中国水稻科学 ›› 2017, Vol. 31 ›› Issue (2): 149-156.DOI: 10.16819/j.1001-7216.2017.6137
韩保林, 张洪凯, 顾朝剑, 廖泳祥, 彭永彬, 张红宇, 徐培洲, 陈晓琼, 吴先军*()
出版日期:
2017-03-20
发布日期:
2017-03-10
通讯作者:
吴先军
基金资助:
Baolin HAN, Yu TAO, Hongkai ZHANG, Chaojian GU, Yongxiang LIAO, Yongbin PENG, Hongyu ZHANG, Peizhou XU, Xiaoqiong CHEN, Xianjun WU*()
Online:
2017-03-20
Published:
2017-03-10
Contact:
Xianjun WU
摘要:
目的 叶片是水稻理想株型的重要内容,叶片适度卷曲可以提高光合效率。对卷叶相关基因进行遗传分析和初步定位,为下一步的基因克隆与功能分析提供研究基础。方法 利用EMS诱变雄性不育保持系宜香1B获得一份稳定遗传的叶片向内卷曲突变体,暂命名为rl(t)。在成熟期,测定野生型和rl(t) 的主要农艺性状;在分蘖期,取野生型和rl(t) 叶片用FAA固定液固定进行石蜡切片,同时,用野生型和rl(t)剑叶测定叶绿素含量;在抽穗期,利用Li-6400便携式光合仪测定10株抽穗期的野生型和rl(t)的光合参数;将rl(t)与野生型及日本晴杂交,观察 F1 植株表型,对F2表型分离进行χ2 测验,对突变体进行遗传分析。以 rl(t)/日本晴的 F2 群体为材料,利用 BSA 法进行定位。结果 与野生型相比,突变体叶片向内卷曲明显,叶片更加直立,叶色变深,其他主要农艺性状均有不同程度降低。光合特性分析表明,突变体比野生型具有更高的光合色素含量,但光合效率没有明显差异。叶片组织切片观察表明,突变体中泡状细胞变小可能是导致叶片卷曲的主要原因。遗传分析表明,该突变体受一对隐性核基因控制,利用突变体与日本晴的F2群体进行基因定位,最终将该基因定位在第7染色体长臂InDel标记Ind3和Ind4间610 kb的物理区间。结论 rl(t)叶片内卷是由于近轴面泡状细胞面积减小。RL(t)定位区间内未见卷叶相关基因报道,推测RL(t)可能是一对新基因。
韩保林, 张洪凯, 顾朝剑, 廖泳祥, 彭永彬, 张红宇, 徐培洲, 陈晓琼, 吴先军. 水稻叶片内卷突变体rl(t)的鉴定与基因定位[J]. 中国水稻科学, 2017, 31(2): 149-156.
Baolin HAN, Yu TAO, Hongkai ZHANG, Chaojian GU, Yongxiang LIAO, Yongbin PENG, Hongyu ZHANG, Peizhou XU, Xiaoqiong CHEN, Xianjun WU. Identification and Gene Mapping of a Rolled Leaf Mutant rl(t) in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(2): 149-156.
标记 Marker | 正向引物(5'-3') Forward primer(5'-3') | 反向引物(5'-3') Reverse primer(5'-3') | |
RM3394 | CCCTTACGTGCAGTACATTG | ATGCAGGCTACTTACTAGCG | |
Ind1 | CCAGTCAACAGGAGCATA | TTAATTATTAGCCTGCTCGA | |
Ind2 | TATAGATGAGCACGCAATCA | GTATGATCGGAAACGTCACT | |
Ind3 | TTGCAGGAGTACTGAAATGA | GCCAGTATTACCAGAGGATG | |
Ind4 | CAAGGTCATCAAGTTCGC | CTGACGGAGCCAGGATCT | |
Ind5 | TGGAAAAGAACTTCAATGCT | TTGAATCACCACAATTTAGC | |
Ind6 | GTCAACCGTCAAGAGATCAT | TGCTTTAGCAGAGTTGCATA | |
RM5752 | TTGCAATTAATTCGATCTCC | GCAGATCGATTCGTTAGTTC | |
ACL1 | CTGAAGCTGAACCTCTCGCTG | GGAGCATGACGTAGATGAAGCAG | |
RL14 | CTCTTTCAGGCATTCCATTGATG | CAACACCTTGTCAGCTTTCAAGC | |
ROC5 | CGCAAGAGGAAGAAGCGATAC | GCTCCAGTTGCGTCTTCATC | |
SRL1 | TGCATCTTTTGACCCAGCTAC | ACAACAAGGGTGCCCAGATAA | |
SLL1 | CAGGTGTCCAACCATGAGC | GCCTCTGTGATTGCCATCTAAT | |
CFL1 | TCGAGCTCAACTCCGAGGTC | ACGGACGACACGGAGGTGTA | |
NRL1 | TCAGTAGTGTAGTGGTGTCGAGTTCA | GCACTCCTTCATGTGAGCTTCA | |
NAL7 | CAAGAACATCACCGGCAAGA | CGATTTGATCAAGGACCATGCT | |
OSAGO7 | CCGCATCCCCTTGATGATT | GGCCAATTCATGCTTGCAA | |
SRL2 | TCCATCTGCGCAGCATTTCA | CTACTGGGCACGATATGCAG |
表1 基因定位分子标记引物及qRT-PCR引物序列
Table 1 The sequences of molecular markers used for gene mapping and qRT-PCR markers.
标记 Marker | 正向引物(5'-3') Forward primer(5'-3') | 反向引物(5'-3') Reverse primer(5'-3') | |
RM3394 | CCCTTACGTGCAGTACATTG | ATGCAGGCTACTTACTAGCG | |
Ind1 | CCAGTCAACAGGAGCATA | TTAATTATTAGCCTGCTCGA | |
Ind2 | TATAGATGAGCACGCAATCA | GTATGATCGGAAACGTCACT | |
Ind3 | TTGCAGGAGTACTGAAATGA | GCCAGTATTACCAGAGGATG | |
Ind4 | CAAGGTCATCAAGTTCGC | CTGACGGAGCCAGGATCT | |
Ind5 | TGGAAAAGAACTTCAATGCT | TTGAATCACCACAATTTAGC | |
Ind6 | GTCAACCGTCAAGAGATCAT | TGCTTTAGCAGAGTTGCATA | |
RM5752 | TTGCAATTAATTCGATCTCC | GCAGATCGATTCGTTAGTTC | |
ACL1 | CTGAAGCTGAACCTCTCGCTG | GGAGCATGACGTAGATGAAGCAG | |
RL14 | CTCTTTCAGGCATTCCATTGATG | CAACACCTTGTCAGCTTTCAAGC | |
ROC5 | CGCAAGAGGAAGAAGCGATAC | GCTCCAGTTGCGTCTTCATC | |
SRL1 | TGCATCTTTTGACCCAGCTAC | ACAACAAGGGTGCCCAGATAA | |
SLL1 | CAGGTGTCCAACCATGAGC | GCCTCTGTGATTGCCATCTAAT | |
CFL1 | TCGAGCTCAACTCCGAGGTC | ACGGACGACACGGAGGTGTA | |
NRL1 | TCAGTAGTGTAGTGGTGTCGAGTTCA | GCACTCCTTCATGTGAGCTTCA | |
NAL7 | CAAGAACATCACCGGCAAGA | CGATTTGATCAAGGACCATGCT | |
OSAGO7 | CCGCATCCCCTTGATGATT | GGCCAATTCATGCTTGCAA | |
SRL2 | TCCATCTGCGCAGCATTTCA | CTACTGGGCACGATATGCAG |
性状 Trait | 宜香1B Yixiang 1B | rl(t) | ||
抽穗期 Days to heading / d | 87.3±1.3 | 81.1 | ±1.4** | |
株高 Plant height / cm | 112.3±4.1 | 103.5 | ±2.8** | |
分蘖数 No. of tillers | 14.6±1.1 | 6.0 | ±0.8** | |
穗长 Panicle length / cm | 29.1±0.9 | 26.9 | ±0.9** | |
每穗实粒数 No. of filled grains per panicle | 196.7±5.2 | 134.3 | ±7.0** | |
每穗粒数 No. of grains per panicle | 212.4±7.2 | 173.6 | ±9.5** | |
结实率 Seed-setting rate / % | 93.0±1.0 | 77.0 | ±22.0** | |
千粒重 1000-grain weight / g | 30.1±0.2 | 21.9 | ±0.1** | |
粒长 Grain length / mm | 9.9±0.0 | 9.2 | ±0.0** | |
粒宽 Grain width / mm | 2.7±0.2 | 2.7 | ±0.0 | |
长宽比 Grain length-width ratio | 3.7±0.3 | 3.4 | ±0.0* | |
数据表示为平均数±标准差;样本数量n=10;**, *分别表示差异达0.01和0.05显著水平(t检验)。 Values are listed as means ± SD (n=10). **, * Significantly different at 0.01 and 0.05 levels, respectively(t test). |
表1 宜香1B与rl(t)的农艺性状比较
Table 2 Comparison of agronomic traits between rl(t) and its wild type.
性状 Trait | 宜香1B Yixiang 1B | rl(t) | ||
抽穗期 Days to heading / d | 87.3±1.3 | 81.1 | ±1.4** | |
株高 Plant height / cm | 112.3±4.1 | 103.5 | ±2.8** | |
分蘖数 No. of tillers | 14.6±1.1 | 6.0 | ±0.8** | |
穗长 Panicle length / cm | 29.1±0.9 | 26.9 | ±0.9** | |
每穗实粒数 No. of filled grains per panicle | 196.7±5.2 | 134.3 | ±7.0** | |
每穗粒数 No. of grains per panicle | 212.4±7.2 | 173.6 | ±9.5** | |
结实率 Seed-setting rate / % | 93.0±1.0 | 77.0 | ±22.0** | |
千粒重 1000-grain weight / g | 30.1±0.2 | 21.9 | ±0.1** | |
粒长 Grain length / mm | 9.9±0.0 | 9.2 | ±0.0** | |
粒宽 Grain width / mm | 2.7±0.2 | 2.7 | ±0.0 | |
长宽比 Grain length-width ratio | 3.7±0.3 | 3.4 | ±0.0* | |
数据表示为平均数±标准差;样本数量n=10;**, *分别表示差异达0.01和0.05显著水平(t检验)。 Values are listed as means ± SD (n=10). **, * Significantly different at 0.01 and 0.05 levels, respectively(t test). |
材料 Material | 净光合速率Pn /(µmol·m-2 s-1) | 气孔导度Gs /(µmol·m-2 s-1) | 胞间二氧化碳浓度Ci /(µmol·m-2 s-1) | 蒸腾速率Tr /(µmol·m-2 s-1) |
宜香1B Yixiang 1B | 18.62±0.14 | 0.51±0.00 | 295.92±5.68 | 4.59±0.06 |
rl(t) | 18.57±0.25 | 0.50±0.00 | 297.53±1.52 | 4.57±0.04 |
数据表示为平均数±标准差;样本数量n=10; **, *分别表示差异达0.01和0.05显著水平(t检验)。 Values are means ± SD (n=10). **, * Significantly different at 0.01 and 0.05 levels, respectively(t test). |
表3 野生型宜香1B与突变体rl(t)光合特性比较
Table 3 Comparison of the photosynthetic characters between Yixiang 1B and rl(t).
材料 Material | 净光合速率Pn /(µmol·m-2 s-1) | 气孔导度Gs /(µmol·m-2 s-1) | 胞间二氧化碳浓度Ci /(µmol·m-2 s-1) | 蒸腾速率Tr /(µmol·m-2 s-1) |
宜香1B Yixiang 1B | 18.62±0.14 | 0.51±0.00 | 295.92±5.68 | 4.59±0.06 |
rl(t) | 18.57±0.25 | 0.50±0.00 | 297.53±1.52 | 4.57±0.04 |
数据表示为平均数±标准差;样本数量n=10; **, *分别表示差异达0.01和0.05显著水平(t检验)。 Values are means ± SD (n=10). **, * Significantly different at 0.01 and 0.05 levels, respectively(t test). |
[1] | 陈温福, 徐正进, 张龙步. 水稻理想株型的研究. 沈阳农业大学学报,1989(4): 417-420. |
Chen W F, Xu Z J, Zhang B L.Rice ideal pant-type. JShenyang Agric Univ, 1989(4): 417-420. (in Chinese) | |
[2] | 程式华, 曹立勇, 陈深广, 朱德峰, 王熹, 闵绍楷, 翟虎渠. 后期功能型超级杂交稻的概念及生物学意义. 中国水稻科学, 2005, 19(3): 280-284. |
Cheng S H, Cao L Y, Chen S G, Zhu D F, Wang X, Min S K, Zhai H Q.Conception of late-stage vigor super hybrid rice and its biological Significance.Chin J Rice Sci, 2005,19(3): 280-284. (in Chinese with English abstract) | |
[3] | Khush G S, Kinoshita T.Rice karyotype, marker genes, and linkage groups//Khush G S, Toenniessen G H. Rice Biotechnology. Wallingford: CAB International and IRRI, 1991: 83-108. |
[4] | 李仕贵, 马玉清, 何平, 黎汉云, 陈英, 周开达, 朱立煌. 一种未知的卷叶基因的识别和定位. 四川农业大学学报, 1998, 16(4): 391-393. |
Li S G, Ma Y Q, He P, Li H Y, Chen Y, Zhou K D, Zhu L H.Genetic analysis and mapping the flag leaf roll in rice (Oryza sativa L.). J Sichuan Agric Univ, 1998, 16(4): 391-393. (in Chinese with English abstract) | |
[5] | 严长杰, 严松, 张正球, 梁国华, 陆驹飞, 顾铭洪. 一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位. 科学通报, 2005, 50(24): 2757-2762. |
Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H.Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Chin Sci Bull, 2005, 50(24): 2757-2762. (in Chinese with English abstract) | |
[6] | Yi J C, Zhuang C X, Wang X J, Cao Y P, Liu Y G, Mei M T.Genetic analysis and molecular mapping of a rolling leaf mutation gene in rice.J Integr Plant Biol, 2007, 49: 1746-1753. |
[7] | 施勇烽, 陈洁, 刘文强, 黄奇娜, 沈波, Hei Leung, 吴建利. 一个新的水稻卷叶突变体的遗传分析与基因定位. 中国科学: C 辑, 2009, 39(4): 407-412. |
Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L.A new rice leaf mutant of genetic analysis and gene location.Sci China Series C: Life Sci, 2009, 39(4): 407-412. (in Chinese with English abstract) | |
[8] | 余东, 吴海滨, 杨文韬, 巩鹏涛, 李有志, 赵德刚. 水稻单侧卷叶突变体 B157 遗传分析及基因初步定位. 分子植物育种, 2008, 6(2): 220-226. |
Yu D, Wu H B, Yang W T, Gong P T, Li Y Z, Zhao D G.Genetic analysis and mapping of the unilateral rolled leaf trait of rice mutant B157.Mol Plant Breeding, 2008, 6(2): 220-226. (in Chinese with English abstract) | |
[9] | Wang D K, Liu H Q, Li K L, Li S J, Tao Y Z.Genetic analysis and gene mapping of a narrow leaf mutant in rice (Oryza sativa L.). Chin Sci Bull, 2009, 54(5): 752-758. |
[10] | 罗远章, 赵芳明, 桑贤春, 凌英华, 杨正林, 何光华. 水稻新型卷叶突变体 rl12(t)的遗传分析和基因定位. 作物学报, 2009, 35(11): 1967-1972. |
Luo Y Z, Zhao F M, Sang X C, Ling Y H, Yang Z L, He G H.Genetic analysis and gene mapping of a novel rolled leaf mutantrl12(t) in rice. Acta Agron Sin, 2009, 35(11): 1967-1972. (in Chinese with English abstract) | |
[11] | 顾兴友, 顾铭洪. 一种水稻卷叶性状的遗传分析. 遗传, 1995, 17(5): 20-23. |
Gu X Y, Gu M H.A genetic analysis of rice leaf traits.Hereditas, 1995, 17(5): 20-23. (in Chinese with English abstract) | |
[12] | Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H.Rolling-leaf14 is a 2OG-Fe(Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.Plant Biotechnol J, 2012, 10(5): 524-532. |
[13] | 张礼霞, 刘合芹, 于新, 王林友, 范宏环, 金庆生, 王建军. 水稻卷叶突变体 rl15(t)的生理学分析及基因定位. 中国农业科学, 2014,47(14): 2881-2888. |
Zhang L X, Liu H Q, Yu X, Wang L Y, Fan H H, Jin Q S, Wang J J.Molecular mapping and physiological characterization of a novel mutantrl15(t) in rice. Sci Agric Sin, 2014, 47(14): 2881-2888. (in Chinese with English abstract) | |
[14] | 刘晨, 孔维一, 尤世民, 钟秀娟, 江玲, 赵志刚, 万建民. 一个水稻卷叶基因的遗传分析和精细定位. 中国农业科学, 2015, 48(13): 2487-2496. |
Liu C, Kong W Y, You S M, Zhong X J, Jiang L, Zhao Z G, Wang J M.Genetic analysis and fine mapping of a novel rolled leaf gene in rice.Sci Agric Sin, 2015, 48(13): 2487-2496. (in Chinese with English abstract) | |
[15] | Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J I, Nagato Y.TheADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354. |
[16] | Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L.Over-expression of riceOsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226(1): 99-108. |
[17] | 李磊,薛芗,左示敏,陈宗祥,张亚芳,李前前,朱俊凯,马玉银,潘学彪,潘存红.抑制OsAGO1a基因的表达导致水稻叶片近轴面卷曲. 中国水稻科学,2013, 27(3): 223-230. |
Li L, Xue X, Zou S M, Chen Z X, Zhang Y F, Li Q Q, Zhu J K, Ma Y Y, Pan X B, Pan C H.Suppressed expressed of AGO1a leads to adaxial leaf rolling in rice.Chin J Rice Sci, 2013, 27(3): 223-230. | |
[18] | Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu TG.Leaf rolling controlled by the homeodomain leucine zipper class IVgeneRoc5 in rice. Plant Physiol, 2011, 156: 1589-1602. |
[19] | Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L.Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817. |
[20] | Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q.Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73(3): 283-292. |
[21] | Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije M W, Sekiguchi H.NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom, 2008, 279: 499-507. |
[22] | Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G H, Dong G J, Yan M X, Liu J, Qian Q.Identification and characterization ofNARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73(3): 283-292. |
[23] | Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W.SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell, 2009, 21(3): 719-735. |
[24] | Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K.Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67(8): 2139-2150. |
[25] | Wu R H, Li B S, He S, Wabmann F, Yu C, Qin G J, Schreiber L, Qu LJ, Gu H Y.CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411. |
[26] | Lichtenthaler H K.Chlorophyll and carotenoids: Pigments of photosynthetic membranes.Methods Enzymol, 1987, 148: 350-382. |
[27] | Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5(2): 69-76. |
[28] | 赵芳明,魏霞, 马玲, 桑贤春, 王楠, 张长伟,凌英华,何光华.水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测. 科学通报, 2015(32): 3133-3143. |
Zhao F M, Wei X, Ma L, Sang X C, Wang N, Zhang C W, Ling Y H, He G H.Identification, gene mapping and candidate gene prediction of a late-stage rolled leaf mutantlrl1 in rice(Oryza sativa L.). Chin Sci Bull, 2015, 60: 3133-3143. (in Chinese with English abstract) | |
[29] | Sangster A G, Parry D W.Some factors in relation to bulliform cell silicification in the grass leaf.Annals Bot, 1969, 33(130): 315-323. |
[30] | Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W.Rice leaf inclination2, a VIN3-1ike protein, regulates leaf angle through modulating cell division of collar.Cell Res, 2010, 20(8): 935-947. |
[31] | Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J.Overexpression ofOsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice, 2016, 9(1): 46. |
[32] | Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X.The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism.Plant Physiol, 2007, 5(144): 121-133. |
[33] | Yang C H, Li D Y, Liu X, Ji C J, Hao L L, Zhao X F, Li X B, Chen C Y, Cheng Z K, Zhu L H.OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14(1): 1-15. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||