中国水稻科学 ›› 2017, Vol. 31 ›› Issue (2): 175-184.DOI: 10.16819/j.1001-7216.2017.6099
邵在胜1, 穆海蓉1, 赵轶鹏1,3, 贾一磊1, 彭斌1, 杨连新1, 王云霞2,*()
出版日期:
2017-03-20
发布日期:
2017-03-10
通讯作者:
王云霞
基金资助:
Zaisheng SHAO1, Hairong MU1, Yipeng ZHAO1,3, Yilei JIA1, Bin PENG1, Lianxin YANG1, Yunxia WANG2,*()
Online:
2017-03-20
Published:
2017-03-10
Contact:
Yunxia WANG
摘要:
【目的】 研究臭氧胁迫下不同敏感型水稻叶片表观响应特征,为耐性水稻品种的选育提供参考。【方法】 利用自然光气体熏蒸平台,以23个水稻品种或株系为供试材料,臭氧设置室内对照(10 nL/L)和高臭氧浓度(100 nL/L)两个处理。采用组内最小平方和动态聚类方法,根据供试材料地上部最终生物量对高浓度臭氧的响应从小到大依次分为A、B和C 3个类别,研究臭氧胁迫下不同敏感类型水稻叶片伤害指数(LBS)特别是顶3叶叶色值(SPAD值,土壤、作物分析仪器开发)的动态响应及其与最终生长量变化的关系。【结果】 臭氧胁迫使A、B和C 3类水稻成熟期地上部生物量平均分别下降19%、39%和52%,后两者降幅达极显著水平。臭氧处理水稻的LBS随生育期推移呈明显的增加趋势,但不同敏感类型水稻间均无显著差异,各测定时期表现一致。与对照相比,臭氧胁迫使不同测定时期的叶片SPAD值显著下降,降幅随熏蒸时间延长和叶位下移明显增加。全生育期平均,臭氧胁迫使所有供试材料倒1叶、倒2叶和倒3叶SPAD值分别下降11%、18%和30%,均达极显著水平。与此不同,臭氧胁迫对叶片SPAD值的影响不同水稻类型间无显著差异,不同测定时期趋势相同。相关分析表明,尽管臭氧胁迫水稻成熟期地上部生物量的响应与部分测定时期LBS存在一定的相关性,但其与所有测定时期叶片SPAD值变化的相关性均不显著,不同叶位趋势一致。【结论】在本研究条件下,臭氧熏蒸叶片的伤害指数和SPAD值的响应均不宜作为水稻生长对臭氧耐性程度的评价指标。
中图分类号:
邵在胜, 穆海蓉, 赵轶鹏, 贾一磊, 彭斌, 杨连新, 王云霞. 臭氧胁迫对不同敏感型水稻叶片伤害的比较研究[J]. 中国水稻科学, 2017, 31(2): 175-184.
Zaisheng SHAO, Hairong MU, Yipeng ZHAO, Yilei JIA, Bin PENG, Lianxin YANG, Yunxia WANG. A Comparative Study of Ozone-induced Leaf Injury of Rice with Different Ozone Sensitivity[J]. Chinese Journal OF Rice Science, 2017, 31(2): 175-184.
处理 Treatment | 臭氧浓度 Ozone concentration / (nL·L-1) | 温度 Temperature /℃ | 湿度 Relative humidity /% | 光照 Illumination /klx | 大气压力 Atmosphere pressure /kPa |
---|---|---|---|---|---|
Ambient | 67.7 | 32.1 | 65.9 | 28.0 | 99.5 |
C-O3 | 10.4±2.32 | 32.2±0.04 | 69.0±0.46 | 26.8±2.79 | 99.4±0.17 |
E-O3 | 100.1±0.06 | 32.2±0.04 | 69.3±0.05 | 29.0±1.19 | 99.3±0.17 |
表1 臭氧熏蒸期间自然光气体熏蒸平台的控制情况(9:00-17:00)
Table 1 The performance of greenhouse-type gas fumigation platforms during the period of ozone fumigation(9:00-17:00).
处理 Treatment | 臭氧浓度 Ozone concentration / (nL·L-1) | 温度 Temperature /℃ | 湿度 Relative humidity /% | 光照 Illumination /klx | 大气压力 Atmosphere pressure /kPa |
---|---|---|---|---|---|
Ambient | 67.7 | 32.1 | 65.9 | 28.0 | 99.5 |
C-O3 | 10.4±2.32 | 32.2±0.04 | 69.0±0.46 | 26.8±2.79 | 99.4±0.17 |
E-O3 | 100.1±0.06 | 32.2±0.04 | 69.3±0.05 | 29.0±1.19 | 99.3±0.17 |
类型 Type | 最小值 Min/ % | 最大值 Max/ % | 平均数 Mean±SE/% | F值 F-value | 显著性水平Significance level | |
---|---|---|---|---|---|---|
0.05 | 0.01 | |||||
A(n=18) | -6.4 | -24.9 | -19.2±6.0 | 5.0 | a | A |
B(n=78) | -31.7 | -44.2 | -38.5±1.1 | 82.0 | b | B |
C(n=42) | -47.0 | -63.3 | -51.8±2.0 | 61.3 | c | C |
表2 不同类型水稻地上部生物量对臭氧胁迫响应的统计分析
Table 2 Statistical analysis of ozone-induced changes in the above-ground biomass of different types of rice.
类型 Type | 最小值 Min/ % | 最大值 Max/ % | 平均数 Mean±SE/% | F值 F-value | 显著性水平Significance level | |
---|---|---|---|---|---|---|
0.05 | 0.01 | |||||
A(n=18) | -6.4 | -24.9 | -19.2±6.0 | 5.0 | a | A |
B(n=78) | -31.7 | -44.2 | -38.5±1.1 | 82.0 | b | B |
C(n=42) | -47.0 | -63.3 | -51.8±2.0 | 61.3 | c | C |
图5 臭氧胁迫对不同类型水稻各测定时期倒1叶SPAD值的影响
Fig. 5. Effects of ozone stress on SPAD value of the first leaf from the top of different types of rice at different testing stages.
图6 臭氧胁迫对不同类型水稻各测定时期倒2叶SPAD值的影响
Fig. 6. Effects of ozone stress on SPAD value of the second leaf from the top of different types of rice at different testing stages.
图7 臭氧胁迫对不同类型水稻各测定时期倒3叶SPAD值的影响
Fig. 7. Effects of ozone stress on SPAD value of the third leaf from the top of different types of rice at different testing stages.
时期 Stage | O3 | 类型 Type(T) | 叶位 Leaf position(LP) | O3×T | O3×LP | O3×T×LP |
---|---|---|---|---|---|---|
移栽后23 d DAT23 | <0.01 | <0.01 | <0.01 | 0.479 | <0.01 | 0.827 |
移栽后53 d DAT53 | <0.01 | <0.01 | <0.01 | 0.017 | <0.01 | 0.949 |
移栽后67 d DAT67 | <0.01 | <0.01 | <0.01 | 0.101 | <0.01 | 0.989 |
移栽后81 d DAT81 | <0.01 | 0.769 | <0.01 | 0.064 | <0.01 | 0.673 |
全生育期平均 Mean | <0.01 | <0.01 | <0.01 | 0.098 | <0.01 | 0.890 |
表3 不同类型水稻顶3叶SPAD均值对臭氧胁迫响应的显著性检验(P值)
Table 3 Analysis of variance for ozone-induced changes in mean SPAD value of three leaves from the top of different types of rice (P value).
时期 Stage | O3 | 类型 Type(T) | 叶位 Leaf position(LP) | O3×T | O3×LP | O3×T×LP |
---|---|---|---|---|---|---|
移栽后23 d DAT23 | <0.01 | <0.01 | <0.01 | 0.479 | <0.01 | 0.827 |
移栽后53 d DAT53 | <0.01 | <0.01 | <0.01 | 0.017 | <0.01 | 0.949 |
移栽后67 d DAT67 | <0.01 | <0.01 | <0.01 | 0.101 | <0.01 | 0.989 |
移栽后81 d DAT81 | <0.01 | 0.769 | <0.01 | 0.064 | <0.01 | 0.673 |
全生育期平均 Mean | <0.01 | <0.01 | <0.01 | 0.098 | <0.01 | 0.890 |
指标 Index | DAT10 | DAT12 | DAT19 | DAT27 | DAT41 | DAT59 | Mean |
---|---|---|---|---|---|---|---|
r | 0.293 | 0.293 | 0.420 | 0.513 | 0.354 | 0.474 | 0.450 |
P-value | 0.175 | 0.174 | 0.046 | 0.012 | 0.097 | 0.022 | 0.031 |
表4 水稻不同生长期LBS与地上部最终生物量对臭氧胁迫响应的相关分析
Table 4 Correlation analysis of rice LBS at different growth stages and ozone-induced changes in above-ground part biomass.
指标 Index | DAT10 | DAT12 | DAT19 | DAT27 | DAT41 | DAT59 | Mean |
---|---|---|---|---|---|---|---|
r | 0.293 | 0.293 | 0.420 | 0.513 | 0.354 | 0.474 | 0.450 |
P-value | 0.175 | 0.174 | 0.046 | 0.012 | 0.097 | 0.022 | 0.031 |
叶位 Leaf position | 指标 Index | DAT23 | DAT53 | DAT67 | DAT81 | Mean |
---|---|---|---|---|---|---|
倒1叶 First leaf from the top of rice | r | 0.263 | 0.253 | 0.146 | 0.116 | 0.270 |
P-value | 0.225 | 0.244 | 0.507 | 0.597 | 0.212 | |
倒2叶 Second leaf from the top of rice | r | 0.090 | 0.091 | 0.202 | -0.045 | 0.112 |
P-value | 0.682 | 0.678 | 0.354 | 0.837 | 0.612 | |
倒3叶 Third leaf from the top of rice | r | -0.040 | 0.130 | 0.057 | 0.009 | 0.078 |
P-value | 0.856 | 0.555 | 0.798 | 0.966 | 0.725 |
表5 水稻不同生长期叶片SPAD值对臭氧胁迫的响应与地上部最终生物量响应的相关分析
Table 5 Correlation analysis of ozone-induced changes in rice leaf SPAD value at different growth stages and final above-ground part biomass.
叶位 Leaf position | 指标 Index | DAT23 | DAT53 | DAT67 | DAT81 | Mean |
---|---|---|---|---|---|---|
倒1叶 First leaf from the top of rice | r | 0.263 | 0.253 | 0.146 | 0.116 | 0.270 |
P-value | 0.225 | 0.244 | 0.507 | 0.597 | 0.212 | |
倒2叶 Second leaf from the top of rice | r | 0.090 | 0.091 | 0.202 | -0.045 | 0.112 |
P-value | 0.682 | 0.678 | 0.354 | 0.837 | 0.612 | |
倒3叶 Third leaf from the top of rice | r | -0.040 | 0.130 | 0.057 | 0.009 | 0.078 |
P-value | 0.856 | 0.555 | 0.798 | 0.966 | 0.725 |
[1] | Fiscus E L, Booker F L, Burkey K O.Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning.Plant Cell Environ, 2005, 28: 997-1011. |
[2] | Yamaji K, Ohara T, Uno I, Kurokawa J, Pochanart P, Akimoto H.Future prediction of surface ozone over east Asia using Models-3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia.J Geophys Res, 2008, 113(D8): D08306. |
[3] | Cooper O R, Parrish D D, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas J P, Oltmans S J, Johnson B J, Tarasick D, Leblanc T, McDermid I S, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery M A. Increasing springtime ozone mixing ratios in the free troposphere over western North America.Nature, 2010, 463(7279): 344-348. |
[4] | IRRI. Rice Almanac: Source Book for the Most Important Economic Activity on Earth. 3rd. Oxford: CABI Publishing, 2002. |
[5] | Feng Z W, Jin M H, Zhang F Z, Huang Y Z.Effects of ground-level ozone(O3)pollution on the yields of rice and winter wheat in Yangtze River delta.J Environ Sci-China, 2003, 15: 360-362. |
[6] | Pang J, Kobayashi K, Zhu J G.Yield and photosynthetic characteristics of flag leaves in Chinese rice(Oryza sativa L.) varieties subjected to free-air release of ozone. Agr Ecosyst Environ, 2009, 132: 203-211 |
[7] | 彭斌, 李潘林, 周楠, 赖上坤, 朱建国, 杨连新, 王余龙. 不同秧苗素质和移栽密度条件下臭氧胁迫对水稻光合作用、物质生产和产量的影响. 生态学报, 2013, 33( 12) : 3668-3675. |
Peng B, Li P L, Zhou N, Lai S K, Zhu J G, Yang L X, Wang Y L.Effects of ozone stress on photosynthesis, dry matter production and yield of rice under different seedling quality and plant density.Acta Ecol Sin, 2013, 33(12): 3668-3675. (in Chinese with English abstract) | |
[8] | 彭斌, 赖上坤, 李潘林, 王云霞, 朱建国, 杨连新, 王余龙. 不同密度下臭氧胁迫对 Ⅱ 优 084 水稻光合作用和物质生产的影响——FACE 研究. 应用生态学报, 2015, 26(1): 17-24. |
Peng B, Lai S K, Li P L, Wang Y X, Zhu J G, Yang L X, Wang Y L.Effects of ozone stress on photosynthesis and dry matter production of rice Ⅱ-you 084 under different planting densities. Chin J Appl Ecol, 2015, 26(1): 17-24. (in Chinese with English abstract) | |
[9] | 金明红, 冯宗炜, 张福珠. 臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响. 环境科学, 2000, 21(3): 1-5. |
Jin M H, Feng Z W, Zhang F Z.Effects of ozone on membrane lipid peroxidation and antioxidantsystem of rice leaves.Chin J Envir Sci, 2000, 03: 1-5. (in Chinese with English abstract)) | |
[10] | 黄益宗, 隋立华. 臭氧污染胁迫下植物的抗氧化系统调节机制. 生态毒理学报, 2013, 04: 456-464. |
Huang Y Z, Sui L H.Antioxidant mechanism of plants under ozone stress.Asian J Ecotoxicol, 2013, 04: 456-464. (in Chinese with English abstract) | |
[11] | Frei M.Breeding of ozone resistant rice: Relevance, approaches and challenges.Environ Pollut, 2015, 197: 144-155. |
[12] | 杨连新, 王余龙, 石广跃, 王云霞, 朱建国, Kobayashi K, 赖上坤. 近地层高臭氧浓度对水稻生长发育影响研究进展. 应用生态学报, 2008, 19(4): 901-910. |
Yang L X, Wang Y L, Shi G Y, WangY X, Zhu J G, Kobayashi K, Lai S K. Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: a review.Chin J Appl Ecol, 2008, 19(4): 901-910. (in Chinese with English abstract) | |
[13] | Kobayashi K, Okada M, Nouchi I.Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.).Agr Ecosyst Environ, 1995, 53(2): 109-122. |
[14] | Pandey A K, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E.Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: Results from ethylenediurea studies.Sci Total Environ, 2015, 532: 230-238. |
[15] | Hur J S, Kim P G, Yun S C, Park E W.Indicative responses of rice plant to atmospheric ozone.Plant Pathol J, 2000, 16(3): 130-136. |
[16] | Sagar V K, William J M.Atmospheric ozone: Formation and effects on vegetation.Environ Pollut, 1988, 50(1-2): 101-137. |
[17] | Wissuwa M, Ismail A M, Yanagihara S.Effects of zinc deficiency onrice growth and genetic factors contributing to tolerance.Plant Physiol, 2006, 142(2): 731-741. |
[18] | Frei M, Tanaka J P, Wissuwa M.Genotypic variationin tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J Exp Bot, 2008, 59(13): 3741-3752. |
[19] | Sawadw H, Kohno Y.Differential ozone sensitivity of rice cultivars as indicatedby visible injury and grain yield.Plant Biol, 2009, 1435-8603. |
[20] | Picchi V, Iriti M, Quaroni S, Saracchi M, Viola P, Faoro F.Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po Valley (Northern Italy).Agr Ecosyst Environ, 2010, 135(4): 310-317. |
[21] | Olszyk D M,Wise C.Interactive effects of elevated CO2 and O3 on rice and flacca tomato.Agr Ecosyst Environ, 1997, 66(1): 1-10. |
[22] | Phothi R, Umponstira C, Sarin C, Siriwong W, Nabheerong N.Combining effects of ozone and carbon dioxide application on photosynthesis of Thai jasmine rice (Oryza sativa L.) cultivar Khao Dawk Mali 105. Aust J Crop Sci, 2016, 10(4): 591-597. |
[23] | Sawada H, Komatsu S, Nanjo Y, Khan N A, Kohno Y.Proteomic analysis of rice response involved in reduction of grain yield under elevated ozone stress.Environ Exp Bot, 2012, 77: 108-116. |
[24] | 赵轶鹏, 邵在胜, 宋琪玲, 赖上坤, 周娟, 王云霞, 秦超, 杨连新, 王余龙. 一种新型自然光气体熏蒸平台: 系统结构与控制精度. 农业环境科学学报, 2012, 31(11): 2082-2093. |
Zhao Y P, Shao Z S, Song Q L, Lai S K, Zhou J, Wang Y X, Qin C, Yang L X, Wang Y L.System structure and control accuracy of a solar-illuminated gas fumigation platform. J Agro-Environ Sci, 2012, 31(11): 2082-2093. (in Chinese with English abstract) | |
[25] | Wang Y X, Yang L X, Meike H, Shao Z S, Pariasca-Tanaka J, Wissuwa M, Frei M.Pyramiding of ozone tolerance QTLsOzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice. Environ Exp Bot, 2014, 104: 26-33. |
[26] | 顾世梁, 莫惠栋. 动态聚类的一种新方法一最小组里平方和法. 江苏农学院学报, 1989, 10(4): 1-8. |
Gu S L, Mo H D.A new dynamic clustering method- MinSSw mehtod.J Jiangsu Agric Coll, 1989, 10(4): 1-8. (in Chinese with English abstract) | |
[27] | Ainsworth E A.Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration.Glob Change Biol, 2008, 14: 1642-1650. |
[28] | Ueda Y, Siddique S, Frei M.A novel gene OsORAP1 enhances cell death inozone stress in rice (Oryza sativa L.).Plant Physiol, 2016, 169: 873-889. |
[29] | Tausz M, Grulke N E, Wieser G.Defense and avoidance of ozone under global change.Environ Pollut, 2007, 147(3): 525-531. |
[30] | Nouchi I, Ito O, Harazono Y, Kobayashi K.Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants.Environ Pollut, 1991, 74(2): 149-164. |
[31] | Shi G Y, Yang L X, Wang Y X, Kobayashi K, Zhu J G, Tang H Y, Pan S T, Chen T, Liu G, Wang Y L.Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions.Agr Ecosyst Environ, 2009, 131(3): 178-184. |
[32] | 邵在胜, 沈士博, 贾一磊, 穆海蓉, 王云霞, 杨连新, 王余龙. 臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响. 农业环境科学学报, 2016, 35(9): 1642-1652. |
Shao Z S, Shen S B, Jia Y L, Mu H R, Wang Y X, Yang L X, Wang Y L.Impact of Ozone Stress on Element Absorption and Distribution of Rice Genotypes with Different Ozone Sensitivity.J Agro-Environ Sci, 2016, 35(9): 1642-1652. (in Chinese with English abstract) | |
[33] | 邵在胜, 沈士博, 贾一磊, 穆海蓉, 王云霞, 杨连新, 王余龙. 臭氧胁迫对不同敏感型水稻生长和产量形成的影响. 中国农业科学, 2016, 17: 3319-3331. |
Shao Z S, Shen S B, Jia Y L, Mu H R, Wang Y X, Yang L X, Wang Y L.Impact of ozone stress on growth and yield formation of rice genotypes with different ozone sensitivity.Sci Agric Sin, 2016 17: 3319-3331. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||