaf Senescence in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(5): 447-456.
[1] | Gan S, Amasino R M.Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence).Plant Physiol, 1997, 113(2): 313-319. |
[2] | Noodén L D.The phenomena of senescence and aging. Senescence & Aging in Plants, 1988, 1-50. |
[3] | Noodén L D.12-Whole plant senescence. Senescence & Aging in Plants, 1988, 3(3): 391-439. |
[4] | 赵春德, 张迎信, 刘群恩, 余宁, 朱爱科, 程式华, 曹立勇.水稻叶片衰老分子机制研究进展. 分子植物育种, 2015, 13(3): 680-688. 2008, 30(5): 757-765. |
Zhao C D, Zhang Y X, Liu Q E, Yu N, Zhu A K, Cheng S H, Cao L Y.Research advance on molecular regulation mechanism of leaf senescence in rice.Mol Plant Breeding, 2015, 13(3): 680-688. (in Chinese with English abstract) | |
[5] | 段娜, 贾玉奎, 徐军, 陈海玲, 孙鹏. 植物内源激素研究进展. 中国农学通报, 2015, 31(2): 159-165. |
Duan N, Jia Y K, Xu J, Chen H L, Sun P.Research progress on plant endogenous hormone.Chin Agric Sci Bull, 2015, 13(3): 680-688. (in Chinese with English abstract) | |
[6] | Guo Y F, Gan S S.Leaf senescence: Signals, execution, and regulation. Curr Top Dev Biol, 2005, 71: 83-112. |
[7] | Lim P O, Kim H J, Nam H G.Leaf senescence.Annu Rev Plant Biol, 2007, 58: 115-136. |
[8] | Gregersen P L, Culetic A, Boschian L, Krupinska K.Plant senescence and crop productivity.Plant Mol Biol, 2013, 82(6): 603-622. |
[9] | 孙玉莹, 毕京翠, 赵志超, 程治军, 万建民. 作物叶片衰老研究进展. 作物杂志, 2013(4): 11-19. |
Sun Y Y, Bi Y C, Zhao Z C, Chen Z J, Wan J M.The advancement on leaf senescence in crops.Crops, 2013, (4): 11-19. (in Chinese) | |
[10] | Fang C, Zhang H, Wan J, Wu Y, Li K, Jin C, Chen W, Wang S, Wang W, Zhang H, Zhang P, Zhang F, Qu L, Liu X, Zhou D X, Luo J.Control of leaf senescence by a MeOH-Jasmonates cascade that is epigenetically regulated by OsSRT1 in rice.Mol Plant, 2016, 9(10): 1366-1378. |
[11] | Wu L, Ren D, Hu S, Li G, Dong G, Jiang L, Hu X, Ye W, Cui Y, Zhu L, Hu J, Zhang G, Gao Z, Zeng D, Qian Q, Guo L.Mutation of OsNaPRT1 in the NAD salvage pathway leads to withered leaf tips in rice.Plant Physiol, 2016, 171(2): 1085-1098. |
[12] | Berger F, Ramirez-Hernandez M H, Ziegler M. The new life of a centenarian: signalling functions of NAD(P).Trends Biochem Sci, 2004, 29(3): 111-118. |
[13] | Hunt L, Lerner F, Ziegler M.NAD-new roles in signalling and gene regulation in plants.New Phytol, 2004, 163(1): 31-44. |
[14] | Noctor G, Queval G, Gakiere B.NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot, 2006, 57(8): 1603-1620. |
[15] | Katoh A, Uenohara K, Akita M, Hashimoto T.Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid.Plant Physiol, 2006, 141(3): 851-857. |
[16] | Wang G D, Pichersky E.Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.Plant J, 2007, 49(6): 1020-1029. |
[17] | Buchananwollaston V.The molecular biology of leaf senescence.J Exp Bot, 1997, 48(307): 181-199. |
[18] | Gan S.Mitotic and postmitotic senescence in plants.Sci Aging Knowl Environ, 2003, 2003(38): 7. |
[19] | Zhang H, Zhou C.Signal transduction in leaf senescence.Plant Mol Biol, 2013, 82(6): 539-545. |
[20] | Rao Y, Yang Y, Xu J, Li X, Leng Y, Dai L, Huang L, Shao G, Ren D, Hu J, Guo L, Pan J, Zeng D.EARLY SENESCENCE1 encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice.Plant Physiol, 2015, 169(2): 1225-1239. |
[21] | Joakim R, Anders W.Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell, 2015, 27(7): 1907-1924. |
[22] | Ziegler M.New functions of a long-known molecule.Eur J Biochem, 2000, 267(6): 1550-1564. |
[23] | Tanner K G, Landry J, Sternglanz R, Denu J M.Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.Proc Natl Acad Sci USA, 2000, 97(26): 14178-14182. |
[24] | Imai S, Armstrong C M, Kaeberlein M, Guarente L.Transcriptional silencing and longevity protein Sir2 is an NAD+-dependent histone deacetylase.Nature, 2000, 403(6771): 795-800. |
[25] | North B J, Marshall B L, Borra M T, Denu J M, Verdin E.The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell, 2003, 11(2): 437-444. |
[26] | Sánchez J P, Duque P, Chua N H.ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis.Plant J, 2004, 38(3): 381-395. |
[27] | De Block M, Verduyn C, De Brouwer D, Cornelissen M.Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance.Plant J, 2005, 41(1): 95-106. |
[28] | Frye R.Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.Biochem Bioph Res Co, 2000, 273(2): 793-798. |
[29] | Moazed D.Enzymatic activities of Sir2 and chromatin silencing. Curr Opin Cell Biol, 2001, 13(2): 232-238. |
[30] | Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74(1): 122-133. |
[31] | Pandey R, Müller A, Napoli C A, Selinger D A, Pikaard C S, Richards E J, Bender J, Mount D W, Jorgensen R A.Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes.Nucleic Acids Res, 2002, 30(23): 5036-5055. |
[32] | Wang C, Gao F, Wu J, Dai J, Wei C, Li Y.Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression.Plant Cell Physiol, 2010, 51(8): 1291-1299. |
[33] | 钟理. 拟南芥组蛋白去乙酰化酶基因家族分析及AtSRT2在盐胁迫下调控种子萌发的分子机制. 北京: 中国农业科学院, 2015. |
Zhong L.Analysis of histone deacetylase gene families in Arabidopsis thaliana and the molecular mechanism of AtSRT2 controlling seed germination under salt stress. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract) | |
[34] | Huang L, Zhou D X.Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice.Plant Physiol, 2007, 144(3): 1508-1519. |
[35] | Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y, Peng H, Zhou D.The rice NAD+-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism- related genes and transposable elements.PLoS ONE, 2013, 8(6): e66807. |
[36] | Schmidt M T, Smith B C, Jackson M D, Denu J M.Coenzyme specificity of Sir2 protein deacetylases: Implications for physiological regulation.J Biol Chem, 2004, 279(38): 40122-40129. |
[37] | Ashihara H, Stasolla C, Yin Y, Loukanina N, Thorpe T A.De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells.Plant Sci, 2005, 169(1): 107-114. |
[38] | Hashida S N, Takahashi H, Kawai-Yamada M, Uchimiya H.Arabidopsis thaliana nicotinate/nicotinamide mono- nucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth.Plant J, 2007, 49(4): 694-703. |
[39] | Hashida S N, Hideyuki, Uchimiya H.The role of NAD biosynthesis in plant development and stress responses.Ann Bot, 2009, 103(6): 819-824. |
[40] | Schippers J H M, Nunes-Nesi A, Apetrei R, Hille J, Fernie A R, Dijkwel P P. The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing.Plant Cell, 2008, 20(10): 2909-2925. |
[41] | Liu J, Zhou J, Xing D.Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS ONE, 2012, 7(3): e33817. |
[42] | Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L.Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice.J Integr Plant Biol, 2016, 58(1): 12-28. |
[43] | Ueda J, Kato J.Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.).Plant Physiol, 1980, 66(2): 246-249. |
[44] | Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G.Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis.Science, 2009, 323(5917): 1053-1057. |
[45] | Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H.OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling.Biochem Bioph Res Commun, 2011, 409(4): 634-639. |
[46] | Shan X Y, Wang J X, Chua L L, Jiang D A, Peng W, Xie D X.The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence.Plant Physiol, 2011, 155(2): 751-764. |
[47] | Qi T, Wang J, Huang H, Liu B, Gao H, Liu Y, Song S, Xie D.Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell, 2015, 27(6): 1634-1649. |
[48] | Zhou Y, Huang W, Liu L, Chen T, Zhou F, Lin Y.Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 2013, 13(1): 1-13. |
[49] | Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C.OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice.Proc Natl Acad Sci USA, 2014, 111(27): 10013-10018. |
[50] | Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F.The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway.Plant Cell Physiol, 2014, 55(3): 604-619. |
[51] | Kong Z, Li M, Yang W, Xu W, Xue Y.A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice.Plant Physiol, 2006, 141(4): 1376-1388. |
[52] | Kang K, Park S, Natsagdorj U, Kim Y S, Back K.Methanol is an endogenous elicitor molecule for the synthesis of tryptophan and tryptophan-derived secondary metabolites upon senescence of detached rice leaves.Plant J, 2011, 66(2): 247-257. |
[53] | Krupková E, Immerzeel P, Pauly M, Schmülling T.The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J, 2007, 50(4): 735-750. |
[54] | Körner E, von Dahl C C, Bonaventure G, Baldwin I T. Pectin methylesterase NaPME1 contributes to the emission of methanol during insect herbivory and to the elicitation of defence responses in Nicotiana attenuata. J Exp Bot, 2009, 60(9): 2631-2640. |
[55] | Brachmann C B, Sherman J M, Devine S E, Cameron E E, Pillus L, Boeke J D.The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability.Gene Dev, 1995, 9(23): 2888-2902. |
[56] | Sun F, Qi W W, Qian X Y, Wang K J, Yang M F, Dong X X, Yang J S.Investigating the role of OsPDCD5, a homolog of the mammalian PDCD5, in programmed cell death by inducible expression in rice.Plant Mol Biol Rep, 2012, 30(1): 87-98. |
[57] | Singh S, Giri M K, Singh P K, Siddiqui A, Nandi A K.Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosciences, 2013, 38(3): 583-592. |
[58] | 李木英, 石庆华, 郑伟, 潘晓华, 谭雪明. 杂交稻后期叶片早衰特征及其与叶片N含量和根系活力关系初探. 江西农业大学学报, 2008, 30(5): 757-765. |
Li M Y, Shi Q H, Zheng W, Pan X H, Tan X M.A preliminary study on relationship between leaf premature senescence characteristic and leaf N content, root activity in hybrid rice during grain filling stage.Acta Agric Univ Jiangxi, 2008, 30(5): 757-765. | |
[59] | Lin S J, Defossez P A, Guarente L.Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.Science, 2000, 289(5487): 2126-2128. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||