中国水稻科学 ›› 2017, Vol. 31 ›› Issue (1): 31-39.DOI: 10.16819/j.1001-7216.2017.6046
张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮, 张文伟*(), 江玲
收稿日期:
2016-03-17
修回日期:
2016-04-09
出版日期:
2017-01-20
发布日期:
2017-01-10
通讯作者:
张文伟
基金资助:
Jie ZHANG, Leina ZHENG, Yue CAI, Xiaoman YOU, Fei KONG, Guoxiang WANG, Haigang YAN, Jie JIN, Liang WANG, Wenwei ZHANG*(), Ling JIANG
Received:
2016-03-17
Revised:
2016-04-09
Online:
2017-01-20
Published:
2017-01-10
Contact:
Wenwei ZHANG
摘要:
目的 检测到新的控制稻米品质性状相关的QTL并分析各性状间的相关性,为了解控制水稻品质的遗传机理和培育优质水稻品种奠定基础。方法 利用Sasanishiki×Habataki回交重组自交系(backcross inbred lines, BILs)群体在两个环境下种植的结果,检测与稻米直链淀粉含量、蛋白质含量及RVA谱特征值相关的加性QTL。结果 表型分析结果显示,Habataki的蛋白含量明显高于Sasanishiki;而除消减值以外其余的稻米品质性状指标,Sasanishiki均高于Habataki。利用BIL群体共检测到加性QTL 42个,其中10个QTL位点在2个环境中均能被检测到,即qPC8、qAC4、qAC10、qPKV2、qPKV7、qHPV7、qCPV1、qBDV4、qBDV7、qSBV7,且qCPV1、qBDV4、qPKV7、qHPV7和qAC10等5个QTL尚未见报道。同时,我们还利用Sasanishiki×Habataki染色体片断置换系(Chromosome segment substitution lines, CSSLs)验证了10个稳定表达的QTL位点。结论 稻米RVA谱特征值与直链淀粉含量、蛋白质含量之间呈现一定相关性,且控制不同品质性状的QTL之间具有共定位现象。
张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮, 张文伟, 江玲. 稻米淀粉RVA谱特征值与直链淀粉、蛋白含量的相关性及QTL定位分析[J]. 中国水稻科学, 2017, 31(1): 31-39.
Jie ZHANG, Leina ZHENG, Yue CAI, Xiaoman YOU, Fei KONG, Guoxiang WANG, Haigang YAN, Jie JIN, Liang WANG, Wenwei ZHANG, Ling JIANG. Correlation Analysis and QTL Mapping for Starch RVA Profile Properties and Amylose and Protein Contents in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(1): 31-39.
性状 Trait | 亲本(平均值±标准差) Parent(Mean±SD) | BIL群体 BIL population | |||
---|---|---|---|---|---|
平均值±标准差 Mean±SD | 变异范围 Range | ||||
Sasanishiki | Habataki | ||||
蛋白质含量 Protein content/% | 7.15±0.01 | 8.09±0.02 | 7.96±0.78 | 6.52~9.94 | |
7.36±0.02 | 8.79±0.01 | 7.96±0.75 | 6.55~9.78 | ||
直链淀粉含量 Amylose content/% | 14.18±0.11 | 12.89±0.22 | 13.09±2.14 | 9.58~24.87 | |
14.32±0.12 | 13.04±0.20 | 13.08±2.12 | 9.65~24.95 | ||
峰值黏度 Peak viscosity/BU | 362.75±12.00 | 222.58±12.80 | 345.86±35.90 | 167.67~396.33 | |
301.83±4.00 | 279.25±3.00 | 299.32±21.89 | 244.50~349.25 | ||
热浆黏度 Hot paste viscosity/BU | 229.75±8.00 | 102.42±6.90 | 206.62±25.30 | 134.75~267.08 | |
134.58±4.50 | 121.42±6.00 | 324.02±52.02 | 106.75~179.50 | ||
崩解值 Breakdown viscosity/BU | 133.00±4.00 | 120.17±7.20 | 139.24±24.30 | 32.92~186.75 | |
167.25±0.50 | 157.83±3.00 | 212.26±120.06 | 114.50~186.58 | ||
冷胶黏度 Cool paste viscosity/BU | 326.67±20.20 | 178.67±9.30 | 298.16±23.77 | 241.08~352.67 | |
235.75±1.50 | 225.33±1.00 | 416.30±53.47 | 202.42~314.67 | ||
消减值 Setback viscosity/BU | -36.08±8.10 | -43.92±3.50 | -47.70±35.24 | -119.58~134.25 | |
-66.08±5.50 | -53.92±2.00 | -120.17±113.11 | -108.00~29.50 | ||
回复值 Consistence viscosity/BU | 96.92±12.20 | 76.25±2.40 | 91.54±14.86 | 61.66~167.17 | |
107.17±6.00 | 103.91±5.00 | 92.28±39.78 | 62.50~144.00 | ||
峰值时间 Peak time/min | 6.27±0.03 | 5.73±0.08 | 6.21±0.18 | 5.73~6.53 | |
5.87±0.16 | 5.67±0.10 | 5.91±0.42 | 5.25~6.83 |
表1 BIL群体及其亲本的品质性状在两个环境中的表型变异
Table 1 Descriptive statistics of the rice quality traits(parameters) in parents and BIL population in two environments.
性状 Trait | 亲本(平均值±标准差) Parent(Mean±SD) | BIL群体 BIL population | |||
---|---|---|---|---|---|
平均值±标准差 Mean±SD | 变异范围 Range | ||||
Sasanishiki | Habataki | ||||
蛋白质含量 Protein content/% | 7.15±0.01 | 8.09±0.02 | 7.96±0.78 | 6.52~9.94 | |
7.36±0.02 | 8.79±0.01 | 7.96±0.75 | 6.55~9.78 | ||
直链淀粉含量 Amylose content/% | 14.18±0.11 | 12.89±0.22 | 13.09±2.14 | 9.58~24.87 | |
14.32±0.12 | 13.04±0.20 | 13.08±2.12 | 9.65~24.95 | ||
峰值黏度 Peak viscosity/BU | 362.75±12.00 | 222.58±12.80 | 345.86±35.90 | 167.67~396.33 | |
301.83±4.00 | 279.25±3.00 | 299.32±21.89 | 244.50~349.25 | ||
热浆黏度 Hot paste viscosity/BU | 229.75±8.00 | 102.42±6.90 | 206.62±25.30 | 134.75~267.08 | |
134.58±4.50 | 121.42±6.00 | 324.02±52.02 | 106.75~179.50 | ||
崩解值 Breakdown viscosity/BU | 133.00±4.00 | 120.17±7.20 | 139.24±24.30 | 32.92~186.75 | |
167.25±0.50 | 157.83±3.00 | 212.26±120.06 | 114.50~186.58 | ||
冷胶黏度 Cool paste viscosity/BU | 326.67±20.20 | 178.67±9.30 | 298.16±23.77 | 241.08~352.67 | |
235.75±1.50 | 225.33±1.00 | 416.30±53.47 | 202.42~314.67 | ||
消减值 Setback viscosity/BU | -36.08±8.10 | -43.92±3.50 | -47.70±35.24 | -119.58~134.25 | |
-66.08±5.50 | -53.92±2.00 | -120.17±113.11 | -108.00~29.50 | ||
回复值 Consistence viscosity/BU | 96.92±12.20 | 76.25±2.40 | 91.54±14.86 | 61.66~167.17 | |
107.17±6.00 | 103.91±5.00 | 92.28±39.78 | 62.50~144.00 | ||
峰值时间 Peak time/min | 6.27±0.03 | 5.73±0.08 | 6.21±0.18 | 5.73~6.53 | |
5.87±0.16 | 5.67±0.10 | 5.91±0.42 | 5.25~6.83 |
指标 Index | 蛋白质含量 PC | 直链淀粉含量 AC | 峰值黏度 PKV | 热浆黏度 HPV | 崩解值 BDV | 冷胶黏度 CPV | 消减值 SBV | 回复值 CSV |
---|---|---|---|---|---|---|---|---|
直链淀粉含量 AC | -0.22 | |||||||
-0.14 | ||||||||
峰值黏度 PKV | -0.24 | -0.60** | ||||||
-0.17 | -0.20 | |||||||
热浆黏度 HPV | -0.36** | -0.23* | 0.74** | |||||
-0.39** | -0.15 | 0.73** | ||||||
崩解值 BDV | -0.29* | -0.64** | 0.71** | 0.05 | ||||
-0.26* | -0.54** | 0.70** | 0.03 | |||||
冷胶黏度 CPV | -0.38** | 0.26* | 0.36** | 0.82** | -0.32** | |||
-0.33** | 0.17 | 0.44** | 0.83** | -0.21 | ||||
消减值 SBV | 0.19 | 0.78** | -0.78** | -0.20 | -0.94** | 0.31** | ||
0.12 | 0.86** | -0.62** | -0.10 | -0.89** | 0.43** | |||
回复值 CSV | 0.02 | 0.81** | -0.68** | -0.40** | -0.60** | 0.21 | 0.83** | |
0.02 | 0.78** | -0.27* | -0.41** | -0.41** | 0.58** | 0.78** | ||
峰值时间 PeT | 0.07 | 0.46** | -0.17 | 0.45** | -0.72** | 0.69** | 0.64** | 0.34** |
0.02 | 0.38** | -0.27* | 0.41** | -0.41** | 0.58** | 0.78** | 0.92** |
表2 BIL群体及其亲本的品质性状在两种环境中的相关系数
Table 2 Coefficients of pairwise correlations of the rice quality traits in a BIL population observed in two environments.
指标 Index | 蛋白质含量 PC | 直链淀粉含量 AC | 峰值黏度 PKV | 热浆黏度 HPV | 崩解值 BDV | 冷胶黏度 CPV | 消减值 SBV | 回复值 CSV |
---|---|---|---|---|---|---|---|---|
直链淀粉含量 AC | -0.22 | |||||||
-0.14 | ||||||||
峰值黏度 PKV | -0.24 | -0.60** | ||||||
-0.17 | -0.20 | |||||||
热浆黏度 HPV | -0.36** | -0.23* | 0.74** | |||||
-0.39** | -0.15 | 0.73** | ||||||
崩解值 BDV | -0.29* | -0.64** | 0.71** | 0.05 | ||||
-0.26* | -0.54** | 0.70** | 0.03 | |||||
冷胶黏度 CPV | -0.38** | 0.26* | 0.36** | 0.82** | -0.32** | |||
-0.33** | 0.17 | 0.44** | 0.83** | -0.21 | ||||
消减值 SBV | 0.19 | 0.78** | -0.78** | -0.20 | -0.94** | 0.31** | ||
0.12 | 0.86** | -0.62** | -0.10 | -0.89** | 0.43** | |||
回复值 CSV | 0.02 | 0.81** | -0.68** | -0.40** | -0.60** | 0.21 | 0.83** | |
0.02 | 0.78** | -0.27* | -0.41** | -0.41** | 0.58** | 0.78** | ||
峰值时间 PeT | 0.07 | 0.46** | -0.17 | 0.45** | -0.72** | 0.69** | 0.64** | 0.34** |
0.02 | 0.38** | -0.27* | 0.41** | -0.41** | 0.58** | 0.78** | 0.92** |
图1 利用Sasanishiki/Habataki BIL群体在2个环境检测到的品质性状QTL的染色体位置 E1表示江苏省南京市; E2表示江苏省金湖县; “+” and “-”分别代表增效等位基因来自于Sasanishiki和Habataki。
Fig. 1. Locations of the identified QTL for rice grain quality using Sasanishiki/Habataki BIL population in two environments. E1, Nanjing, Jiangsu Province, China; E2, Jinhu, Jiangsu Province, China; “+” and “-” following the abbreviation of traits indicate the additive effects of the alleles are contributed by Sasanishiki and Habataki, respectively.
位点 Loci | 染色体 Chr. | 标记区间 Marker interval | 地点 Location | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Effect | 效应来源 Positive allele | ||
---|---|---|---|---|---|---|---|---|---|
qPC1 | 1 | R1485 | - | R886 | E1 | 2.71 | 11.46 | -0.47 | Habataki |
qPC8 | 8 | R2382 | - | S14074 | E1 | 3.26 | 14.44 | 0.45 | Sasanishiki |
E2 | 2.44 | 11.47 | 0.39 | Sasanishiki | |||||
qPC9 | 9 | R1751 | - | G385 | E1 | 2.25 | 10.23 | -0.61 | Habataki |
qPC12.1 | 12 | C1336 | - | R367 | E2 | 3.31 | 13.89 | 0.47 | Sasanishiki |
qPC12.2 | 12 | S1436 | - | R1709 | E2 | 3.35 | 16.16 | -0.44 | Habataki |
qAC4 | 4 | G264 | - | G177 | E1 | 2.91 | 10.69 | -1.16 | Habataki |
E2 | 2.94 | 10.71 | -1.15 | Habataki | |||||
qAC5 | 5 | R3166 | - | R708 | E1 | 2.01 | 7.70 | 1.24 | Sasanishiki |
qAC10 | 10 | R2447 | - | R3285 | E1 | 3.82 | 16.38 | -2.09 | Habataki |
E2 | 4.00 | 16.97 | -2.09 | Habataki | |||||
qPKV2 | 2 | R1843 | - | S2068 | E1 | 2.78 | 22.34 | 26.89 | Sasanishiki |
E2 | 2.99 | 12.67 | 14.48 | Sasanishiki | |||||
qPKV3 | 3 | S1466 | - | R19 | E2 | 2.45 | 9.96 | -11.87 | Habataki |
qPKV4 | 4 | G271 | - | C513 | E2 | 2.20 | 10.13 | 10.51 | Sasanishiki |
qPKV7 | 7 | R2829 | - | R2401 | E1 | 2.10 | 7.72 | 13.69 | Sasanishiki |
E2 | 3.32 | 21.72 | 16.30 | Sasanishiki | |||||
qPKV10 | 10 | R2447 | - | R3285 | E1 | 2.35 | 8.74 | 16.30 | Sasanishiki |
qHPV2 | 2 | C37 | - | C1236 | E2 | 3.35 | 15.32 | 11.53 | Sasanishiki |
qHPV7 | 7 | R2829 | - | R2401 | E1 | 2.87 | 14.66 | 8.65 | Sasanishiki |
E2 | 2.69 | 11.74 | 8.05 | Sasanishiki | |||||
qCPV1 | 1 | C470 | - | R1944 | E1 | 3.10 | 15.38 | 14.15 | Sasanishiki |
E2 | 2.56 | 9.47 | 8.94 | Sasanishiki | |||||
qCPV2 | 2 | G1340 | - | R1843 | E1 | 2.39 | 11.31 | 13.39 | Sasanishiki |
qCPV8 | 8 | R2382 | - | S14074 | E1 | 2.88 | 12.51 | 14.96 | Sasanishiki |
qCPV9 | 9 | C711 | - | G36 | E2 | 2.40 | 15.68 | -9.69 | Habataki |
qCPV10 | 10 | R716 | - | C16 | E1 | 2.38 | 12.82 | 15.08 | Sasanishiki |
qBDV1 | 1 | G393 | - | C813 | E1 | 2.51 | 8.86 | -11.74 | Habataki |
qBDV2 | 2 | R1843 | - | S2068 | E1 | 3.21 | 11.77 | 14.38 | Sasanishiki |
qBDV3 | 3 | C1351 | - | C1468 | E2 | 2.14 | 7.87 | -6.47 | Habataki |
qBDV4 | 4 | G264 | - | G177 | E1 | 2.96 | 10.55 | 12.93 | Sasanishiki |
E2 | 3.02 | 11.45 | 13.04 | Sasanishiki | |||||
qBDV5 | 5 | R3166 | - | R708 | E1 | 2.03 | 7.90 | -11.59 | Habataki |
qBDV7 | 7 | R2829 | - | R2401 | E1 | 2.98 | 17.66 | 8.97 | Sasanishiki |
E2 | 3.24 | 19.36 | 9.43 | Sasanishiki | |||||
qBDV8 | 8 | R2382 | - | S14074 | E1 | 2.82 | 10.45 | -11.47 | Habataki |
qBDV9 | 9 | G36 | - | R1146 | E2 | 5.21 | 22.47 | 12.74 | Sasanishiki |
qSBV2 | 2 | S2068 | - | C499 | E1 | 2.79 | 21.70 | -26.49 | Habataki |
qSBV5 | 5 | R708 | - | R372 | E2 | 2.29 | 9.39 | 11.84 | Sasanishiki |
qSBV7 | 7 | R2829 | - | R2401 | E1 | 3.90 | 14.99 | -19.42 | Habataki |
E2 | 2.84 | 18.41 | -13.72 | Habataki | |||||
qSBV9 | 9 | G36 | - | R1146 | E2 | 2.75 | 29.11 | -18.62 | Habataki |
qSBV10 | 10 | S2083 | - | R2174 | E1 | 2.80 | 10.50 | -17.12 | Habataki |
qSBV12 | 12 | C1336 | - | R367 | E2 | 2.73 | 11.73 | -10.91 | Habataki |
qCSV1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qCSV2 | 2 | S2068 | - | C499 | E1 | 2.13 | 13.66 | -11.18 | Habataki |
qCSV5 | 5 | R708 | - | R372 | E1 | 2.80 | 10.61 | 8.30 | Sasanishiki |
qCSV7 | 7 | R2829 | - | R2401 | E1 | 2.55 | 8.13 | 7.29 | Sasanishiki |
qCSV8 | 8 | R1943 | - | G278 | E1 | 2.15 | 8.13 | 7.29 | Sasanishiki |
qPeT1.1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qPeT1.2 | 1 | G393 | - | C813 | E1 | 2.70 | 12.75 | 0.10 | Sasanishiki |
qPeT8 | 8 | R2382 | - | S14074 | E1 | 3.49 | 20.47 | 0.13 | Sasanishiki |
表 3 BIL群体中检测到的控制稻米品质的QTL
Table 3 QTL affecting rice quality detected in Sasanishiki/Habataki BIL.
位点 Loci | 染色体 Chr. | 标记区间 Marker interval | 地点 Location | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Effect | 效应来源 Positive allele | ||
---|---|---|---|---|---|---|---|---|---|
qPC1 | 1 | R1485 | - | R886 | E1 | 2.71 | 11.46 | -0.47 | Habataki |
qPC8 | 8 | R2382 | - | S14074 | E1 | 3.26 | 14.44 | 0.45 | Sasanishiki |
E2 | 2.44 | 11.47 | 0.39 | Sasanishiki | |||||
qPC9 | 9 | R1751 | - | G385 | E1 | 2.25 | 10.23 | -0.61 | Habataki |
qPC12.1 | 12 | C1336 | - | R367 | E2 | 3.31 | 13.89 | 0.47 | Sasanishiki |
qPC12.2 | 12 | S1436 | - | R1709 | E2 | 3.35 | 16.16 | -0.44 | Habataki |
qAC4 | 4 | G264 | - | G177 | E1 | 2.91 | 10.69 | -1.16 | Habataki |
E2 | 2.94 | 10.71 | -1.15 | Habataki | |||||
qAC5 | 5 | R3166 | - | R708 | E1 | 2.01 | 7.70 | 1.24 | Sasanishiki |
qAC10 | 10 | R2447 | - | R3285 | E1 | 3.82 | 16.38 | -2.09 | Habataki |
E2 | 4.00 | 16.97 | -2.09 | Habataki | |||||
qPKV2 | 2 | R1843 | - | S2068 | E1 | 2.78 | 22.34 | 26.89 | Sasanishiki |
E2 | 2.99 | 12.67 | 14.48 | Sasanishiki | |||||
qPKV3 | 3 | S1466 | - | R19 | E2 | 2.45 | 9.96 | -11.87 | Habataki |
qPKV4 | 4 | G271 | - | C513 | E2 | 2.20 | 10.13 | 10.51 | Sasanishiki |
qPKV7 | 7 | R2829 | - | R2401 | E1 | 2.10 | 7.72 | 13.69 | Sasanishiki |
E2 | 3.32 | 21.72 | 16.30 | Sasanishiki | |||||
qPKV10 | 10 | R2447 | - | R3285 | E1 | 2.35 | 8.74 | 16.30 | Sasanishiki |
qHPV2 | 2 | C37 | - | C1236 | E2 | 3.35 | 15.32 | 11.53 | Sasanishiki |
qHPV7 | 7 | R2829 | - | R2401 | E1 | 2.87 | 14.66 | 8.65 | Sasanishiki |
E2 | 2.69 | 11.74 | 8.05 | Sasanishiki | |||||
qCPV1 | 1 | C470 | - | R1944 | E1 | 3.10 | 15.38 | 14.15 | Sasanishiki |
E2 | 2.56 | 9.47 | 8.94 | Sasanishiki | |||||
qCPV2 | 2 | G1340 | - | R1843 | E1 | 2.39 | 11.31 | 13.39 | Sasanishiki |
qCPV8 | 8 | R2382 | - | S14074 | E1 | 2.88 | 12.51 | 14.96 | Sasanishiki |
qCPV9 | 9 | C711 | - | G36 | E2 | 2.40 | 15.68 | -9.69 | Habataki |
qCPV10 | 10 | R716 | - | C16 | E1 | 2.38 | 12.82 | 15.08 | Sasanishiki |
qBDV1 | 1 | G393 | - | C813 | E1 | 2.51 | 8.86 | -11.74 | Habataki |
qBDV2 | 2 | R1843 | - | S2068 | E1 | 3.21 | 11.77 | 14.38 | Sasanishiki |
qBDV3 | 3 | C1351 | - | C1468 | E2 | 2.14 | 7.87 | -6.47 | Habataki |
qBDV4 | 4 | G264 | - | G177 | E1 | 2.96 | 10.55 | 12.93 | Sasanishiki |
E2 | 3.02 | 11.45 | 13.04 | Sasanishiki | |||||
qBDV5 | 5 | R3166 | - | R708 | E1 | 2.03 | 7.90 | -11.59 | Habataki |
qBDV7 | 7 | R2829 | - | R2401 | E1 | 2.98 | 17.66 | 8.97 | Sasanishiki |
E2 | 3.24 | 19.36 | 9.43 | Sasanishiki | |||||
qBDV8 | 8 | R2382 | - | S14074 | E1 | 2.82 | 10.45 | -11.47 | Habataki |
qBDV9 | 9 | G36 | - | R1146 | E2 | 5.21 | 22.47 | 12.74 | Sasanishiki |
qSBV2 | 2 | S2068 | - | C499 | E1 | 2.79 | 21.70 | -26.49 | Habataki |
qSBV5 | 5 | R708 | - | R372 | E2 | 2.29 | 9.39 | 11.84 | Sasanishiki |
qSBV7 | 7 | R2829 | - | R2401 | E1 | 3.90 | 14.99 | -19.42 | Habataki |
E2 | 2.84 | 18.41 | -13.72 | Habataki | |||||
qSBV9 | 9 | G36 | - | R1146 | E2 | 2.75 | 29.11 | -18.62 | Habataki |
qSBV10 | 10 | S2083 | - | R2174 | E1 | 2.80 | 10.50 | -17.12 | Habataki |
qSBV12 | 12 | C1336 | - | R367 | E2 | 2.73 | 11.73 | -10.91 | Habataki |
qCSV1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qCSV2 | 2 | S2068 | - | C499 | E1 | 2.13 | 13.66 | -11.18 | Habataki |
qCSV5 | 5 | R708 | - | R372 | E1 | 2.80 | 10.61 | 8.30 | Sasanishiki |
qCSV7 | 7 | R2829 | - | R2401 | E1 | 2.55 | 8.13 | 7.29 | Sasanishiki |
qCSV8 | 8 | R1943 | - | G278 | E1 | 2.15 | 8.13 | 7.29 | Sasanishiki |
qPeT1.1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qPeT1.2 | 1 | G393 | - | C813 | E1 | 2.70 | 12.75 | 0.10 | Sasanishiki |
qPeT8 | 8 | R2382 | - | S14074 | E1 | 3.49 | 20.47 | 0.13 | Sasanishiki |
QTL位点 Target QTL | 目标置换系 CSSLs | 南京市 Nanjing, Jiangsu Province | 金湖县 Jinhu, Jiangsu Province | |||
---|---|---|---|---|---|---|
平均值 Mean | P值 P-value | 平均值 Mean | P值 P-value | |||
qPC8 | Sasanishiki | 7.15 | 7.36 | |||
SL428 | 6.58 | 0.003** | 6.62 | 0.001** | ||
qAC4 | Sasanishiki | 14.18 | 14.32 | |||
SL414 | 13.15 | 0.004** | 13.06 | 0.002** | ||
qAC10 | Sasanishiki | 14.18 | 14.32 | |||
SL431 | 11.43 | 0.002** | 11.56 | 0.005** | ||
SL432 | 14.42 | 0.030* | 15.38 | 0.010** | ||
qPKV2 | Sasanishiki | 362.75 | 301.83 | |||
SL406 | 208.70 | 0.004** | 155.08 | 0.005** | ||
SL407 | 197.40 | 0.008** | 153.83 | 0.002** | ||
qPKV7 | Sasanishiki | 362.75 | 301.83 | |||
SL422 | 393.50 | 0.005** | 345.60 | 0.004** | ||
qHPV7 | Sasanishiki | 229.75 | 134.58 | 0.003** | ||
SL422 | 322.50 | 0.004** | 210.50 | 0.008** | ||
qCPV1 | Sasanishiki | 326.67 | 235.75 | |||
SL401 | 367.50 | 0.020* | 257.80 | 0.030* | ||
qBDV4 | Sasanishiki | 133.00 | 167.25 | |||
SL414 | 178.50 | 0.007** | 200.60 | 0.006** | ||
qBDV7 | Sasanishiki | 133.00 | 167.25 | |||
SL422 | 71.00 | 0.002** | 135.10 | 0.005** | ||
qSBV7 | Sasanishiki | -36.08 | -66.08 | |||
SL422 | -16.50 | 0.009** | -47.60 | 0.006** |
表4 稻米品质性状QTL对应置换系与背景亲本Sasanishiki在2个环境中的表型差异
Table 4 Phenotypic differences between genetic background parent Sasanishiki and target CSSLs carrying rice quality traits QTLs across two environments.
QTL位点 Target QTL | 目标置换系 CSSLs | 南京市 Nanjing, Jiangsu Province | 金湖县 Jinhu, Jiangsu Province | |||
---|---|---|---|---|---|---|
平均值 Mean | P值 P-value | 平均值 Mean | P值 P-value | |||
qPC8 | Sasanishiki | 7.15 | 7.36 | |||
SL428 | 6.58 | 0.003** | 6.62 | 0.001** | ||
qAC4 | Sasanishiki | 14.18 | 14.32 | |||
SL414 | 13.15 | 0.004** | 13.06 | 0.002** | ||
qAC10 | Sasanishiki | 14.18 | 14.32 | |||
SL431 | 11.43 | 0.002** | 11.56 | 0.005** | ||
SL432 | 14.42 | 0.030* | 15.38 | 0.010** | ||
qPKV2 | Sasanishiki | 362.75 | 301.83 | |||
SL406 | 208.70 | 0.004** | 155.08 | 0.005** | ||
SL407 | 197.40 | 0.008** | 153.83 | 0.002** | ||
qPKV7 | Sasanishiki | 362.75 | 301.83 | |||
SL422 | 393.50 | 0.005** | 345.60 | 0.004** | ||
qHPV7 | Sasanishiki | 229.75 | 134.58 | 0.003** | ||
SL422 | 322.50 | 0.004** | 210.50 | 0.008** | ||
qCPV1 | Sasanishiki | 326.67 | 235.75 | |||
SL401 | 367.50 | 0.020* | 257.80 | 0.030* | ||
qBDV4 | Sasanishiki | 133.00 | 167.25 | |||
SL414 | 178.50 | 0.007** | 200.60 | 0.006** | ||
qBDV7 | Sasanishiki | 133.00 | 167.25 | |||
SL422 | 71.00 | 0.002** | 135.10 | 0.005** | ||
qSBV7 | Sasanishiki | -36.08 | -66.08 | |||
SL422 | -16.50 | 0.009** | -47.60 | 0.006** |
[1] | 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998, 12(3): 172-176. |
Huang F S, Sun Z X, Hu P S, Tang S Q.Present situations and prospects for the research on rice grain quality forming.Chin J Rice Sci, 1998, 12(2):172-176. (in Chinese with English abstract) | |
[2] | 包劲松. 稻米淀粉品质遗传与改良研究进展. 分子植物育种, 2007, 5(F11): 1-20. |
Bao J S.Progress in studies on inheritance and improvement of rice starch quality.Mol Plant Breeding, 2007, 5(F11): 1-20. (in Chinese with English abstract) | |
[3] | 陈书强. 粳稻米蒸煮食味品质与其他品质性状的典型相关分析. 西北农业学报, 2015, 24(1): 60-67. |
Cheng S Q.Canonical correlation between cooking, eating quality and other quality traits in japonica rice.Acta Agric Boreali-Occ Sin, 2015, 24(1): 60-67. (in Chinese with English abstract) | |
[4] | 朱满山, 汤述翥, 顾铭洪. RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005, 21(8): 59-64. |
Zhu M S, Tang S Z, Gu M H.Progresses in the study on the assessing, genetic and breeding of the rice starch RVA profile in rice quality.Chin Agric Sci Bull, 2005, 21(8): 59-64. (in Chinese with English abstract) | |
[5] | 张启莉, 谢黎虹, 李仕贵, 胡培松. 稻米蛋白质与蒸煮食味品质的关系研究进展. 中国稻米, 2012, 18(4): 1-6. |
Zhang Q L, Xie L H, Li S G, Hu P S.Progress in the Study on the relationship between protein and eating and cooking quality of rice.China Rice, 2012, 18(4): 1-6. (in Chinese) | |
[6] | 黎用朝, 李小湘. 影响稻米品质的遗传和环境因素研究进展. 中国水稻科学, 1998, 12: 56-62. |
Li Y C, Li X X.Advances in studies on genetic and environmental factors influencing rice grain quality.Chin J Rice Sci, 1998, 12: 56-62. (in Chinese with English abstract) | |
[7] | Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H.Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid.Theor Appl Genet, 2001, 103(6-7): 1037-1045. |
[8] | 吴长明, 孙传清, 付秀林, 王象坤, 李自超, 张强. 稻米品质性状与产量性状及籼粳分化度的相互关系研究. 作物学报, 2003, 29(6): 822-828. |
Wu C M, Sun C Q, Fu X L, Wang X K, Li Z C, Zhang Q.Study on the relationship between quality, yield characters or indica-japonica differentiation in rice(Oryza sativa L.). Acta Agron Sin, 2003, 29(6):822-828. (in Chinese with English abstract) | |
[9] | Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S.Mapping of genes for cooking and eating qualities in Thai jasmine rice(KDML105).DNA Res, 2000, 7(2): 93-101. |
[10] | Bao J S, Corke H, He P, Zhu L H.Analysis of quantitative trait loci for starch properties of rice based on an RIL population.Acta Bota Sin, 2003, 45(8): 986-994. |
[11] | 张巧凤, 张亚东, 朱镇, 赵凌, 赵庆勇, 许凌, 王才林. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL 定位分析. 中国水稻科学, 2007, 21(6): 591-598. |
Zhang Q F, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Xu L, Wang C L.Analysis of inheritance and QTLs of rice starch viscosity(RVA profile) characteristics.Chin J Rice Sci, 2007, 21(6): 591-598. (in Chinese with English abstract) | |
[12] | Leng Y J, Xue D W, Yang Y L, Hu S K, Su Y, Huang L C, Wang L, Zheng T T, Zhang G H, Hu J, Gao Z Y, Guo L B, Qian Q, Zeng D L.Mapping of QTLs for eating and cooking quality-related traits in rice(Oryza sativa L.). Euphytica, 2014, 197(1): 99-108. |
[13] | 翁建峰, 万向元, 吴秀菊, 王海莲, 翟虎渠, 万建民. 利用CSSL 群体研究稻米AC和PC相关QTL表达稳定性. 作物学报, 2006, 32(1): 14-19. |
Weng J F, Wan X Y, Wu X J, Wang H L, Zhai H Q, Wan J M.Stable expression of QTL for AC and PC of milled rice(Oryza sativa L.) using a CSSL population. Acta Agrono Sin, 2006, 32(1): 14-19. (in Chinese with English abstract) | |
[14] | 杨亚春, 倪大虎, 宋丰顺, 李莉, 陆徐忠, 李泽福, 杨剑波. 不同生态环境下稻米淀粉RVA 谱特征值的QTL 定位分析. 作物学报, 2012, 38(2): 264-274. |
Yang Y C, Ni D H, Song F S, Li L, Lu X Z, Li Z F, Yang J B.Identification of QTL for rice starch RVA profile properties under different ecological sites.Acta Agron Sin, 2012, 38(2): 264-274. (in Chinese with English abstract) | |
[15] | 张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段置换系定位控制淀粉黏滞性谱QTL. 中国水稻科学, 2013, 27(1): 56-64. |
Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q.Mapping of QTLs for rice RVA properties using high-throughput re-scquenced chromosome segment substitution lines.Chin J Rice Sci, 2013, 27(1): 56-64. (in Chinese with English abstract) | |
[16] | Ando T, Yamamoto T, Shimizu T, Ma X F, Shomura A, Takeuchi Y, Liu S Y, Yano M.Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice.Theor Appl Genet, 2008, 116(6): 881-890. |
[17] | Brabender M.The new MICRO-VISCO-AMYLO-GRAPH: Comparison of some results with those of the Viscograph. American Association of Cereal Chemists Annual Meeting, Minneapoils, 1998. |
[18] | Wang S, Basten J, Zeng Z.Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007. |
[19] | McCouch S R. Gene nomenclature system for rice.Rice, 2008, 1(1):72-84. |
[20] | 包劲松, 夏英武. 基因型×环境互作效应对籼稻蒸煮食用品质的影响. 浙江大学学报, 2000, 26(2): 29-35. |
Bao J S, Xia Y W.Effects of genotype × environment interaction on eating and cooking quality of indica rice.J Zhejiang Univ, 2000, 26(2): 29-35. (in Chinese with English abstract) | |
[21] | 孙亚伟. 水稻染色体单片段代换系农艺性状分析及QTL定位. 扬州:扬州大学, 2009. |
Sun Y W.QTL mapping for agronomic traits in chromosome segment substitution lines of rice. Yangzhou: Yangzhou University, 2009. (in Chinese with English abstract) | |
[22] | 彭军成. 水稻精米蛋白质含量精细定位分析. 扬州: 扬州大学, 2011. |
Peng J C.Fine-mapping analysis for protein content of milled rice. Yangzhou: Yangzhou University, 2011. (in Chinese) | |
[23] | Zhang W W, Bi J C, Chen L M, Zheng L N, Ji S L, Xia Y M, Zhao Z G, Wang Y H, Liu L L, Jiang L, Wan J M.QTL mapping for crude protein and protein fraction contents in rice(Oryza sativa L.). J Cereal Sci, 2008, 48(2): 539-547. |
[24] | Wang L Q, Liu W J, Xu Y, He Y Q, Luo L J, Xiang Y Z, Xu C G, Zhang Q F.Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain.Theor Appl Genet, 2007, 115(4): 463-476. |
[25] | 邵昕, 陈忠明, 刘正辉, 丁承强, 唐设, 李刚华, 王绍华, 丁艳锋. 越光/9311染色体片段置换系的构建及稻米黏滞性谱特征值QTL分析. 分子植物育种, 2015, 13(2): 261-268. |
Shang X, Chen Z M, Liu Z H, Ding C Q, Tang S, Li G H, Wang S H, Ding Y F.QTL Mapping for rice RVA properties using chromosome segment substitution lines derived from a cross between Koshihikari and 9311.Mol Plant Breeding, 2015, 13(2): 261-268. (in Chinese with English abstract) | |
[26] | Cho Y C, Suh J P, Yoon M R, Baek M K, Won Y J, Lee J H, Park H S, Baek S H,Lee J H.QTL mapping for paste viscosity characteristics related to eating quality and QTL-NIL development in japonica rice(Oryza sativa L.). Plant Breeding&Biotechnol, 2013, 1(4): 333-346. |
[27] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q.Progress in the allelic variation ofWx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[28] | Zheng L N, Zhang W W, Liu S J, Liu X, Chen L M, Chen X G,Ma J, Chen W W, Zhao Z G, Jiang L, Wan J M.Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred population of rice.J Cereal Sci, 2012, 56(2): 153-160. |
[29] | Liu X L, Wan X Y, Ma X D, Wan J M.Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments.Genome, 2011, 54(1): 64-80. |
[30] | Peng J H, Ronin Y, Fahima T, Röder M S, Li Y C, Nevo E, Korol A.Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci, 2003, 100(5): 2489-2494. |
[31] | Tanksley S, Nelson J.Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines.Theor Appl Genet, 1996, 92(2): 191-203. |
[32] | 钱春荣, 冯延江, 杨静, 刘海英, 金正勋. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学, 2007, 21(3): 323-326. |
Qian C R, Feng Y J, Yang J, Liu H Y, Jin Z X.Effects of protein content selection on cooking and eating properties of rice in early-generation of crosses.Chin J Rice Sci, 2007, 21(3): 323-326. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||